Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / План урока по теме " Избавление от иррациональности в знаменателе дроби"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

План урока по теме " Избавление от иррациональности в знаменателе дроби"

библиотека
материалов

8 класс

Урок № 3 октября 2014

Преобразование выражений, содержащих арифметические квадратные корни

Цель урока: создание условий для формирования умений, упрощать выражения, содержащие арифметические квадратные корни в ходе работы в группах сменного состава.

Задачи урока: проверить теоретическую подготовку учащихся, умение извлекать квадратный корень из числа, формировать навыки правильного воспроизведения своих знаний и умений, развивать вычислительные навыки, воспитывать умение работать в парах и ответственности за общее дело.

Ход урока.

I. Организационный момент. «ТАБЛИЦА ГОТОВНОСТИ»

Фиксация уровня готовности к началу занятия.

25 карточек красного цвета (5 баллов), желтого цвета (4 балла), синего

цвета (3 балла).

Таблица готовности

5 баллов (хочу знать, делать, решать)


4 балла (я готов к работе)


3 балла (я не очень хорошо себя чувствую, я не понимаю материал, мне нужна помощь)





















II. Индивидуальная работа по карточкам


Карточка 1

Вынести множитель из-под знака корня:

hello_html_709240a1.gif

Карточка 2

Внести множитель под знак корня:

3hello_html_1aec22a5.gif

Карточка 3

Упростить:
а)
 hello_html_d12b298.gif
б)
 hello_html_m3bb1e571.gif
в) hello_html_4ae794b4.gif

(Проверка после проверки домашнего задания)

III. Проверка домашнего задания.

166, 167 устно фронтально

(самооценивание с помощью сигнальных карточек: зелёный - всё верно, красный – есть ошибка)

IV. Изучение нового материала. Работа в группах сменного состава.

Самостоятельно изучить материал, чтобы потом суметь объяснить его членам группы. Класс делится на 6 групп по 4 человека.

1, 2 и 3 группы – учащиеся со средними способностями

Как избавиться от иррациональности в знаменателе дроби? Рассмотрим общий случай и конкретные примеры.

  hello_html_m33f3eab.png

Если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей, чтобы избавиться от иррациональности в знаменателе и числитель, и знаменатель дроби умножаем на квадратный корень из этого числа или выражения:

hello_html_33d4262e.gif

Примеры. Освободиться от иррациональности в знаменателе дроби:


1)  hello_html_31da6958.gif;

2) hello_html_39e63391.gif.

4, 5 и 6 группы – учащиеся со способностями выше средних.

Если знаменатель дроби — сумма либо разность двух выражений, содержащих квадратный корень, чтобы избавиться от иррациональности в знаменателе умножаем и числитель, и знаменатель на сопряженный радикал:

hello_html_27575d19.gif;

hello_html_600cf331.gif 

Примеры. Освободиться от иррациональности в знаменателе дроби:

1) hello_html_77c44034.gif;

2) hello_html_1793893f.gif;

3) hello_html_f018519.gif

Работа в новых группах (4 группы по 6 человек, от каждой группы по 1 человеку).

Объяснение изученного материала членам новой группы. (взаимооценивание – прокомментировать объяснение материала учеником)

V. Проверка усвоения теоретического материала. На вопросы отвечают учащиеся, не объясняющие данную часть теоретического материала.

1) Как избавиться от иррациональности в знаменателе дроби, если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей?

2) Как избавиться от иррациональности в знаменателе дроби, если знаменатель дроби — сумма либо разность двух выражений, содержащих квадратный корень?

3) как избавиться от иррациональности в знаменателе дроби

а) hello_html_m1a863572.gif

4) Как избавиться от иррациональности в знаменателе дроби

hello_html_a9146ee.gif?

VI. Закрепление изученного материала. Проверочная самостоятельная работа.

81 («Алгебра» 8 класс, А.Абылкасымова, И.Бекбоев, А.Абдиев, З,Жумагулова)

170 (1,2,3,5,6) («Алгебра» 8 класс, А.Шыныбеков)

Критерии оценивания:

Уровень А – № 81 примеры 1-5 отметка «3»

Уровень В – № 81 примеры 6-8 и №170 примеры 5,6 отметка «4»

Уровень С – № 170 примеры 1-6 отметка «5»

(самооценивание, проверка по образцу в флипчарте)

VII. Домашнее задание.

218

VIII. Рефлексия. «Телеграмма»

Каждому предлагается заполнить бланк телеграммы, получив при этом следующую инструкцию: «Что вы думаете о прошедшем занятии? Что было для вас важным? Чему вы научились? Что вам понравилось? Что осталось неясным? В каком направлении нам стоит продвигаться дальше? Напишите мне, пожалуйста, об этом короткое послание –телеграмму из 11 слов. Я хочу узнать ваше мнение для того, чтобы учитывать его в дальнейшей работе».

Итог урока.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Преобразование выражений, содержащих арифметические квадратные корни

Цель урока: создание условий для формирования умений, упрощать выражения, содержащие арифметические квадратные корни в ходе работы в группах сменного состава.

Задачи урока: проверить теоретическую подготовку учащихся, умение извлекать квадратный корень из числа, формировать навыки правильного воспроизведения своих знаний и умений, развивать вычислительные навыки, воспитывать умение работать в парах и ответственности за общее дело.

Ход урока.

I. Организационный момент. «ТАБЛИЦА ГОТОВНОСТИ»

Фиксация уровня готовности к началу занятия.

25 карточек красного цвета (5 баллов), желтого цвета (4 балла), синего

цвета (3 балла).

Таблица готовности

5 баллов   (хочу знать, делать, решать)

 

4 балла  (я готов к работе)

 

3 балла  (я не очень хорошо себя чувствую, я не понимаю материал, мне нужна помощь)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. Индивидуальная работа по карточкам

 

Карточка 1

Вынести множитель из-под знака корня:

Карточка 2

Внести множитель под знак корня:

3

Карточка 3

Упростить:
а) 
б) 
 
в)  

 (Проверка после  проверки домашнего задания)

III.  Проверка домашнего задания.

№166, 167 устно фронтально

(самооценивание с помощью сигнальных карточек: зелёный -  всё верно, красный – есть ошибка)

IV. Изучение нового материала. Работа  в группах сменного состава.

Самостоятельно изучить материал, чтобы потом суметь объяснить его членам группы. Класс делится на 6 групп по 4 человека.

1, 2 и 3 группы – учащиеся со средними способностями

 Как избавиться от иррациональности в знаменателе дроби? Рассмотрим общий случай и конкретные примеры.

  

Если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей, чтобы избавиться от иррациональности в знаменателе и числитель, и знаменатель дроби умножаем на квадратный корень из этого числа или выражения:

Примеры. Освободиться от иррациональности в знаменателе дроби:

 

1)  ;

2) .

4, 5 и 6  группы – учащиеся со способностями выше средних.

Если знаменатель дроби — сумма либо разность двух выражений, содержащих квадратный корень, чтобы избавиться от иррациональности в знаменателе умножаем и числитель, и знаменатель на сопряженный радикал:

;

 

Примеры. Освободиться от иррациональности в знаменателе дроби:

1) ;

2) ;

3)

Работа в новых группах  (4 группы по 6 человек, от каждой группы по 1 человеку).

Объяснение изученного материала членам новой группы. (взаимооценивание – прокомментировать объяснение материала учеником) 

V. Проверка усвоения теоретического материала. На вопросы отвечают учащиеся, не объясняющие данную часть теоретического материала.

1) Как избавиться от иррациональности в знаменателе дроби, если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей?

2) Как избавиться от иррациональности в знаменателе дроби, если знаменатель дроби — сумма либо разность двух выражений, содержащих квадратный корень?

3) как избавиться от иррациональности в знаменателе дроби

а)

4) Как избавиться от иррациональности в знаменателе дроби

?

VI.  Закрепление изученного материала. Проверочная самостоятельная работа.

№81 («Алгебра» 8 класс, А.Абылкасымова, И.Бекбоев, А.Абдиев, З,Жумагулова)

№170 (1,2,3,5,6) («Алгебра» 8 класс, А.Шыныбеков)

Критерии оценивания:

Уровень А – № 81 примеры 1-5        отметка «3»

Уровень В – № 81 примеры 6-8 и №170 примеры 5,6        отметка «4»

Уровень С – № 170 примеры 1-6        отметка «5»

(самооценивание,  проверка по образцу в флипчарте)

VII. Домашнее задание.

№ 218

VIII.  Рефлексия. «Телеграмма»

Каждому предлагается заполнить бланк телеграммы, получив при этом следующую инструкцию: «Что вы думаете о прошедшем занятии? Что было для вас важным? Чему вы научились? Что вам понравилось? Что осталось неясным? В каком направлении нам стоит продвигаться дальше? Напишите мне, пожалуйста, об этом короткое послание –телеграмму из 11 слов. Я хочу узнать ваше мнение для того, чтобы учитывать его в дальнейшей работе».

 

Итог урока. 

Автор
Дата добавления 10.03.2015
Раздел Математика
Подраздел Конспекты
Просмотров1588
Номер материала 435552
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх