Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / "Комбинации многогранника и шара" (пособие для учителя)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

"Комбинации многогранника и шара" (пособие для учителя)

библиотека
материалов






Комбинации с многогранником и шаром (пособие для учителя).












Творческая работа учителя математики гимназии №1

г. Саратова

Гришиной Ирины Владимировны





2002 год


Содержание.

стр.




Предисловие 3


. Многогранники, вписанные в шар 4

Основные определения и теоремы 4

Контрольные вопросы 6

Примеры решения задач 7


. Многогранники, описанные около шара 17

Основные определения и теоремы 17

Контрольные вопросы 20

Примеры решения задач 21


. Вариант контрольной работы 30


Литература 40





















Предисловие.


Настоящая работа написана из опыта проведённых уроков геометрии по теме «Комбинации тел» в 11ом профильном (физико-математическом) классе с целью систематизации собранных материалов в помощь учителям, также работающим в профильном классе.

Задачи на комбинацию тел – наиболее трудный вопрос курса стереометрии 11ого класса. Начинающий учитель обязательно испытает трудности и в том, насколько глубоко должны быть изложены теоретические сведения для учащихся, и в том, какие задачи предложить учащимся для решения. Очевидно, что целью учителя профильного класса является то, чтобы максимально подготовить своих учеников к успешной сдаче приёмного экзамена в ВУЗы. Главным здесь является умение решать задачи, поэтому последние подобраны в основном из сборников задач вступительных экзаменов в различные ВУЗы, а теоретическая часть не отягощена доказательствами тех фактов, которые представляются очевидными.

В первом и втором разделах данной работы материал представлен по следующему плану:

  • основные теоретические сведения (могут быть предложены учащимся для записи, т. к. школьные учебники не содержат этих сведений, учитель может сопровождать объяснение показом на моделях, чтобы, как уже замечалось, не отяготить изложение излишними доказательствами);

  • контрольные вопросы (используя их, учитель может провести опрос учащихся в устной или письменной форме);

  • примеры решения задач (для организации классной и домашней работы учащихся; в большинстве случаев указывается источник, из которого взята задача, и её номер).

Как итог, приводится примерный текст контрольной работы, которую учитель может провести по окончании изучения данной темы.

Тема «Комбинации тел» рассматривается как завершающая после изучения свойств многогранников и тел вращения, перед изучением формул объёмов. На её изучение целесообразно отвести 9-12 часов (в зависимости от уровня подготовки класса).







-3-

  1. Многогранники, вписанные в шар.


Основные определения и теоремы.

Определение. Сфера называется описанной около многогранника (или многогранник, вписанным в сферу), если все вершины многогранника лежат на этой сфере.

Центр этой сферы является точкой, равноудалённой от вершин многогранника. Она является точкой пересечения плоскостей, каждая из которых проходит через середину ребра многогранника перпендикулярно ему. (Целесообразно предварительно вспомнить с учащимися положение центра окружности, описанной около многоугольника, а также задачу о равноудалённости от концов отрезка каждой точки плоскости, если эта плоскость проходит через середину отрезка перпендикулярно ему).

Рассмотрим теперь различные виды многогранников, вписанных в сферу.


Призма.

Около призмы можно описать сферу тогда и только тогда, когда призма прямая и около её основания можно описать окружность. Центром сферы является середина отрезка, соединяющего центры описанных около оснований окружностей. Если призма четырёхугольная, то её основание должно обладать тем свойством, что сумма противоположных углов равна 180.


Параллелепипед.

Сфера может быть описана около параллелепипеда тогда и только тогда, когда параллелепипед прямоугольный, так как он должен быть прямым и около его основания – параллелограмма – может быть описана окружность (т. е. основание – прямоугольник).


Пирамида.

Около пирамиды можно описать сферу тогда и только тогда, когда около основания пирамиды можно описать окружность. (Значит, если пирамида треугольная, то около неё всегда может быть описана сфера)

Центр сферы, описанной около пирамиды, лежит на перпендикуляре к плоскости основания пирамиды, восставленном из центра окружности, описанной около основания, так как каждая точка его равноудалена от вершин основания пирамиды.

-4-

В случае, когда боковые рёбра пирамиды равны (равнонаклонены к основанию), вершина пирамиды проектируется в центр окружности, описанной около основания. Можно сказать иначе: высота пирамиды лежит на вышеуказанном перпендикуляре. В этом случае около пирамиды всегда можно описать сферу, причём центр этой сферы является точкой пересечения высоты (или её продолжения) пирамиды и плоскости, перпендикулярной боковому ребру и проходящей через его середину.

Для решения задач на комбинацию шара с многогранником изображение шара бывает излишним, достаточно указать его центр и радиус.

В случае пирамиды с равными боковыми рёбрами показывают положение центра описанного шара как точку пересечения высоты пирамиды и серединного перпендикуляра к боковому ребру, лежащему в плоскости, проходящей через высоту и боковое ребро.

Полезно учащимся предложить один из приёмов нахождения радиуса описанной сферы.


Пример 1.

Пhello_html_10f7c4d7.gifусть SABC – пирамида с равными боковыми рёбрами, h – её высота, R – радиус окружности, описанной около основания. Найдём радиус описанной сферы.


Заметим подобие прямоугольных треугольников SKO1 и SAO.

Тогда

SO1/SA = KS/SO;

R1 = KSSA/SO.


Но KS = SA/2.


Тогда

R1 = SA2/(2SO);


R1 = (h2 + R2)/(2h);

R1 = b2/(2h), где b – боковое ребро.

Полученную формулу радиуса описанной сферы для пирамиды с равными боковыми рёбрами будем в дальнейшем применять при решении задач.

-5-

Контрольные вопросы.

  1. Какой многогранник называется вписанным в сферу?

  2. Каким свойством обладает точка, являющаяся центром сферы, описанной около многогранника? Точкой пересечения каких плоскостей она является?

  3. В каком случае можно описать сферу около n-угольной призмы? Каково положения центра этой сферы?

  4. В каком случае можно описать сферу около четырёхугольной призмы?

  5. В каком случае можно описать сферу около параллелепипеда?

  6. В каком случае можно описать сферу около пирамиды?

  7. Сколько боковых рёбер должно быть у пирамиды, чтобы около неё можно было описать сферу в любом случае?

  8. На каком перпендикуляре к основанию находится центр сферы, описанной около пирамиды, и почему?

  9. В какую точку основания проектируется вершина пирамиды, если её боковые рёбра имеют одинаковую длину?

  10. Каким свойством обладает каждая точка высоты пирамиды с равными боковыми рёбрами?

  11. Каково положение центра сферы, описанной около пирамиды с равными боковыми рёбрами?

  12. Как удобнее при решении задач изобразить центр сферы, описанной около пирамиды с равными боковыми рёбрами?

  13. Может ли центр описанной сферы находиться вне многогранника? Сравните с положением центра описанной окружности около многоугольника.

  14. Запишите формулу радиуса описанной сферы для пирамиды с равными боковыми рёбрами через радиус R окружности, описанной около основания, и высоту пирамиды h.












-6-

Примеры решения задач.

Задача 1 ([1], с. 339, № 49).

Найдите радиус шара, описанного около правильного тетраэдра с ребром а.

Решение.

hello_html_mf0ee8cf.gif














Предварительно построим на изображении правильного тетраэдра SABC изображение центра описанного шара. Проведём апофемы SD и AD (SD = AD). В равнобедренном треугольнике ASD каждая точка медианы DN равноудалена от концов отрезка AS. Поэтому точка O1 есть пересечение высоты SO и отрезка DN. Используя формулу из примера 1, получим:


Shello_html_372f6ead.gifO1 = SA2/(2SO); SO = SA2 – AO2 ;

hello_html_m60aa6254.gifhello_html_3aba027c.gif

Shello_html_m682ac218.gifhello_html_m7337d91d.gifhello_html_m6d0cb589.gifO = a2 – (a3/3) 2 = a2 – a2/3 = a2/3.


Shello_html_m6d0cb589.gifhello_html_m682ac218.gifO1 = a2/(2a2/3) = a6 /4.


Оhello_html_5279ace7.gifтвет. a6 /4.








-7-

Задача 2 ([1], с. 339, № 50).

В правильной четырёхугольной пирамиде сторона основания равна а, а плоский угол при вершине равен . Найти радиус описанного шара.

Рhello_html_m5b927a56.gifешение.

S













По формуле R1 = b2/(2h) для нахождения радиуса описанного шара найдём SC и SO.


SC = a/(2sin(/2));


Shello_html_5279ace7.gifO2 = (a/(2sin(/2))) 2 – (a2 /2) 2 =


= a2/(4sin2 (/2)) – 2a2/4 =


= a2/(4sin2 (/2)) (1 – 2sin2 (/2)) =


= a2/(4sin2 (/2)) cos ;

Shello_html_7e7d62a5.gifO = a/(2sin(/2)) cos .


Rhello_html_7e7d62a5.gif1 = a2/(4sin2 (/2)) 1/(2acos /(2sin(/2)) =


=hello_html_7e7d62a5.gif a/(4sin(/2) cos ).


Оhello_html_7e7d62a5.gifтвет. a / (4sin(/2) cos ).


-8-

Задача 3 ([4], с. 214, № 156).

Вhello_html_2f6c0d10.gifысота правильной четырёхугольной пирамиды и радиус описанной сферы равны соответственно h и r (r h). Найдите площадь основания пирамиды.

Решение.














SO1 = r, SO = h.


По формуле R1 = b2/(2h) получаем, что


SC2 = 2h r.


OC2 = SC2 – OS2;


OC2 = 2h r – h2.


Sосн. = AC2/2 = 4OC2/2 = 2OC2,


Sосн. = 2(2h r – h2) =


= 2h(2r – h).


Ответ. 2h(2r – h).





-9-

Задача 4 ([2], № 12.234).

Сторона основания правильной четырёхугольной пирамиды равна а, боковая грань составляет с плоскостью основания угол . Найти радиус описанного шара.

Рhello_html_108c4729.gifешение.
















По формуле R1 = b2/(2h) для нахождения радиуса описанного шара найдём SC и SO.


SO = OK tg ;


SO = (a tg ) /2.


SC2 = SO2 + OC2;

hello_html_5279ace7.gif

SC2 = (a2 tg2 ) /4 + (a2 /2) 2 =


= (a2 tg2 ) /4 + a2/2 =


= a2 (tg2 + 2) /4.


R1 = SC2/(2SO);


R1 = a2(tg2 + 2)/(4a tg ) =


-10-

= a (tg2 + 2) / (4tg ) =


= a (sin2 + 2cos2) cos / (4sin cos2) =


= a (1 + cos2) / (4sin cos ) =


= a (3+ cos(2)) / (4 sin 2).


Ответ. a(3+ cos 2) / (4 sin 2).


Задача 5 ([2], № 12.350).

Боковые рёбра и две стороны основания треугольной пирамиды имеют одну и ту же длину а, а угол между равными сторонами основания равен . Найти радиус описанного шара.

Рhello_html_m58ef6d45.gifешение.









О






Оhello_html_m1ed59301.gifснование высоты данной пирамиды – точка О, являющаяся центром окружности, описанной около АВС. Найдём её радиус R. По теореме синусов

R = AB/(2sin С ); AB = a,


sin С = sin (90– (/2)) =

= cos(/2);


R = a/(2cos(/2));


-11-

OB = R = a/(2cos(/2)).


Для вычисления R1 применим формулу R1 = b2/(2h).

(b = SB, h = SO)


SB = a;


Shello_html_372f6ead.gifO = SB2 – OB2;


Shello_html_3f14bed8.gifO = a2 – a2/(4cos2 (/2)) =


=hello_html_48bf8acb.gif (a2/4) (4cos2 (/2) – 1) =


=hello_html_77c97b7c.gif (a/2) 2cos + 1 =


=hello_html_11fdbd01.gif (a/2)2(cos + 1/2) =


=hello_html_3f14bed8.gif (a/2)2(cos – cos (2/3)) =


=hello_html_7ea5bea0.gif (a/2)2(-2sin(/2 + /3) sin(/2 – /3)) =


=hello_html_19d9db84.gif 2(a/2)sin(/2 + /3) sin(/3 – /2) =


=hello_html_19d9db84.gif asin(/2 + /3) sin(/3 – /2).


Rhello_html_19d9db84.gif1 = (a cos ) / (2sin(/2 + /3) sin(/3 – /2)).


Оhello_html_19d9db84.gifтвет. R1 = (a cos ) / (2sin(/2 + /3) sin(/3 – /2)).











-12-

Задача 6 ([1], с. 339, № 51)

В шар радиуса R вписана правильная треугольная пирамида с плоскими углами 2 при вершине. Найдите высоту пирамиды.

Решение.

hello_html_59f47e4d.gif













Способ решения задачи может состоять в следующем. Используя формулу R1 = b2 / (2h), выразим h: h = b2 / (2R1). Значит, для нахождения h необходимо знать длину бокового ребра пирамиды. Но проще сначала найти ребро основания через известные R и , затем нетрудно найти боковое ребро.


Пусть AB = a, BK = a/2.


SA = SB = SC =


= KB/sin = a/(2sin );


Ahello_html_m682ac218.gifO = a/3.


Пусть =ASO.

hello_html_m682ac218.gif

sin = AO/SА = (2/3)sin .



SM = SA/2;


SM = a/(4sin ).

-13-

Сhello_html_11fdbd01.gif другой стороны, SM = SO1 cos = R1 – (4/3)sin2 .


Shello_html_m682ac218.gifhello_html_372f6ead.gifM = R 3 – 4sin2 /3.


Тhello_html_m682ac218.gif
hello_html_372f6ead.gifогда
a/(4sin ) = R 3 – 4sin2 /3.


Оhello_html_372f6ead.gifhello_html_m682ac218.gifткуда а = 4Rsin 3 – 4sin2 /3 .


SC = SA = SB = a/(2sin ) =

hello_html_m682ac218.gifhello_html_372f6ead.gif= 2R3 – 4sin2 /3 .


Итак, SO = SA2/(2R);


SO = 4R2 (3 – 4sin2 )/(3 2R) =


=2R(3 – 4sin2 )/3.


Ответ. 2R(3 – 4sin2 )/3.




















-14-

Задача 7 ([2], № 12.460)

Радиус шара, описанного около правильной четырехугольной пирамиды, относится к стороне основания как 3:4. Найти угол между боковой гранью и плоскостью основания.

Решение.

Пhello_html_77806cb3.gif
усть
AD = a, SO1 = R, SAO = . Найдём сначала tg .


Ahello_html_m682ac218.gifO = a2/2.


SO = AOtg ;


Shello_html_m682ac218.gifO = (a2 tg )/2


SA = AO/cos ;


Shello_html_m682ac218.gifA = a2/(2cos ).


Используя формулу R1 = b2 / (2h), получим


Rhello_html_m682ac218.gif = 2a2/(4cos2 a2tg )

hello_html_m682ac218.gif

R = a2/(4sin cos ).


Но по условию, R = 3a/4.


3hello_html_m682ac218.gifa/4 = a2/(4sin cos );

-15-

shello_html_m682ac218.gifin cos = 2/3;


shello_html_m682ac218.gifin 2 = 22/3;


cos 2 =1/3 или cos 2 = -1/3.


tg = sin 2 / (cos 2 +1);


thello_html_m682ac218.gifhello_html_m682ac218.gifg = (22/3)/(1/3 +1) = 22/4 =


hello_html_m682ac218.gifhello_html_m682ac218.gifhello_html_m682ac218.gif= 2/2 или tg = (22/3) (1/(-1/3 +1)) = 2.


Обозначим искомый угол SKO.


tg = SO/OK.


Ohello_html_m682ac218.gifK = AO/2.

hello_html_m682ac218.gif

tg =(SO/AO)2 =


=hello_html_m682ac218.gif tg 2.

hello_html_m682ac218.gif

thello_html_m682ac218.gifg = (2/2) 2 =


=hello_html_m682ac218.gifhello_html_m682ac218.gif 1 или tg = 2 2 = 2.


Значит, = 45 или = arctg 2.


Ответ. 45 или arctg 2.










-16-

  1. Многогранники, описанные около шара.

Основные определения и понятия.

Определение. Сфера называется вписанной в многогранник, если все грани многогранника касаются сферы. Центром вписанной сферы является точка, равноудалённая от всех граней многогранника. (Целесообразно предварительно напомнить учащимся свойство центра окружности, вписанной в многоугольник (равноудалён от сторон), и каково его положение (точка пересечения биссектрис внутренних углов)).

Выясним положение центра вписанной сферы в общем случае и для каждого вида многогранников в отдельности.

Оhello_html_m6751b1ba.gifзнакомимся с понятием биссекторной плоскости двугранного угла.

Определение. Биссекторной называется плоскость, делящая двугранный угол на два равных двугранных угла.

Каждая точка этой плоскости равноудалена от граней двугранного угла (учащиеся доказывают самостоятельно).

В общем случае центр вписанной в многогранник сферы является точкой пересечения биссекторных плоскостей всех двугранных углов многогранника. Он всегда лежит внутри многогранника.

Рассмотрим теперь различные виды многогранников, описанных около сферы.


Прямая призма.

Сферу можно вписать в прямую призму тогда и только тогда, когда в основание можно вписать окружность, диаметр которой равен высоте призмы. (Окружность с тем же радиусом, что и радиус вписанной сферы)

Центром сферы, вписанной в прямую призму, является середина отрезка, соединяющего центры вписанных в основание окружностей.

В частности, если речь идёт о четырёхугольной призме, то её основания должны обладать свойством описанного четырёхугольника. (Суммы длин противоположных сторон должны быть равны.)


Прямой параллелепипед.

В прямой параллелепипед можно вписать сферу тогда и только тогда,

-17-

когда его основание – ромб, причём высота этого ромба есть диаметр вписанной сферы, который, в свою очередь, равен высоте параллелепипеда. (Из всех параллелограммов только в ромб можно вписать окружность.)


Куб.

В куб можно вписать сферу. Центр этой сферы – точка пересечения диагоналей куба, а радиус равен половине длины ребра куба.


Пирамида.

Нhello_html_m2a35016.gifайдём положение центра вписанного шара для пирамиды, у которой боковые грани составляют равные углы с основанием. Известно, что вершина такой пирамиды проектируется в центр окружности, вписанной в основание.

Каждая точка высоты такой пирамиды равноудалена от боковых граней пирамиды (учащиеся доказывают самостоятельно; учитель может дать указание: плоскость линейного угла перпендикулярна граням двугранного угла).

Становится очевидным, что следует отыскать точку, лежащую на высоте и отстоящую на равные расстояния как от боковых граней, так и от основания.

Рассмотрим угол SHO – линейный угол двугранного угла при основании. Проведём его биссектрису НО1. Точка О1 равноудалена от боковых граней и от основания. О1центр вписанной сферы.

Итак, центр вписанной сферы у пирамиды, боковые грани которой равнонаклонены к основанию, находится в точке пересечения высоты пирамиды с биссектрисой линейного угла двугранного угла при основании (одна сторона линейного угла должна быть высотой боковой грани пирамиды).

Полезно предложить учащимся один из приёмов нахождения радиуса вписанной сферы.




-18-


Пример 2.

Пусть SO = h, OH = r.


Тогда по свойству биссектрисы внутреннего угла треугольника О1O/OH = О1S/SH;


rhello_html_m676bd3c3.gif1/r = (h – r1)/r2 + h2 ;


rhello_html_m676bd3c3.gifhello_html_m676bd3c3.gif1 r2 + h2 = r h – r r1; r1 (r2 + h2 + r) = r h;


rhello_html_m676bd3c3.gif1 = r h/(r2 + h2 + r).


Полученную формулу радиуса вписанной сферы для пирамиды с равнонаклонёнными к основанию боковыми гранями будем в дальнейшем применять при решении задач.

























-19-

Контрольные вопросы.

  1. Какой многогранник называется описанным около сферы?

  2. Каким свойством обладает точка, являющаяся центром сферы, вписанной в многогранник? Каково её положение в общем случае?

  3. В каком случае можно вписать сферу в прямую призму? Каково положение центра?

  4. В каком случае можно вписать сферу в четырёхугольную прямую призму?

  5. В каком случае можно вписать сферу в прямой параллелепипед?

  6. В какой параллелепипед можно всегда вписать сферу?

  7. В какую точку проектируется вершина пирамиды, если её боковые грани равнонаклонены к основанию?

  8. Каким свойством обладает каждая точка высоты пирамиды, у которой боковые грани составляют равные углы с основанием?

  9. Каково положение центра сферы, вписанной в пирамиду с равнонаклонёнными к основанию боковыми гранями?

  10. Запишите формулу радиуса вписанной сферы через высоту h пирамиды и радиус окружности r, вписанной в основание, для пирамиды с равнонаклонёнными к основанию боковыми гранями.




















-20-

Примеры решения задач.

Задача 1 ([1], с. 339, № 50)

В правильной четырёхугольной пирамиде сторона основания равна а, а плоский угол при вершине равен . Найдите радиус вписанного в пирамиду шара.

Решение.

hello_html_m65e6f350.gif














Выразим стороны треугольника SOK через a и .


OK = a/2.


SK = KC ctg (/2);


SK = (a ctg (/2)) /2.


Shello_html_372f6ead.gifO = SK2 – OK2 ;

hello_html_m21e53d2b.gif

SO = ((a ctg (/2)) /2) 2 – (a/2) 2 =


=hello_html_m60aa6254.gif (a/2) ctg2(/2) – 1;


Иhello_html_m676bd3c3.gifспользуя формулу из примера 2 r1 = r h / (r2 + h2 + r), найдём радиус вписанного шара:


r1 = OK SO/(SK + OK);

-21-

rhello_html_m60aa6254.gif1 = (a/2) (a/2) ctg2(/2) – 1 / ((a/2) ctg (/2) + (a/2)) =


=hello_html_m60aa6254.gif (a/2) ctg2(/2) – 1 / ( ctg (/2) + 1) =


=hello_html_5d065e16.gif (a/2) (ctg2(/2) – 1) / (ctg (/2) + 1)2 =


=hello_html_875f9d4.gif (a/2) (ctg (/2) – 1) / ( ctg (/2) + 1).

hello_html_m3ed0696b.gif

Ответ. (a/2) (ctg (/2) – 1) / (ctg (/2) + 1).






























-22-

Задача 2 ([2], № 12.334)

В правильную четырёхугольную пирамиду вписан шар. Расстояние от центра шара до вершины пирамиды равно а, а угол между боковой гранью и плоскостью основания равен . Найти полную поверхность пирамиды.

Решение.

hello_html_2416faf8.gif













Так как О1К – биссектриса угла SKO, то ОО1/ОК = O1S/SK;


r/a = OK/SK.


Но OK/SK = cos .


Тогда r = a cos .


SO = a + a cos = a(1 + cos ).

SK = SO/sin =


= a (1 + cos ) /sin =


= 2a cos 2 (/2) / (2sin (/2) cos (/2)) =


= a ctg (/2).


OK = SK cos =


= a ctg (/2) cos , AD = 2 OK.


-23-



AD = 2a ctg (/2) cos .


Sосн. = AD2,


Sосн. = 4a2 ctg2 (/2) cos2 .


Sбок. пов. = (1/2) Pосн. SK;


Sбок. пов. = 4a ctg (/2) cos a ctg (/2) =


= 4a2 ctg2 (/2) cos .


Sпол. пов. = Sосн. + Sбок. пов.


Sпол. пов. = 4a2 ctg2 (/2) cos2 + 4a2 ctg2 (/2) cos =


= 4a2 ctg2 (/2) cos (cos + 1) =


= 4a2 ctg2 (/2) cos 2cos2 (/2) = 8a2 ctg2 (/2) cos cos2 (/2).


Ответ. 8a2 ctg2 (/2) cos cos2 (/2).


















-24-

Задача 3 ([2], № 12.459)

Найти радиус шара, вписанного в правильную треугольную пирамиду, высота которой равна Н, а угол между боковым ребром и плоскостью основания равен .

Рhello_html_mc4b3a1e.gif
ешение.

Вhello_html_m1ed59301.gifыразим стороны SOK через H и , а затем найдём r.


SO = H;


OC = H ctg ;


OK = (1/2) OC = (1/2) H ctg ;


Shello_html_372f6ead.gifK = SO2 + SK2 ;


Shello_html_m10172792.gifK = H2 + (1/4) H2 ctg2 =


=hello_html_5723d593.gif (1/2)H4+ctg2 .


Из примера 2 r = OK SO/(OK+SK)


rhello_html_5723d593.gif = (H/2) ctg H/((H/2) ctg + (H/2) 4+ctg2 ) =


=hello_html_5723d593.gif H ctg / ( ctg + 4+ctg2 ).


Оhello_html_5723d593.gifтвет. H ctg / ( ctg + 4+ctg2 ).



-25-

Задача 4 ([2], № 11.224)

В шар радиуса R вписана правильная четырёхугольная пирамида, основание которой делит перпендикулярный ему радиус пополам. Определить поверхность шара, вписанного в пирамиду.

Решение.



hello_html_m165ae4a0.gif







hello_html_7760c7b.gif






Пусть О1 – центр описанного шара, О2 – центр вписанного шара. Из условия задачи заключаем, что О1О = (1/2)R.

Тhello_html_m682ac218.gifогда SO = (3/2)R. По формуле R1 = b2/(2h) получим, что SA2 = 2 SО1 SO, т. е. SA2 = 2 R (3/2)R = 3R2, SA = R3.

Найдём теперь ребро основания и апофему данной пирамиды.


AO2 = SA2 – SO2,


AO2 = 3R2 – (9/4)R2 = (3/4)R2,

hello_html_m682ac218.gif

AO = R3/2.


Ahello_html_m682ac218.gifD = AO 2,


Ahello_html_m682ac218.gifD = R6/2.


OK = (1/2)AD,


-26-

Ohello_html_m682ac218.gifK = R6/4.


SK2 = SO2 + OK2,


SK2 = (9/4)R2 + (6/16)R2 =


= (42\16)R2 = (21/8)R2.


Shello_html_5279ace7.gifK = (R/4)42.


Используя формулу из примера 2, найдём радиус О2О:


О2О = SO OK / (SK + OK).

Оhello_html_m682ac218.gif
hello_html_m682ac218.gifhello_html_5279ace7.gif2О = ((3/2)R R 6/4) / ((R/4)42 + R 6/4) =

hello_html_m682ac218.gifhello_html_m682ac218.gif

=hello_html_m682ac218.gif (R2 3 6/(2 4)) / (R(6/4) (7 + 1)) =


=hello_html_m682ac218.gif 3R/(2(7 + 1)) =


=hello_html_m682ac218.gif 3R (7 – 1) / (2(7 – 1)) =


=hello_html_m682ac218.gif 3R (7 – 1) / (2 6) =

hello_html_m682ac218.gif

= R (7 – 1) /4.


Найдём поверхность шара:


Sсф. = 4 О2О2,


Shello_html_m682ac218.gifсф. =4 R2 (7 – 1) 2/16 =

hello_html_m682ac218.gif

= R2 (7 – 1) 2/4 =


=hello_html_m682ac218.gifR2 (8 – 27)/4=


=hello_html_m682ac218.gifR2 (4 – 7)/2.


Оhello_html_m682ac218.gifтвет. R2 (4 – 7)/2.

-27-

Задача 5 ([2], № 12.251)

Центр шара, вписанного в правильную четырёхугольную пирамиду, делит высоту пирамиды в отношении m:n, считая от вершины пирамиды. Найти угол между двумя смежными боковыми гранями.

Решение.

hello_html_fe78f8f.gif









Изобразим линейный угол двугранного угла между боковыми гранями, для чего в гранях DCS и BCS проведём высоты к ребру SC, которые в силу равенства этих граней имеют общее основание – точку К. Итак, угол BKD – искомый. Выразив стороны треугольника BKD через одну величину и применив теорему косинусов, можно найти угол BKD.

Оhello_html_m682ac218.gifбозначим ОМ = а. DC = 2a; BD = 2a2.

Пусть OMS = (линейный угол двугранного угла при основании). О1M – биссектриса OMS.

По свойству биссектрисы О1О/ О1S = OM/SM;


OM/SM = n/m.


Но OM/SM = cos .


Тогда cos = n/m.


Пусть SCD = .


tg = SM/MC; tg = m/n; ctg = n/m.

-28-


shello_html_m206703a7.gifin = 1/1 + ctg2 ;


shello_html_297f8edc.gifin = m/m2 + n2.


Применив теорему косинусов к треугольнику BKD, найдём величину искомого угла.


DK = BK = DC sin ,


Dhello_html_m77627340.gif
K = 2a m/
m2 + n2.


cosBKD = (2DK2 – BD2) / (2 DK2);


cosBKD = (8 a2 m2 /( m2 + n2) – 8a2) / (8 a2 m2/( m2 + n2)) =


= -n2/m2.


BKD = arccos (-n2/m2) = - arccos (n2/m2).


Ответ. - arccos (n2/m2).

















-29-

  1. Вариант контрольной работы.

вариант


  1. Основание прямой призмы – прямоугольный треугольник с острым углом и гипотенузой с. Найдите радиус шара, вписанного в эту призму.

  2. Длина стороны основания правильной четырёхугольной пирамиды равна а, боковая грань составляет с плоскостью основания угол . Найдите радиус описанного шара.

  3. Б

    *

    оковая грань правильной n-угольной пирамиды составляет с плоскостью основания угол . Найдите площадь боковой поверхности пирамиды, если радиус вписанного в неё шара равен r.
  4. Сторона основания правильной четырёхугольной пирамиды равна а, плоский угол при вершине равен . В пирамиду вписан шар. Найти площадь сечения этого шара плоскостью, проходящей через центр основания пирамиды и перпендикулярной её боковому ребру. ([2], 12.423)


 вариант

  1. Основанием прямой призмы служит прямоугольный треугольник, гипотенуза которого равна с. Радиус шара, описанного около призмы, равен R. Найдите высоту призмы.

  2. Найдите радиус шара, вписанного в правильную четырёхугольную пирамиду, у которой высота равна H, а угол между боковым ребром и плоскостью основания равен .

  3. К

    *

    аждое боковое ребро правильной n-угольной пирамиды равно b, рёбра основания равны а. Найдите радиус описанной сферы.
  4. Сторона основания правильной четырёхугольной пирамиды равна а, двугранный угол при основании равен . Найти расстояние от центра шара, вписанного в эту пирамиду, до бокового ребра. ([2], 12.421)


На выполнение работы отвести 2 часа.




Ниже приводятся краткие решения задач контрольной работы.



-30-

Решение задач варианта.


  1. Р


    b


    а


    с


    hello_html_m5dc47f72.gif
    hello_html_3fa5121c.gif
    hello_html_mc91fc12.gif

    r = (a + b – c)/2


    адиус шара, вписанного в призму, равен радиусу окружности, вписанной в основание данной призмы.

hello_html_m165c3552.gif
a = c sin , b = c cos

r = c(sin + cos – 1)/2.


hello_html_574ad388.gif














r = OK = a/2.


h = SO = OK tg = (a/2) tg .


R = b2/(2h)




b2 = SC2 = SO2 + OC2 =


= (a2 tg2 )/4 + a2/2 = (a2/4) (tg2 + 2).


R = (a2/4)( tg2 + 2)/(2 (a/2 ) tg ) =


= (a/4) (tg2 + 2)/tg = a(1 + cos2 )/(2sin 2).


-31-

  1. hello_html_4ce564ae.gif















OK = r ctg (/2);


SK = OK/cos =


= r ctg (/2)/cos .


Ak-1K = OK tg (180/n);


Ak-1Ak = 2 r ctg (/2) tg (180/n).


Pосн. = n Ak-1Ak =


= 2 n r ctg (/2) tg (180/n).


Sбок. пов. = (1/2) Pосн. SK =


= n r ctg(/2) tg(180/n) r ctg(/2)/cos =


= n r2 ctg2 (/2) tg(180/n)/cos .







-32-


Решение.

O1 hello_html_2654345e.gif– центр вписанного шара. Сечение шара плоскостью – круг. Центр этого круга – основание перпендикуляра, опущенного из центра шара на секущую плоскость. Пусть заданная секущая плоскость перпендикулярна ребру SA. Найдём положение центра сечения – точки O2. Заданная секущая плоскость и плоскость SAO перпендикулярны (по признаку). Линия пересечения этих плоскостей – прямая ТО, на которой лежит высота треугольника SAO, опущенная на гипотенузу. Значит, перпендикуляр к секущей плоскости O1O2 лежит в плоскости SAO. Это есть перпендикуляр к прямой ТО.

Ohello_html_m2cad1c21.gif1O2ТО, SAТО. Следовательно, O1O2 SA, АSО = O2O1О. Обозначим величину этих углов .

Радиус сечения – O2О. O2О = O1О sin .

Для решения задачи найдём радиус вписанного шара и синус угла, который составляет боковое ребро с высотой пирамиды.


SK = (a/2) ctg (/2),


Ohello_html_m368de0d1.gifhello_html_7024fa14.gifK = a3/6; SO = SK2 – OK2;


Shello_html_m6bf60b7e.gifO = (a2/4) ctg2(/2) – a2/12 =


=hello_html_m40da40c7.gif (a/2)ctg2 (/2) – 1/3.


r = SO OK/(SK + OK);

hello_html_7024fa14.gif

rhello_html_m49575a8d.gifhello_html_7024fa14.gif = ((a/2)ctg2 (/2) – 1/3 a3/6) / ((a/2) ctg (/2) + a3/6) =


=hello_html_7024fa14.gifhello_html_2d8e9062.gif (a/6)3ctg2 (/2) – 1 / (ctg (/2) + 3/3).


-33-

sin = AO/SA;

hello_html_4d0be3ca.gif

AO = a3/3;


SA = a/(2 sin (/2));


shello_html_4d0be3ca.gifin = a3/3 (2 sin (/2))/a =

hello_html_4d0be3ca.gif

= (23 sin (/2))/3.


Ohello_html_4d0be3ca.gifhello_html_4d0be3ca.gifhello_html_2d8e9062.gif2О = (a/6)3ctg2 (/2) – 1/(ctg (/2) + 3/3) (23 sin (/2))/3 =

hello_html_4d0be3ca.gif

=hello_html_4d0be3ca.gifhello_html_m2441fa4.gif (a3/3) 3cos2 (/2) – sin2 (/2) / (3ctg (/2) + 3) =

hello_html_4d0be3ca.gif
hello_html_m7f23fa4d.gif

= (a/3) hello_html_4d0be3ca.gif
3cos2 (/2) – sin2 (/2) / (3cos (/2) + sin (/2)) sin (/2).


Sсеч. = O2О2.

hello_html_4d0be3ca.gif

Sсеч. = (a2/9) (3cos2 (/2) – sin2 (/2)) sin2 (/2) / (3cos (/2) + + sin (/2))2


=hello_html_4d0be3ca.gif (a2/9) (3cos (/2) – sin (/2)) sin2 (/2) /

/hello_html_4d0be3ca.gif (3cos (/2) + sin (/2)) =


=hello_html_4d0be3ca.gif (a2/9) ((3/2)cos (/2) – (1/2)sin (/2)) sin2 (/2) /

/hello_html_4d0be3ca.gif ((3/2)cos (/2) + (1/2)sin (/2)) =


= (a2/9) (sin(/3 – /2)) sin2 (/2) / (sin(/3 + /2)).














-34-

Решение задач  варианта.

Bhello_html_m26a50165.gifB1 = AB12 – AB2;


Bhello_html_e5aa63d.gifB1 = 4R2 – c2.


hello_html_58820650.gif



































-35-

hello_html_m5734b58.gif














r = SO OK/(SK + OK);


SO = H,


OC = H ctg .


Ohello_html_7024fa14.gifK = OC 2/2 =


=hello_html_7024fa14.gif H (2/2) ctg .


Shello_html_4c7416ad.gifK = SO2 + OK2;

hello_html_m381c4f41.gif

SK = H2 + (H2 ctg2 )/2.


Shello_html_m36d2df2a.gifK = H (ctg2 )/2 + 1.


rhello_html_7024fa14.gif
hello_html_m28e50936.gifhello_html_7024fa14.gif = H
2 ctg (2/2) / ( H (ctg2 )/2 + 1 + H (2/2) ctg ) =


=hello_html_7024fa14.gifhello_html_1fd87.gifhello_html_7024fa14.gifhello_html_7024fa14.gif ((H ctg )/2) / (ctg2 + 2/2 + (ctg )/2) =


=hello_html_794da236.gifhello_html_64c5a400.gif (H ctg )/(ctg2 + 2 + ctg ) =(H cos )/(1 + sin2 + cos ).






-36-

hello_html_m1d8c64f6.gif


hello_html_5dfa9c1e.gif





R = b2/(2h).


hhello_html_m7337d91d.gif = b2 – OAk2.


OAk = (a/2) /sin (180/n).


Rhello_html_m65c740d4.gif = (b2/2) / b2 – a2 /(4 sin2 (180/n)) =

hello_html_m24a3a255.gifhello_html_5279ace7.gif

= b2 sin (180/n)/4b2 sin2 (180/n) – a2.


















-37-

hello_html_32022078.gif
















O1T – искомое расстояние. Пусть = ASO =CSO.


O1T = SO1 sin ,


SO1 = SO – OO1 =


= (a/2) tg (a/2) tg (/2) =


= (a/2) (tg tg (/2)) =


= (a/2) (sin cos (/2) – cos sin (/2)) / (cos cos (/2)) =


= (a/2) (sin (/2)) / (cos cos (/2)) =


= (a tg (/2)) / (2 cos ).

hello_html_49e4e19f.gif

sin = 1/1 + ctg2 ;


ctg = SO/OC;


Ohello_html_4d0be3ca.gifC = a2/2;


chello_html_4d0be3ca.gifhello_html_4d0be3ca.giftg = ((a/2) tg )/( a2/2) = (tg ) /2.


-38-

shello_html_1b485d75.gifin = 1/1 + (tg2 )/2 =


=hello_html_m4bd35def.gifhello_html_4d0be3ca.gif2/2 + tg2 =


=hello_html_1b78f51c.gifhello_html_4d0be3ca.gif (2 cos )/2 cos2 + sin2 =


=hello_html_1fd87.gifhello_html_4d0be3ca.gif (2 cos )/1 + cos2 .


Ohello_html_432a99a1.gifhello_html_4d0be3ca.gif1T = ((a tg (/2)) / (2 cos )) 2 cos /1 + cos2 =


=hello_html_49e4e19f.gifhello_html_4d0be3ca.gif (a2 tg (/2)) / (21 + cos2 ).

























-39-

Литература


  1. Погорелов А. В. Геометрия 7 – 11. М.: Просвещение, 1993.

  2. Сборник задач по математике для поступающих во ВТУЗы (под редакцией М. И. Сканави). М.: Высшая школа, 1993.

  3. Гусев В. А., Литвиненко В. Н., Мордкович А. Г. Практикум по элементарной математике. Геометрия. М.: Просвещение, 1992.

  4. Говоров В. М., Дыбов П. Т., Мирошин Н. В., Смирнова С. Ф. Сборник конкурсных задач по математике. М.: Наука, 1983.

































-40-



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Настоящая работа написана из опыта проведённых уроков геометрии по теме «Комбинации тел» в 11ом профильном (физико-математическом) классе с целью систематизации собранных материалов в помощь учителям, также работающим в профильном классе.

Задачи на комбинацию тел – наиболее трудный вопрос курса стереометрии 11ого класса. Начинающий учитель обязательно испытает трудности и в том, насколько глубоко должны быть изложены теоретические сведения для учащихся, и в том, какие задачи предложить учащимся для решения. Данная работа предлагает один из вариантов решения этой учительской задачи.



Автор
Дата добавления 12.01.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров645
Номер материала 290661
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх