Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Конспеут урока "Математика и экономика".

Конспеут урока "Математика и экономика".



Осталось всего 2 дня приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Математика

Поделитесь материалом с коллегами:


Тема 8. Простейшие экономико-математические модели.

Время: 2 часа

Цель лекции: Познакомить слушателей с возможностями использования математического аппарата дифференциального исчисления и систем линейных алгебраических уравнений в экономических расчётах.

План лекции:

  1. Простые и сложные проценты.

  2. Задачи на экстремум в экономике.

  3. Понятие эластичности в микроэкономике.

  4. Модель Леонтьева межотраслевого баланса.

  1. Простые и сложные проценты.

Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение некоторого промежутка времени. Известны две основные схемы дискретного начисления:

  • схема простых процентов;

  • схема сложных процентов.

В финансовых расчётах процентом P называют сумму, уплачиваемую за использование предоставленных средств S. Величина hello_html_3b43d4a5.gif называется процентной ставкой. По истечению договорного срока (например, 1 год), инвестор получает сумму hello_html_4cb9e575.gif. Число hello_html_m79d50266.gif называют удельной процентной ставкой.

Схема простых процентов предполагает неизменность базы, с которой происходит начисление, т.е. на процент Р, добавленный к сумме S, процент не начисляется и тогда сумма Sп, накопленная за п лет, вычисляется по формуле:

hello_html_m327ebe4a.gif.

Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные и невостребованные инвестором проценты.

Сумма, накопленная за п лет при сложном проценте, определяется формулой:

hello_html_2d4ca78c.gif.

Величину hello_html_5797e61d.gif называют коэффициентом сложного процента.

Величина вклада при сложных процентах, начисляемых т раз в год:

hello_html_4fb17b65.gif

Использование в расчетах сложного процента в случае многократного его начисления более логично, поскольку в этом случае капитал, генерирующий доходы, постоянно возрастает. При применении простого процента доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных проектах или текущей деятельности.

Формула сложных процентов является одной из базовых формул в финансовых вычислениях вообще и при оценке инвестиционных проектов в частности, поэтому, для удобства пользования значения множителя hello_html_23e3b25a.gif табулируют для различных значений r и n. Тогда формула алгоритма наращения по схеме сложных процентов переписывается следующим образом:

hello_html_m1a4a3982.gif,

где hello_html_66a47cf9.gif ‒ мультиплицирующий множитель.

Экономический смысл множителя hello_html_7fd7f527.gif состоит в следующем: он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т.п.) через n периодов при заданной процентной ставке.

Методы оценки инвестиционных проектов.

Оценивая целесообразность финансовых вложений в тот или иной вид бизнеса, исходят из того, является это вложение более прибыльным (при допустимом уровне риска), чем вложения в государственные ценные бумаги, или нет.

Основная идея этих методов заключается в оценке будущих поступлений hello_html_m1c07fb3b.gif (например, в виде прибыли, процентов, дивидендов) с позиции текущего момента. При этом, сделав финансовые вложения, инвестор обычно руководствуется тремя посылами:

а) происходит перманентное обесценение денег (инфляция);

б) темп изменения цен на сырье, материалы и основные средства, используемые предприятием, может существенно отличаться от темпа инфляции;

в) желательно периодическое начисление (или поступление) дохода, причем в размере не ниже определенного минимума.

Базируясь на этих посылах, инвестор должен оценить, какими будут его доходы в будущем, какую максимально возможную сумму допустимо вложить в данное дело исходя из прогнозируемой его рентабельности.

Базовая расчетная формула для такого анализа является следствием формулы

hello_html_15aaf5d2.gif,

где: hello_html_m1c07fb3b.gif - доход, планируемый к получению в п-ом году;

S – текущая (или приведенная) стоимость, т.е. оценка величины hello_html_m1c07fb3b.gif с позиции текущего момента;

hello_html_me448553.gif ‒ коэффициент дисконтирования.

Экономический смысл такого представления заключается в следующем: прогнозируемая величина денежных поступлений через n – лет (hello_html_m1c07fb3b.gif) с позиции текущего момента будет меньше и равна S (поскольку знаменатель дроби больше единицы. Это означает также, что для инвестора сумма S в данный момент времени и сумма hello_html_m1c07fb3b.gif через n – лет одинаковы по своей ценности. Используя эту формулу, можно приводить в сопоставимый вид оценку доходов от инвестиций, ожидаемых к поступлению в течение ряда лет.


  1. Задачи на экстремум в экономике.

Алгоритм решения задачи на определение наибольшего или наименьшего значений:

  1. Этап построения математической модели (этап формализации).

  • выявляем оптимизируемую величину (прибыль, расходы на производство и т.п.). и обозначаем её у;

  • одну из неизвестных величин (цену товара, величину спроса, объём производства и т.п.) считаем независимой переменной и обозначаем х. Устанавливаем реальные границы изменения х в соответствии с условием задачи;

  • исходя из конкретных условий задачи, выражаем у через х и известные величины.

  1. Этап исследования математической модели.

  • для полученной функции находим максимум или минимум (в зависимости от требований задачи) на промежутке реального изменения х.

  1. Этап интерпретации результатов.

  • Интерпретируем полученные результаты для данных задачи.

Данный алгоритм подходит и для функции с двумя переменными.

  1. Понятие эластичности в микроэкономике.

Для исследования экономических процессов и решения прикладных задач используется понятие эластичности функции.

Эластичностью функции (с точки зрения математики) hello_html_18de6a24.gif называется предел отношения относительного приращения функции к относительному приращению аргумента при hello_html_63609d48.gif.

hello_html_c8b9229.gifhello_html_m4755e60a.gif

hello_html_m48ab8f9e.gif


Экономический смысл эластичности функции в том, что она выражает приближённый процентный прирост значения функции при приращении аргумента на 1%.

Свойства эластичности:

  1. Эластичность ‒ безразмерная величина, т.е. её значение не зависит от единиц измерения величин х и у.

  2. Эластичность произведения двух функций равна сумме эластичностей этих функций.

hello_html_78f32967.gif

  1. Эластичность частного двух функций равна разности эластичностей этих функций.

hello_html_217cd01c.gif

Эластичность спроса q относительно цены p.

Пусть спрос зависит от цены по закону hello_html_m70d1f366.gif. Функция hello_html_mdd49249.gif показывает, как изменится спрос на данный товар, если цена изменится на 1%. Так как обычно hello_html_m12995e0a.gif, т.е. с увеличением цены спрос падает, то hello_html_5f261a3a.gif берут со знаком «‒», т.е. hello_html_m6862dd1c.gif.

Если hello_html_m20e5d0b8.gif то говорят, что спрос эластичен; если hello_html_m16531fac.gif то не эластичен; если жеhello_html_m3b3dfa5a.gifто спрос нейтрален.

Перекрестная эластичность спроса по цене характеризует относительное изменение величины спроса на один товар или услуги при изменении цены на другие (замещающие или дополняющие) на один процент.

hello_html_m6c67f424.gif

Положительный знак в (10) свидетельствует о замещаемости, а отрицательный – о дополняемости.

Эластичность спроса q относительно дохода r.

Пусть hello_html_m5b2e05ee.gif ‒ закон зависимости спроса от дохода. Тогда hello_html_39f00112.gif есть эластичность спроса относительно дохода, она показывает как изменится спрос на данный товар, если доход изменится на 1%.

Аналогично можно определить эластичность предложения s относительно цены р или дохода r:

hello_html_m55d125bf.gifи hello_html_m159813c6.gif

Ценовая эластичность ресурсов.

hello_html_m49e8af7f.gif

Характеризует относительное изменение величины спроса на какой-либо ресурс (например, труд) при изменении цены этого ресурса (зарплаты) на один процент.

Эластичность замещения одного ресурса другим

hello_html_7e8033e5.gif

Характеризует необходимое изменение величины одного ресурса (капитала) при изменении количества другого ресурса (труда) на один процент с тем, чтобы выпуск при этом не сократился.

Пример 1: Функция спроса: hello_html_6c606f6f.gif Функция предложения: S = p + 0,5. Здесь р(руб) – цена товара, q(шт.) – количество покупаемого товара; S(шт.) – количество предлагаемого на продажу товара в единицах времени.

Найти: а) равновесную цену: q= S; б) эластичность спроса и предложения для этой цены.

Решение: а) hello_html_m7e403d81.gif p = 2 руб.

б) hello_html_m3f69072d.gif

hello_html_ma153e18.gif; hello_html_mc87470c.gif неэластична

hello_html_44764468.gifhello_html_mfbf9e06.gif; hello_html_m426f8b6f.gif неэластична.

Следовательно изменение цены не приведет к резкому изменению спроса и предложения. При увеличении цены р на 1% спрос уменьшится на 0,3%, а предложение увеличится на 0,8%.

Пример 2: Функция спроса y от цены х продукта имеет вид hello_html_m67d2ab6f.gif. Найти коэффициент эластичности спроса при цене товара hello_html_23262167.gif единицы.

Решение. Коэффициент эластичности спроса равен

hello_html_ab62653.gif.

При hello_html_23262167.gif получаем hello_html_239cfaed.gif, т.е. при повышении цены на 1% спрос на товар уменьшится на 0,25%. Так как hello_html_m53d4ecad.gifhello_html_m7a81fbc9.gif, то спрос при цене hello_html_23262167.gif единицы не эластичен.

  1. Модель Леонтьева межотраслевого баланса.

Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Впервые математическая модель межотраслевого баланса была сформулирована в 1936 году американским экономистом Василием Васильевичем Леонтьевым, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц и использует аппарат матричного анализа.

Рассмотрим взаимодействие п отраслей экономики. Каждая отрасль выпускает определённый продукт, для производства которого требуется продукция каждой из этих п отраслей.

Введем следующие обозначения:

hello_html_4541e6b5.gifобщий объем продукции i-ой отрасли (её валовой выпуск);

hello_html_m1b17cb1d.gifобъем продукции i-ой отрасли, потребляемый j-ой отраслью при производстве продукции объёма hello_html_m2d339cba.gif;

hello_html_m645f6681.gifобъем продукции i – ой отрасли, предназначенный для реализации (потребления) в непроизводственной сфере (продукт конечного потребления). К нему относятся личное потребление граждан, удовлетворение общественных потребностей, содержание государственных институтов и т.д.

hello_html_6c94846a.gifусловно чистая продукция, которая включает оплату труда, чистый доход и амортизацию.

Единицы измерения всех указанных величин могут быть или натуральными (кубометры, тонны, штуки и т.п.), или стоимостными. В зависимости от этого различают натуральный и стоимостный межотраслевые балансы. Мы будем рассматривать стоимостный баланс.

Для наглядного выражения взаимной связи между отраслями используют таблицы определённого вида, которые называют таблицами межотраслевого баланса.


Потребляющие

отрасли

Производящие

отрасли

1

2

п

Конечный

продукт

Валовой

продукт

1

x11

x12

x1n

у1

х1

2

x21

x22

x1n

у2

х2

п

xn1

xn2

xnm

уn

хп

Условно чистая

продукция

hello_html_aea03b7.gif

hello_html_m1c05fec2.gif

hello_html_m7ef77ee9.gif

hello_html_m57d5766e.gif


Валовой продукт

х1

х2

хп


hello_html_7ca8f31b.gif


Рассматривая схему баланса по столбцам, можно заметить, что итог материальных затрат любой потребляющей отрасли и её условно чистой продукции равен валовой продукции этой отрасли.

Данный вывод можно записать в виде соотношения:

hello_html_218591e1.gif, j =1,…,п. (1)

Рассматривая схему МОБ по строкам для каждой производящей отрасли, замечаем, что валовая продукция той или иной отрасли равна сумме материальных затрат потребляющих её продукцию отраслей и конечной продукции данной отрасли:

hello_html_m620d91e.gif, i = 1,…,п. (2)

Балансовый характер таблицы выражается в том, что

hello_html_m26629f41.gifhello_html_1445ebf8.gif

Основу экономической модели МОБ составляет технологическая матрица коэффициентов прямых затрат А(аij).

Коэффициент прямых материальных затрат аij показывает, сколько необходимо единиц продукции i-ой отрасли для производства единицы продукции отрасли j: hello_html_8eefc92.gif, hello_html_aba83f8.gif, hello_html_m5e6223f6.gif. (3)

Выдвигаются два важных предположения:

  1. Сложившуюся технологию производства считаем неизменной. Таким образом, матрица А(аij) постоянна.

  2. Постулируем свойство линейности существующих технологий: для выпуска отраслью j любого объёма продукции хj необходимо затратить продукцию отрасли i в количестве hello_html_69302f0.gif, т.е. материальные издержки пропорциональны объёму производимой продукции: hello_html_452a68a7.gif (4)

Подставляя (4) в (2), получаем hello_html_mf548849.gif (5)

или в матричной форме Х=АХ+Y (6)

С помощью этой модели можно выполнять три вида плановых расчётов:

  • задавая для каждой отрасли величины валовой продукции (хi), можно определить объёмы конечной продукции каждой отрасли (уj):

Y=(E–A)X; (7)

  • задавая величины конечной продукции всех отраслей (уj), можно определить величины валовой продукции каждой отрасли (хi), т.е. определить объём производства, необходимый для удовлетворения данного конечного спроса:

X=(EA)–1Y (8)

Если решение системы (7) существует для любой неотрицательной матрицы Y, то модель Леонтьева (и матрица А) называется продуктивной. Плановые расчёты по модели Леонтьева можно выполнять, если соблюдаются условия продуктивности.

Матрица hello_html_3875602.gif называется матрицей полных затрат.

Для того чтобы матрица коэффициентов прямых материальных затрат А была продуктивной, необходимо и достаточно, чтобы выполнялось одно из перечисленных ниже условий:

  1. матрица (Е–А) неотрицательно обратима, т.е. существует обратная матрица (Е–А)–10;

  2. матричный ряд Е+А+А23+…=hello_html_35fa72a6.gifсходится, причём его сумма равна обратной матрице (Е–А)–1

В=(Е–А)–1= Е+А+А23+… ;

  1. наибольшее по модулю собственное значение hello_html_6694b9a8.gif матрицы А, т.е. решение характеристического уравнения Е–А=0, строго меньше единицы;

  2. все главные миноры матрицы (Е–А), т.е. определители матриц, образованные элементами первых строк и первых столбцов этой матрицы, порядка от 1 до п, положительны.

Более простым способом проверки продуктивности матрицы А является ограничение на величину её нормы, в данном случае на величину наибольшей из сумм элементов матрицы А в каждом столбце. Если норма матрицы А строго меньше единицы, то эта матрица продуктивна. Данное условие является достаточным, но не необходимым условием продуктивности, поэтому матрица А может оказаться продуктивной и в случае, когда её норма больше единицы.

10




57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Краткое описание документа:

Материал предназначен для преподавания математики в учреждениях среднего специального профессионального образования экономического профиля.

Цель лекции: Познакомить слушателей с возможностями использования математического аппарата дифференциального исчисления и систем линейных алгебраических уравнений в экономических расчётах.

План лекции: простые и сложные проценты, задачи на экстремум в экономике, понятие эластичности в микроэкономике, модель Леонтьева межотраслевого баланса.

Понятие эластичности тесносвязано с понятием производной и может быть использовано в средней школе.

Автор
Дата добавления 27.03.2015
Раздел Математика
Подраздел Конспекты
Просмотров239
Номер материала 462985
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх