Инфоурок Информатика ПрезентацииПрезентация на тему: "История чисел и систем счисления"

Презентация на тему: "История чисел и систем счисления"

Скачать материал
Скачать материал "Презентация на тему: "История чисел и систем счисления""

Получите профессию

Методист-разработчик онлайн-курсов

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Садовод-декоратор

Описание презентации по отдельным слайдам:

  • История чисел и систем счисления

    1 слайд

    История чисел и систем счисления

  • История чиселИстория записи чисел и систем счисления ведется с появления счет...

    2 слайд

    История чисел
    История записи чисел и систем счисления ведется с появления счета у людей. Люди изображали количество различных предметов с помощью засечек или черточек. Их наносили на поверхности, служившие в то время «бумагой»: глиняные дощечки, древесную кору или камни. Первые сведения о таких записях археологи относят к периоду палеолита, то есть к 10-11 тысячелетию до нашей эры. Маленькие дети показывают свой возраст на пальцах. Лётчик сбил самолёт, ему за это рисуют звёздочку, Робинзон Крузо считал дни зарубками.

    Числом обозначали некоторые реальные объекты, свойства которых были одинаковы. Когда мы что-то считаем или пересчитываем, мы как бы обезличиваем предметы, т.е. подразумеваем, что их свойства одинаковы. Но самым главным свойством числа является наличие объекта, т.е. единица и его отсутствие, т.е. ноль.

  • Система, которой пользовались древние греки, называлась аттической. Первые че...

    3 слайд

    Система, которой пользовались древние греки, называлась аттической. Первые четыре числа записывались черточками. Для числа пять существовал свой знак – «пи», как и для числа десять – первая буква слова «дека». Сотня, тысяча и десять тысяч на письме обозначались как H, X, M.

    На смену этой системе в третьем веке до нашей эры пришла ионийская система. Числа от одного до девяти в ней обозначались буквами греческого алфавита: с первой по девятую. Буквами с десятую по восемнадцатую обозначались десятки – от десяти до девяноста. И последними девятью записывались сотни – от ста до девятисот.

    С помощью алфавита также записывали числа восточные и южные славяне. Часть из них пользовалась славянским алфавитом, наделяя каждую букву числовым значением. Другая – только теми буквами, которые встречаются в греческом алфавите. Отличать буквы от цифр позволял специальный значок, который ставился над числом – «титло». Такая нумерация применялась в России до XVIII века.

  • Понятие цифрыЧто такое цифра?

Это алфавит чисел, набор символов, с помощью к...

    4 слайд

    Понятие цифры
    Что такое цифра?

    Это алфавит чисел, набор символов, с помощью которых мы кодируем числа. Цифры – числовой алфавит. Цифры и числа – это разные вещи! Рассмотрим два числа 5 2 и 2 5. Цифры одни и те же – 5 и 2. А чем эти числа отличаются? Порядком цифр? – Да! Но лучше сказать - позицией цифры в числе. Положение цифры в записанном числе в непозиционных системах не влияют на величину, которая ей обозначается. Это, к примеру, системы, использующие буквы для записи цифр – славянская и римская.

    Положение цифры в позиционных системах определяет значение величины, которая ей записана. При этом позиция – место, которое занимает эта цифра в числе. А количество цифр, которые используются для записи, называются основанием системы. Примерами такой системы – вавилонская шестидесятеричная и современная десятичная.




  • Понятие числаПервоначально понятие отвлечённого числа отсутствовало, число бы...

    5 слайд

    Понятие числа
    Первоначально понятие отвлечённого числа отсутствовало, число было "привязано" к тем конкретным предметам, которые пересчитывали. Отвлечённое понятие натурального числа появляется вместе с развитием письменности. Дробные же числа изобрели тогда, когда возникла необходимость производить измерения. Измерение, как известно, это сравнение с другой величиной того же рода, выбираемой в качестве эталона.

    Эталон называется ещё единицей измерения. Понятно, что единица измерения не всегда укладывалась целое число раз в измеряемой величине. Отсюда и возникла практическая потребность ввести более "мелкие" числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.

    Понятие числа - фундаментальное понятие как математики, так и информатики. В дальнейшем при изложении материала под числом мы будем понимать его величину, а не его символьную запись.

  • Понятие системы счисления Для записи информации о количестве объектов использ...

    6 слайд

    Понятие системы счисления
    Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.


    Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

    Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления.

    В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

    Непозиционные системы счисления возникли раньше позиционных, поэтому рассмотрим сначала различные непозиционные системы счисления.

  • Непозиционная системаНепозиционной системой счисления  называется такая систе...

    7 слайд

    Непозиционная система
    Непозиционной системой счисления называется такая система счисления, у которой количественный эквивалент («вес») цифры не зависит от ее местоположения в записи числа.

    К непозиционным системам относятся: римская система счисления, алфавитные системы счисления и другие.

    Сначала люди просто различали ОДИН предмет перед ними или нет. Если предмет был не один, то говорили «МНОГО».

    Первыми понятиями математики были "меньше", "больше", "столько же".

    Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

    Счет появился тогда, когда человеку потребовалось сообщать своим соплеменникам о количестве найденных им предметов.

    И, так как многие народы в древности не общались друг другом, то у разных народов возникли разные системы счисления и представления чисел и цифр.

  • Единичная системаПотребность в записи чисел появилась в очень древние времена...

    8 слайд

    Единичная система
    Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов, например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).

    Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу.

    Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.

    Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук. И при записи использовали знаки, соответствующие группе из нескольких предметов. Естественно, что при подсчёте использовались пальцы рук, поэтому первыми появились знаки для обозначения группа предметов из 5 и 10 штук (единиц). Таким образом, возникли уже более удобные системы записи чисел.

  • Древнеегипетская десятичная непозиционная системаВ древнеегипетской системе с...

    9 слайд

    Древнеегипетская десятичная непозиционная система
    В древнеегипетской системе счисления, которая возникла во второй половине третьего тысячелетия до н.э., использовались специальные цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.

    Пример. Число 345 древние египтяне записывали так:





    Единицы Десятки Сотни





    В основе как палочной, так и древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи. Учёные относят древнеегипетскую систему счисления к десятичной непозиционной.


  • Римская системаЗнакомая нам римская система не слишком принципиально отличает...

    10 слайд

    Римская система
    Знакомая нам римская система не слишком принципиально отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, и 1000 используются заглавные латинские буквы I, V, X, C, D и M соответственно, являющиеся цифрами этой системы счисления.

    Число в римской системе счисления обозначается набором стоящих подряд цифр. Значение числа равно:

    1. сумме значений идущих подряд нескольких одинаковых цифр (назовём их группой первого вида);

    2. разности значений двух цифр, если слева от большей цифры стоит меньшая. В этом случае от значения большей цифры отнимается значение меньшей цифры. Вместе они образуют группу второго вида. Заметим, что левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из "младших" может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1);

    3. сумме значений групп и цифр, не вошедших в группы первого или второго вида.

    Пример 1. Число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2 (две группы первого вида).

    Пример 2. Число 444, имеющее в своей десятичной записи 3 одинаковые цифры, в римской системе счисления будет записано в виде CDXLIV=(D-C)+(L-X)+(V-I)=400+40+4 (три группы второго вида).

    Пример 3. Число 1974 в римской системе счисления будет иметь вид MCMLXXIV=M+(M-C)+L+(X+X)+(V-I)=1000+900+50+20+4 (наряду с группами обоих видов в формировании числа участвуют отдельные "цифры").

  • Позиционные системы Позиционной системой счисления  называется такая система...

    11 слайд

    Позиционные системы
    Позиционной системой счисления называется такая система счисления, у которой количественный эквивалент («вес») цифры зависит от ее местоположения в записи числа.

    Любая позиционная система счисления характеризуется своим основанием.

    Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления.

    За основание можно принять любое натуральное число — два, три, четыре, ..., образовав новую позиционную систему: двоичную, троичную, четверичную и ...


  • Вавилонская десятичная системаВпервые идея позиционной системы счисления возн...

    12 слайд

    Вавилонская десятичная система
    Впервые идея позиционной системы счисления возникла в Древнем Вавилоне.
    В позиционных системах счисления количественное значение, обозначаемое цифрой в записи числа, зависит от позиции цифры в числе.
    Основание позиционной системы счисления равно количеству используемых в системе цифр.
    Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
    Хотя десятичную систему принято называть арабской, но зародилась она в Индии в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название «арабские цифры». Однако широкое распространение в науке и в обиходе десятичная позиционная система получила только в XVI веке. Эта система позволяет легко выполнять любые арифметические вычисления. Записывать сколь угодно большие числа. Распространение арабской системы дало мощный толчок развитию математики.

    С позиционной десятичной системой счисления вы знакомы с раннего детства, только, возможно, не знали, что она так называется.

    Что означает свойство позиционности системы счисления, легко понять на примере любого многозначного десятичного числа. Например, в числе 333 первая тройка означает три сотни, вторая — три десятка, третья — три единицы. Одна и та же цифра в зависимости от позиции в записи числа обозначает разные значения.

    333 = 3 · 100 + 3 · 10 + 3.
    Еще пример:
    32 478 = 3 · 10 000 + 2 · 1000 + 4 · 100 + 7 · 10 + 8 = 3 · 104 + 2 · 103 + 4 · 102 + 7 · 101 + 8 · 100.
    Отсюда видно, что всякое десятичное число можно представить как сумму произведений составляющих его цифр на соответствующие степени десятки. То же самое относится и к десятичным дробям.
    26,387 = 2 · 101 + 6 · 100 + 3 · 10-1 + 8 · 10-2 + 7 · 10-3.
    Очевидно, число «десять» — не единственно возможное основание позиционной системы. Известный русский математик Н. Н. Лузин так выразился по этому поводу: «Преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальцев, а восемь, то человечество пользовалось бы восьмеричной системой».
    За основание позиционной системы счисления можно принять любое натуральное число, большее 1. Упомянутая выше вавилонская система имела основание 60. Следы этой системы сохранились до наших дней в порядке счета единиц времени (1 час = 60 минут, 1 минута = 60 секунд).
    Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы.

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 672 296 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 16.05.2018 2099
    • PPTX 178 кбайт
    • 15 скачиваний
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Кузнецова Юлия Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Кузнецова Юлия Владимировна
    Кузнецова Юлия Владимировна
    • На сайте: 9 лет и 5 месяцев
    • Подписчики: 2
    • Всего просмотров: 260448
    • Всего материалов: 168

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Менеджер по туризму

Менеджер по туризму

500/1000 ч.

Подать заявку О курсе

Курс профессиональной переподготовки

Теория и методика обучения информатике в начальной школе

Учитель информатики в начальной школе

300/600 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 97 человек из 34 регионов
  • Этот курс уже прошли 223 человека

Курс профессиональной переподготовки

Математика и информатика: теория и методика преподавания в профессиональном образовании

Преподаватель математики и информатики

500/1000 ч.

от 8900 руб. от 4150 руб.
Подать заявку О курсе
  • Сейчас обучается 38 человек из 23 регионов
  • Этот курс уже прошли 56 человек

Курс повышения квалификации

Применение компьютерных моделей при обучении математике и информатике в рамках ФГОС ООО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 47 человек из 26 регионов
  • Этот курс уже прошли 181 человек

Мини-курс

Реализация ФОП: содержание, внеурочная деятельность и оценка качества образования

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Феноменология в педагогике: основные концепции и их практическое применение

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Педагогические идеи выдающихся педагогов, критиков и общественных деятелей

10 ч.

1180 руб. 590 руб.
Подать заявку О курсе