90121
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаРабочие программыРабочая учебная программа по предмету"математика" в колледже

Рабочая учебная программа по предмету"математика" в колледже

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.












РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА


НАИМЕНОВАНИЕ ПРЕДМЕТА: «МАТЕМАТИКА»


КОД И ПРОФИЛЬ ОБРАЗОВАНИЯ

1500000 «Сельское хозяйство, ветеринария и экология»

СПЕЦИАЛЬНОСТЬ

1504000«Фермерское хозяйство»

КВАЛИФИКАЦИИ

1504062 «Тракторист-машинист сельскохозяйственного производства»

1504082«Водитель автомобиля»

1504042«Повар»


НА БАЗЕ ОСНОВНОГО СРЕДНЕГО ОБРАЗОВАНИЯ

КОЛИЧЕСТВО ЧАСОВ - 144

СРОК ОБУЧЕНИЯ - 2 года 10 месяцев

ПРЕПОДАВАТЕЛЬ: КАЛИНИНА В.Н.

















с.Рубежка

2014- 2015 учебный год




Пояснительная записка

Рабочая программа разработана в соответствии с Государственным общеобязательным стандартом среднего образования (начального, основного среднего, общего среднего образования), Государственным общеобязательным стандартом технического и профессионального образования, утвержденными Постановлением Правительства Республики Казахстан №1080 от23 августа 2012 года, Приказом и.о. Министра образования и науки Республики Казахстан от 28 апреля 2014 года №127 «О внесении изменения и дополнений в приказ и.о. Министра образования и науки РК от 27 сентября 2013 года №400 «Об утверждении перечня учебников, учебно-методических комплексов, пособий и другой дополнительной литературы, в том числе на электронных носителях, разрешенных к использованию в организациях образования», на основании учебной программы, утвержденной Приказом Министра образования и науки Республиеи Казахстан № 115 от 3 апреля 2013 года.


Учебный предмет «математика» входит в состав общеобразовательных дисциплин ГОСО РК.

Программа рассчитана на 144 часа, в том числе контрольных работ - 13, включая итоговую контрольную работу. Вся программа изучается на первом курсе ( первый и второй семестры).

Завершением изучения дисциплины является экзамен.

Математическое образование-это испытанное столетиями средство интеллектуального развития в условиях массового обучения.


Цель обучения: освоение учащимися базисных основ математики, овладение ими математическим языком; развитие интереса к математическому творчеству, математической интуиции и математических способностей; воспитание самоопределяющейся личности и ее ценностного отношения к различным видам трудовой деятельности.

Задачи обучения:

обеспечение качественного усвоения базисных основ математики, направленного на развитие интеллектуальных качеств личности;

формирование представлений о математике как форме описания и методе познания действительности, роли математической модели в научном познании реальных процессов;


развитие представлений о математике как части общечеловеческой культуры, о значимости математики в истории цивилизации и современном обществе; расширение общего кругозора обучающихся представлением о вкладе ученых на различных этапах развития математической науки; расширение представлений учащихся о сферах применения математики;


усвоение новых подходов к решению задач по математике, овладение математическими знаниями, нужными для изучения смежных дисциплин на современном уровне; применения математических знаний в повседневной жизни; развитие умений использовать математические знания в практической деятельности;


формирование качеств мышления, необходимых человеку для жизни в современном обществе, для общей социальной ориентации и решения практических проблем; интеллектуальное развитие учащихся; развитие логического мышления; потенциальных творческих способностей каждого учащегося; интереса к предмету;


воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения; развитие навыков самостоятельной работы, самооценки при выполнении индивидуальных заданий и работе в группе; предоставление учащимся возможности самостоятельного конструирования задач по данной теме, их решения, подготовке презентаций к занятиям; развитие умения ориентироваться в потоке поступающей информации;


вовлечение учащихся в игровую, коммуникативную, практическую, исследовательскую деятельность как фактор личностного развития (слушать и понимать других, выражать себя, находить компромисс, взаимодействовать внутри группы, находить консенсус, работать в группе, объективно оценивать результаты своей деятельности и деятельности своих товарищей);


создание условий для дальнейшего изучения предметов естественно-математического цикла; формирование умений применять изученные понятия, свойства, правила, алгоритмы и т.п., полученные результаты и математические методы для решения задач прикладного характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.



Обязательный минимум содержания предмета


Функция, ее свойства и график (12 ч.)

Функция. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции: возрастание и убывание, чётность и нёчетность, периодичность, промежутки знакопостоянства. Точки экстремума и экстремумы функции. Неубывающая функция. Невозрастающая функция. Обратная функция. Простейшие преобразования графиков функций. Исследование функции и построение её графика


Аксиомы стереометрии. Параллельность прямых и плоскостей (11 ч.)

Основные понятия и аксиомы стереометрии, следствия из аксиомочки, прямые и плоскости в пространстве;понятие о принадлежности точек и прямых плоскостям; взаимное расположение двух прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые; свойства параллельных прямых в пространстве;признак скрещивающихся прямых;взаимное расположение прямой и плоскости: пересекающиеся и параллельные прямая и плоскость; признак параллельности прямой и плоскостизаимное расположение двух плоскостей: пересекающиеся и параллельные плоскости;признак параллельности плоскостей, свойства параллельных плоскостей; параллельное проектирование, его свойства


Перпендикулярность прямых и плоскостей (11ч)

перпендикулярность прямых;перпендикулярность прямой и плоскости, признак перпендикулярности прямой и плоскости;свойства перпендикулярных прямой и плоскости; перпендикуляр и наклонная к плоскости, проекция наклонной на плоскость;теорема о трех перпендикулярах;расстояние от точки до плоскости, расстояние между параллельными прямыми и плоскостями, расстояние между скрещивающимися прямымигол между прямой и плоскостью, двугранный угол, угол между двумя плоскостями;задачи практического содержания на взаимные расположения прямых и плоскостей.


Тригонометрические функции (1.)

Свойства и графики тригонометрических функций. Арксинус, арккосинус, арктангенс, арккотангенс. Преобразования выражений, содержащих арксинус, арккосинус, арктангенс, арккотангенс. Обратные тригонометрические функции;

Простейшие тригонометрические уравнения вида sinх = а, cosх = а, tgх = а, ctgх = а и их решения. Способы решения тригонометрических уравнений (Тригонометрические уравнения, приводимые к алгебраическим уравнениям относительно одной тригонометрической функции. Тригонометрические уравнения, решаемые путем преобразования тригонометрическими формулами. Тригонометрические уравнения, решаемые способом понижения степени уравнения. Однородные тригонометрические уравнения.). Системы тригонометрических уравнений и их решение. Тригонометрическое неравенство. Решение прсотейших тригонометрических неравенств и их систем


Производная (12 ч.)

Предел функции в точке. Производная. Правила нахождения производных. Дифференцирование. Производная степенной функции. Физический и геометрический смысл производной. Касательная к графику функции. Уравнение касательной к графику функции.Сложная функция. Производная сложной функции. Производная тригонометрических функций. Приближённые вычисления


Применение производной к исследованию функций (9 ч.)

Признаки монотонности (возрастания и убывания) функции. Критические точки. Достаточные условия существования экстремума. Исследование функции с помощью производной и построение её графика. Наибольшее и наименьшее значения функции на промежутке


Векторы в пространстве (9 ч.)

прямоугольная система координат в пространстве, координаты середины отрезка, расстояние между двумя точками; векторы в пространстве;разложение вектора по трем некомпланарным, координаты вектора в пространстве, действия над векторами в координатах;скалярное произведение векторов в координатах, свойства скалярного произведения векторов; применение векторов к решению задач.


Комбинаторика и бином Ньютона (3 ч.)

Основные понятия и формулы комбинаторики (перестановки, размещения, сочетания). Бином Ньютона


Первообразная и интеграл (12ч.)

Первообразная функции. Основное свойство первообразной. Правила нахождения первообразных. Криволинейная трапеция. Площадь криволинейной трапеции. Определённый интеграл. Формула Ньютона-Лейбница. Интегрирование. Применение определённого интеграла к решению геометрических и физических задач;

Многогранники. Площади поверхностей и объемы многогранников(14 ч.)

понятие о многограннике, призма, ее элементы; прямая и правильная призмы, параллелепипед: прямой, прямоугольный, куб; свойства параллелепипеда, площадь поверхности призмы; пирамида и ее элементы; правильная пирамида, усеченная пирамида; развертка пирамиды; площадь поверхности пирамиды и усеченной пирамиды;правильные многогранники; объем прямоугольного параллелепипеда, объем призмы, объем пирамиды; задачи практического содержания на нахождение площадей поверхностей и объемов пространственных тел.


Степени и корни (10 ч.)

Корень n-ой степени и его свойства. Арифметический корень n-ой степени. Степень с рациональным показателем и её свойства. Иррациональные уравнения. Решение иррациональных уравнений и их систем. Степенная функция, её свойства и графики. Дифференцирование и интегрирование степенной функции с действительным показателем

Показательная и логарифмическая функции (12ч.)

Показательная функция, ее свойства и график. Логарифм числа. Основное логарифмическое тождество. Свойства логарифмов. Десятичный логарифм. Натуральный логарифм. Логарифмическая функция, ее свойства и график. Дифференцирование показательной и логарифмической функций. Показательные уравнения. Решение показательных уравнений и их систем. Логарифмические уравнения. Решение логарифмических уравнений и их систем. Показательные неравенства. Решение показательных неравенстви их систем. Логарифмические неравенства. Решение логарифмических неравенств и их систем

Тела вращения (11 ч.)

прямой круговой цилиндр, его элементыечения цилиндра плоскостью;

развертка цилиндра;площадь поверхности цилиндра; прямой круговой конус, его элементыечения конуса плоскостью; развертка конуса;площадь поверхности конуса; усеченный конус и площадь его поверхности;сфера и шар, сечение шара и сферы плоскостью;касательная плоскость к сфере, ее свойства;шаровой сектор и шаровой сегмент; площадь поверхности шара и его частей; объемы цилиндра и конуса;объем шара и его частей;задачи назадачи практического содержания на нахождение объемов пространственных тел.

Уравнения и неравенства (2 ч.)

Уравнения и неравенства, содержащие переменную под знаком модуля. Уравнения и неравенства с параметрами.

Вероятность (2 ч.)

Сложение и умножение вероятностей. Случайная величина.



Требования к уровню подготовки учащихся


Предметные результаты уровня подготовки учащихся

Учащиеся должны иметь представление:

о пределе функции в точке; о непрерывности функции в точке и на множестве;

о комбинаторных задачах.

Учащиеся должны понимать:

геометрический смысл производной;физический смысл производной.

Учащиеся должны знать:

определение функции;определение возрастающей функции;определение убывающей функции;определение чётной функции;определение нечётной функции,определение промежутков знакопостоянства функции; определение обратной функции;определение точек максимума функции; определение точек минимума функции;определение точек экстремума функции;определение максимума функции;определение минимума функции;определение экстремума функции;определение тригонометрических функций;определения арксинуса, арккосинуса, арктангенса, арккотангенса;формулы корней общего и частных видов уравнений sinх = а, cosх = а, tgх = а, ctgх = а;

способы решения тригонометрических уравнений, алгоритм решения простейшего тригонометрического неравенства;определение пределе функции в точке;

определение производной;правила нахождения производных, геометрический смысл производной;физический смысл производной;формулу уравнения касательной к графику функции;формулу нахождения производной степенной функции; определение сложной функции;формулу нахождения производной сложной функции;формулы нахождения производной тригонометрических функций;формулы нахождения приближённых значений функции; определение критической точки;признаки возрастания и убывания функции;

алгоритм нахождения промежутков возрастания и убывания функции;

алгоритм нахождения точек максимума и минимума функции; алгоритм исследования функции с помощью производной;

алгоритм нахождения наибольшего и наименьшего значения функции на множестве;формулы для вычисления числа перестановок, размещений, сочетаний;

формулу бинома Ньютона.определение первообразной;основное свойство первообразной;правила нахождения первообразных;определение определённого интеграла;определение криволинейной трапеции;формулу Ньютона-Лейбница; формулу нахождения площади плоской фигуры с помощью определённого интеграла;формулу нахождения объёма тела с помощью определённого интеграла;

определение корня п-ой степени;свойства корня п-ой степени; определение степени с рациональным показателем; свойства степени с рациональным показателем; определение степени с иррациональным показателем; определение иррационального уравнения;алгоритм решения иррационального уравнения;

определение иррационального неравенства;формулу нахождения производной степенной функции;формулу нахождения первообразной степенной функции;

определение показательной функции;определение логарифма числа;основное логарифмическое тождество;свойства логарифма числа;определение логарифмической функции;определение показательного уравнения;определение показательного неравенства;определение логарифмического уравнения; определение логарифмического неравенства; определение уравнения с параметром,определения сложения и умножения вероятностей; определение случайной величины и ее виды; аксиомы стереометрии;теоремы о принадлежности точек и прямых плоскостям; определение параллельности прямых в пространстве;свойства параллельных прямых; определение скрещивающихся прямых в пространстве;определение параллельности прямой и плоскости;признак параллельности прямой и плоскости;определение параллельности двух плоскостей;признак параллельности плоскостей;свойства параллельных плоскостей;свойства параллельного проектированияопределение угла между прямыми в пространстве; определение перпендикулярности прямых в пространстве;определение перпендикулярности прямой и плоскости;признак перпендикулярности прямой и плоскости;свойства перпендикулярных прямой и плоскости;определение перпендикуляра к плоскости;определение наклонной к плоскости;теорему о трех перпендикулярах и обратную ей теорему;определение угла между прямой и плоскостью;расстояние от точки до плоскости; расстояние между параллельными прямыми и плоскостями;

определение двугранного угла и угла между двумя пересекающимися плоскостями;признак перпендикулярности двух плоскостей;определение вектора в пространстве;определение компланарных и некомпланарных векторов;

теорему о разложении вектора по трем некомпланарным векторам;определение координат точек и векторов в пространстве;формулу, выражающую расстояние между двумя точками в пространстве;формулу для нахождения координаты середины отрезка;определение и свойства скалярного произведения векторов;признак перпендикулярности двух векторов;скалярное произведения векторов в координатах;формулу косинуса угла между векторами. определение многогранника и правильного многогранника;определение призмы и ее элементов;определение и свойства параллелепипеда;

определения пирамиды, правильной пирамиды и усеченной пирамиды и их элементов;формулы для нахождения площадей боковой и полной поверхности призмы, пирамиды, усеченной пирамиды;виды правильных многогранников;

определение цилиндра и его элементов; определения конуса, усеченного конуса и их элементов; определения шара и сферы и их элементов, определение и свойства касательной плоскости к сфере;формулы для нахождения площадей боковой и полной поверхности цилиндра, конуса, усеченного конуса;формулу для нахождения площади сферы; понятие шара (сферы) ;единицы измерения объемов;формулы для нахождения объемов прямоугольного параллелепипеда, прямой и наклонной призм, пирамиды, усеченной пирамиды, цилиндра, конуса, усеченного конуса, шара.

Учащиеся должны уметь:

преобразовывать графики функций;устанавливать свойства функций: чётность и нечётность, возрастание и убывание, экстремумы, промежутки знакопостоянства;

cтроить графики тригонометрических функций;по графику функции находить точки экстремума и экстремумы функции;выполнять тождественные преобразования выражений, содержащих арксинус, арккосинус, арктангенс, арккотангенс;решать тригонометрические уравнения и их системы;решать тригонометрические неравенства и их системы;использовать правила нахождения производных;находить производные функций;находить приближённое значение функции с помощью дифференциала;составлять уравнение касательной к графику функции;находить промежутки возрастания и убывания функции;находить точки экстремума и критические точки функции;исследовать функцию с помощью производной и строить её график;находить наибольшее и наименьшее значения функции на множестве;вычислять число перестановок, размещений, сочетаний;

применять формулы комбинаторики для вычисления вероятности события;

применять формулу бинома Ньютона.находить первообразную функции,вычислять определённый интеграл;использовать формулу Ньютона-Лейбница;находить площадь плоской фигуры с помощью определённого интеграла;находить объём тела с помощью определённого интеграла;

использовать свойства корня п-ой степени;преобразовывать выражения, содержащие корни п-ой степени;использовать свойства степени с рациональным показателем;преобразовывать выражения, содержащие степень с рациональным и иррациональным показателями;решать иррациональные уравнения;решать иррациональные неравенства;строить графики и устанавливать свойства степенной функции;находить производную степенной функции;находить первообразную степенной функции;строить графики и устанавливать свойства показательной функции;строить графики и устанавливать свойства логарифмической функции;преобразовывать выражения, содержащие логарифмы;

находить производную показательной и логарифмической функции;находить первообразную показательной функции;решать показательные уравнения;решать логарифмические уравнения; решать системы показательных и логарифмических уравнений;решать показательные неравенства;решать логарифмические неравенства;решать системы показательных и логарифмических неравенств;

использовать общие методы решения уравнений и их систем;использовать общие методы решения неравенств и их систем;решать уравнения с параметром;решать неравенства с параметром;решать простейшие комбинаторные задачи

решать задачи с применением аксиом стереометрии и следствий из них;

изображать прямые, плоскости и отражать их взаимное расположение на рисунке;

находить на моделях и рисунках пересекающиеся, параллельные и скрещивающиеся прямые;изображать на рисунках пересечение прямой и плоскости, параллельность, перпендикулярность прямой и плоскости;

находить на моделях и изображать на рисунках пересекающиеся и параллельные плоскости;находить расстояние от точки до плоскости;строить изображения призмы, пирамиды и усеченной пирамиды;изображать пространственные фигуры на плоскости;изображать двугранный угол на рисунке;

находить величину угла между прямыми, прямой и плоскостью, двумя плоскостями;применять метрические теоремы планиметрии для нахождения расстоянии от точки до плоскости, между параллельными прямыми и плоскостями, между скрещивающимися прямыми;

находить координаты середины отрезка по координатам его концов;

находить расстояние между точками (длину отрезка) по координатам этих точек;

решать задачи с использованием формулы расстояния между двумя точками в прямоугольной системе координат в пространстве;находить координаты вектора в пространстве; находить длину вектора и угол между векторами по их координатам;находить скалярное произведение векторов в координатах;

находить косинус угла между векторами;использовать скалярное произведения векторов для решения задач на вычисление, на доказательство;

применять векторы к решению геометрических задач;

различать и показывать на моделях прямую и правильную призму, прямоугольный параллелепипед, куб, пирамиду, правильную пирамиду, цилиндр, конус, указывать их основные элементы на рисунке;изображать на рисунках призмы, пирамиды и их элементы;изображать на рисунках цилиндр, конус и шар (сферу); выполнять чертежи по условиям задач;вычислять линейные элементы и углы в пространственных конфигурациях;решать задачи на нахождение геометрических величин (длин, углов, площадей, объемов);решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;находить площади боковой и полной поверхностей призмы, пирамиды, усеченной пирамиды;находить площади боковой и полной поверхностей цилиндра, конуса, усеченного конуса;находить площадь сферы; находить уравнение сферы;изображать сечения тел вращения плоскостью;

находить объемы прямоугольного параллелепипеда, прямой и наклонной призм, пирамиды, усеченной пирамиды, цилиндра, конуса, усеченного конуса, шара;находить объем и площадь поверхности шарового сектора и шарового сегмента;

решать метрические задачи на комбинацию пространственных геометрических фигур.

Учащиеся должны владеть навыками:

  1. использования справочных материалов, поиска определений, формул и других утверждений в учебной, методической и справочной литературе;

  2. использования калькулятора для вычисления значений числовых выражений;

  3. работы с компьютерными программами построения графиков функций;

  4. использования таблиц В.Брадиса для нахождения значений тригонометрических функций;

  5. использования таблиц В.Брадиса для нахождения значений числа (угла) по значению тригонометрических функций.


Системно-деятельностные результаты.

Учащиеся должны применять:

систему знаний в различных жизненных ситуациях;

умение анализировать, обрабатывать, синтезировать информацию;

грамотно выполнять алгоритмические предписания и инструкции на математическом материале;

умение пользоваться математическими формулами, самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев;

приобретенные алгебраические преобразования и функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных предметах;

владеть техникой практических вычислений, рационально сочетая приближенные и точные, устные и инструментальные вычисления;

умение работать с математическим текстом (анализировать, извлекать необходимую информацию), ясно и точно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики;

умение использования справочных материалов, поиска определений, формул и других утверждений в учебной, методической и справочной литературе;

коммуникативные способности в различных формах организации учебной деятельности.


Формы контроля- Самостоятельная работа, контрольная работа, работа по карточке, тестовые задания

Контрольные работы

Входящая контрольная работа

Контрольная работа №1 Функция, ее свойства и график

Контрольная работа №2 Аксиомы стереометрии. Параллельность

прямых и плоскостей

Контрольная работа №3 Перпендикулярность прямых и плоскостей

Контрольная работа №4 Тригонометрические функции

Контрольная работа №5 Производная

Контрольная работа №6 Применение производной к исследованию функций

Контрольная работа №7 Векторы в пространстве

Контрольная работа №8 Первообразная и интеграл

Контрольная работа №9 Многогранники, площадь поверхности и объем

многогранника

Контрольная работа №10 Степени и корни

Контрольная работа №11 Показательная и логарифмическая функции

Контрольная работа №12 Тела вращения

Контрольная работа №13 Итоговая контрольная работа



Учебно-методическое обеспечение


Основная литература

(учебники)

Учебно-методическая

литература

Учебные и

справочные пособия

Алгебра и начала

анализа 10

*Алгебра и начала

анализа10

АбылкасымовА, ЕсеноваМ, ЖумагуловаЗ.

Методическое руководство

Мектеп 2006

Программы

«Математика»

*Алгебра и начала анализа10 Сборник задач

Мектеп 2006

*Алгебра и начала анализа10 Дидактические материалы

Мектеп 2006

Алгебра и начала

анализа11

*Алгебра и начала

анализа 11

Абылкасымова А. БекбоевИ., Абдиев А.

Методическое руководство

Мектеп 2007

*Алгебра и начала анализа11

Абылкасымова А.,Шойынбеков К.,

Жумагулова З.

Сборник задач Мектеп 2007

*Алгебра и начала анализа11

Абылкасымова А.,Шойынбеков К.,ЖумагуловаЗ.

Дидактические материалы

Мектеп 2007

Геометрия 10.

Гусев В.,

Кайдасов Ж.,

Қағазбаева А.

2010 Мектеп

*Геометрия.10

Методическое руководство для учителя Кайдасов Ж., Гусев В., Қағазбаева А.,Ахматуллина М.

Мектеп 2010

*Геометрия 10

Кайдасов Ж., Гусев В.,Есенгазин Е. Сборник задач Мектеп 2010


*Геометрия 10

Кайдасов Ж., Гусев В.,

Дидактические материалы

Мектеп 2010

Геометрия 11 Шыныбеков А.

2011 Атамұра

*Геометрия 11

Методическое руководство

Мектеп 2007

*Геометрия 11

Гусев В., Кайдасов Ж., Е.Есенгазин

Сборник задач

Мектеп 2007


*Геометрия 11

Гусев В., Кайдасов Ж.

Дидактические материалы

Мектеп 2007

Предметные Интернет- ресурсы, Цифровые образовательные ресурсы

www.school-collection.edu.ru

www.ict.edu.ru

www.chronobus.ru

htpp://festival. 1september.ru






Нормы оценки знаний, умений и навыков
по математике.


Оценка письменных контрольных работ обучающихся по математике


Отметка «5» ставится, если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).



Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).



Отметка «3» ставится, если:
допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.



Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.



Отметка «1» ставится, если:
работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.






















Краткое описание документа:

РАБОЧАЯ УЧЕБНАЯ  ПРОГРАММА

 

НАИМЕНОВАНИЕ ПРЕДМЕТА: «МАТЕМАТИКА»

 

КОД И ПРОФИЛЬ ОБРАЗОВАНИЯ 

         №1500000 «Сельское хозяйство,  ветеринария и экология»

СПЕЦИАЛЬНОСТЬ  

         №1504000«Фермерское хозяйство»

КВАЛИФИКАЦИИ

         №1504062 «Тракторист-машинист сельскохозяйственного производства»

         №1504082«Водитель автомобиля»

         №1504042«Повар»

 

НА БАЗЕ ОСНОВНОГО СРЕДНЕГО ОБРАЗОВАНИЯ

КОЛИЧЕСТВО ЧАСОВ -   144

СРОК ОБУЧЕНИЯ  -           2 года 10 месяцев

 

 

 

 

Общая информация

Номер материала: 168573

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Для того чтобы задавать вопросы нужно авторизироватся.
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.