Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Другие методич. материалы / Отчет зав. кабинетом физики

Отчет зав. кабинетом физики



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


  • Физика

Поделитесь материалом с коллегами:

Отчет заведующего кабинетом «Физика»

за 2 семестр 2015-2016 учебного года


№ кабинета 8

Ф.И.О. зав.кабинетом Заблоцкая Инна Васильевна

В кабинете имеется:

  1. Документация:

    1. План работы кабинета на 2015-2016 уч. год

    2. Паспорт учебного кабинета

    3. Стандарт среднего (полного) общего образования по физике

    4. Сборник нормативных документов. Физика – М. :Дрофа, 2008 г. (Федеральный компонент государственного стандарта, федеральный базисный учебный план, примерные программы пофизике)

    5. Примерная программа учебной дисциплины по физики для профессий начального профессионального образования и специальностей среднего профессионального образования, М., 2008

    6. Планы учебного процесса (основная профессиональная образовательная программа)

38.01.02 «Продавец, контролер-кассир»,

23.01.03 «Автомеханик»

35.1.13 «Тракторист-машинист сельскохозяйственного производства»,


Рабочая программа учебной дисциплины «Физика» по профессиям :

38.01.02 «Продавец, контролер-кассир», 23.01.03 «Автомеханик»(2015)

35.1.13 «Тракторист-машинист сельскохозяйственного производства»(2015)

    1. Календарно-тематическое планирование по физике для всех профессий:

23.01.03 «Автомеханик»(2015),

38.01.02 «Продавец, контролер-кассир»,

35.1.13 «Тракторист-машинист сельскохозяйственного производства»(2015)

    1. Конспекты уроков по физике для всех профессий

    2. План воспитательной работы группы 1 А/Т

    3. План работы физического кружка « Физикон»

    4. Контрольно- измерительные средства по физике (2015г)

  1. Методические указания и рекомендации:

    1. Методические указания по выполнению лабораторных работ физике к разделам Механика ,МКТ, Электродинамика, Колебания и волны, Оптика и к лабораторному практикуму.

    2. Методические указания по выполнению практических работ по физике( 2015)

    3. Методические указания по выполнению самостоятельной работы обучающихся. (2015г):

а) Самостоятельная работа студентов при изучении нового материала

б) Самостоятельная работа студентов при решении задач

в) Самостоятельные работы и индивидуальные задания, тестов

г) Опыты и наблюдения в домашних заданиях по физике.

4. Методические рекомендации по выполнению проектов, рефератов, докладов

и работы с информационными источниками:

а) план работы над проектом

б) Памятка учащемся по составлению реферата

в)Работа над докладом

г) Поиск и работа с нужными источниками информации: книга,

периодическая печать, интернет- ресурс. Экзаменационные билеты по физике для всех профессий, перечень вопросов к д/ зачету для профессии 38.01.02 «Продавец, контролер- кассир»,

  1. Приложения к билетам.

  2. Комплект карточек с индивидуальными заданиями для входного контроля по физике.

  3. Дидактический материал: Карточки- задания по всем разделам курса; таблицы в электронном виде по всему курсу; презентации к урокам, видеофильмы, опорные конспекты по разделам Механика , Электродинамика.

8. Устанавливаются обновления на компьютер, имеется

Мультимедиопроектор.

Разработано 11 компьютерные презентации по разделам : механика , МКТ, колебания и волны, атомная физика. Загружено 2 учебных фильма по разделу Астрономия.

8. В втором полугодие выполнялись студентами второго курса самостоятельные работы. Организовывались дополнительные занятия и индивидуальные занятия с неуспевающими студентами. Проведена неделя космонавтики. В рамках которой проводились, : Конкурс плакатов « 55 лет подвигу Человека», Библиографическая выставка « Человек, Вселенная....», Внеклассное мероприятие « Шаг во вселенную», Олимпиада посвященная Дню космонавтики « Человек и космос». Был проведен открытый урок по физике в группе 1а/т по теме «Уравнение идеального газа».

9. Методическая разработка проведения недели ПЦМК, разработан и сдан. Материал для проведения внутри училищной олимпиады по физике имеется в наличии.

11.Студенты 1 курса принимали участив Международном дистанционном блиц-турнире проекта « Новый урок» « Законы, по которым мы все живем» -Логвинов А. ( 2 место), Шашков А. ( 1 место).

12. Использование  электронных опорных конспектов и презентаций

составленный  с помощью приложения PowerPoint и OpenOffice3.1 . Использование  готовых цифровых образовательных ресурсов в учебном процессе, таких, как:

- Учебный курс «Открытая физика»,

- Учебное электронное издание «Электронные уроки и тесты. Физика в школе». 

Средства Microsoft  Office (Word, Excel, PowerPoint).

Интернет – ресурсы

 (домашний интернет).

Создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности учащихся .

Проектный метод обучения.

Дата____________ ______________________












Спектральные характеристики источников света

Оглавление

спектральный свет накаливание лампа

Введение

1. Источники света

1.1 Стандартные лампы накаливания

1.2 Галогенные лампы накаливания

1.3 Люминесцентные лампы

1.4 Разрядные лампы высокого давления

1.5 Светодиоды

1.6 Энергосберегающие лампы

1.7 Гравитационные лампы

1.8 Лазеры

1.9 Индукционные лампы

Заключение

Список использованной литературы

Введение

Опытами Ньютона было установлено, что солнечный свет имеет сложный характер. Подобным же образом, т. е. анализируя состав света при помощи призмы, можно убедиться, что свет большинства других источников (лампа накаливания, дуговой фонарь и т. д.) имеет такой же характер. Сравнивая спектры этих светящихся тел, обнаружим, что соответственные участки спектров обладают различной яркостью, т. е. в различных спектрах энергия распределена по-разному. Еще надежнее удостовериться в этом можно, если исследовать спектры при помощи термоэлемента

Для обычных источников эти различия в спектре не очень значительны, однако их можно без труда обнаружить. Наш глаз даже без помощи спектрального аппарата обнаруживает различия в качестве белого света, даваемого этими источниками. Так, свет свечи кажется желтоватым или даже красноватым по сравнению с лампой накаливания, а эта последняя заметно желтее, чем солнечный свет.

Еще значительнее различия, если источником света вместо раскаленного тела служит трубка, наполненная газом, светящимся под действием электрического разряда. Такие трубки употребляются в настоящее время для светящихся надписей или освещения улиц. Некоторые из этих газоразрядных ламп дают ярко желтый (натриевые лампы) или красный (неоновые лампы) свет, другие светятся беловатым светом (ртутные), ясно отличным по оттенку от солнечного. Спектральные исследования света подобных источников показывают, что в их спектре имеются только отдельные более или менее узкие цветные участки.

В настоящее время научились изготовлять газоразрядные лампы, свет которых имеет спектральный состав, очень близкий к солнечному. Такие лампы получили название ламп дневного света.

Если исследовать свет солнца или дугового фонаря, профильтрованный через цветное стекло, то он окажется заметно отличным от первоначального. Глаз оценит этот свет как цветной, а спектральное разложение обнаружит, что в спектре его отсутствуют или очень слабы более или менее значительные участки спектра источника.

1. Источники света

Источники света -- один из самых массовых товаров, производимых человеком.

Ежегодно производится и потребляется несколько миллиардов ламп, львиную долю которых пока составляют лампы накаливания. Стремительно растет потребление современных ламп -- компактных люминесцентных, натриевых, металлогалогенных. Заманчивые перспективы в энергосбережении, да и в дизайне осветительных остановок обещают ультрасовременные светодиоды. Происходящие качественные изменения позволяют надеяться, что источники света в новом третьем тысячелетии станут важным инструментом архитектора, проектировщика, просто творческого человека -- главного действующего лица наступающей эпохи дизайна.

1.1 Стандартные лампы накаливания

Принцип действия. Вольфрамовая спираль, помещенная в колбу, из которой откачан воздух, разогревается под действием электрического тока. За более чем 120-летнюю историю ламп накаливания их было создано огромное множество -- от миниатюрных ламп для карманного фонарика до полукиловаттных прожекторных. Типичная для ЛН световая отдача 10-15 Лм/Вт выглядит очень неубедительно на фоне рекордных достижений ламп других типов. ЛН в большей степени нагреватели, чем осветители: львиная доля питающей нить накала электроэнергии превращается не в свет, а в тепло. В связи с этим сплошной спектр лампы накаливания имеет максимум в инфракрасной области и плавно спадает с уменьшением длины волны. Такой спектр определяет теплый тон излучения (Тцв=2400-2700 К) при отличной цветопередаче (Ra=100).

Срок службы ЛН, как правило, не превышает 1000 часов, что, по временным меркам, очень немного. Что же заставляет людей покупать (15 млрд в год!) столь неэффективные и недолговечные источники света? Кроме силы привычки и крайне низкой начальной цены (что, кстати, совершенно не означает, что применение ЛН экономически эффективно), причина этого в том, что существует огромный выбор декоративных типов стеклянных колб ЛН.

Рис.1 Спектральные характеристики лампы накаливания

1.2 Галогеновые лампы накаливания

Главным недостатком стандартной лампы накаливания является ее малая светоотдача и ее короткий срок службы. При наполнении ее галогенными соединениями (к группе галогенов относятся неметаллические химические элементы фтор, хлор, бром, йод и астатин) можно избежать образования сажи на внутренней стороне стеклянной колбы, так что лампа в течение всего срока службы будет излучать постоянную световую энергию (люмен). Полезный эффект достигается за счет того, что пары галогенов способны соединяться с испаряющимися частицами вольфрама, а затем под действием высокой температуры распадаться, возвращая вольфрам на спираль.

Вылетающие с раскаленной спирали атомы вольфрама, таким образом, не долетают до стенок колбы лампы (за счет чего и снижается почернение), а возвращаются обратно химическим путем. Это явление получило название галогенного цикла .

За счет этого светоотдача и срок службы лампы значительно улучшаются. В то время, как стандартная лампа накаливания достигает светоотдачи 10 лм/ватт, галогенная лампа накаливания играючи достигает 25 лм/ватт. Кроме того, галогенные лампы накаливания имеют более компактную конструкцию и пригодны для изящных и специальных светильников.

В специализированных магазинах сегодня имеются в продаже галогенные лампы накаливания для работы с напряжением сети 220 вольт и лампы для низковольтного режима работы: на 6,12, 24 вольта. Для низковольтных галогенных ламп дополнительно требуется трансформатор.

Для декоративного акцентного освещения все больше используются галогенные отражающие лампы мощностью 10-50 ватт, а также рефлекторные лампы с отражателями тлеющего свечения 20-75 ватт. При этих лампах 2/3 образующегося тепла отводится назад через отражатель, пропускающий инфракрасные лучи, так что освещаемые этими лампами объекты не очень сильно нагреваются.

Стандартным сроком службы сетевых и многих низковольтных галогенных ламп принято считать период в 2000 часов. Как и у обычных ламп накаливания, механические воздействия на лампы в процессе эксплуатации (в особенности, для линейных ламп с большой длиной спирали), а также частые включения сокращают их срок службы.

Цветовая температура галогенных ламп, как и реальная температура их нити накала, выше, чем у традиционных ламп накаливания и составляет 3000-3200 К. Этот параметр можно изменить при помощи встроенных или внешних светофильтров, а также подбором толщины интерференционного отражающего слоя в зеркальных лампах. Индекс цветопередачи Ra галогенных ламп, как и у всех тепловых источников света, максимален и равен 100, причем за счет более высокой температуры накала (по сравнению с обычными лампами накаливания) свет галогенных ламп лучше воспроизводит сине-зеленые цвета.

Рис.2 Спектральные характеристики: а) галогенных ламп накаливания, б) галогенных ламп накаливания (на железе).

На сегодняшний день галогенные лампы остаются единственным сравнительно экономичным и при этом недорогим видом источника света с "теплым" спектром. Этим объясняется их богатый ассортимент, имеющий тенденцию к расширению. В первую очередь лампы данного вида находят применение в бытовом и функционально-декоративном освещении.

1.3Люминесцентные лампы

Из всех типов ламп люминесцентные лампы имеют самую высокую светоотдачу. Так называемые трехленточные люминесцентные лампы при очень хорошей светопередаче достигают до 96 люменов/ватт, т.е. почти в 10 раз больше, чем лампа накаливания. Поэтому люминесцентные лампы являются хорошими источниками сбережения энергии, а значит и экономичными. Основная область применения: промышленные зоны (мастерские, офисы, заводские цеха и т.д.)

В люминесцентных лампах свет производится с помощью ртути и нанесенного на внутренней стороне колбы лампы люминесцентного слоя.

В качестве люминофоров служат инертные газы, например, неон, аргон или гелий. Возбуждаемые электронами атомы ртути производят внутри колбы лампы невидимое для человека ультрафиолетовое излучение, которое люминофоры преобразует в видимый свет, при этом различные люминофоры имеют различные цвета света и свойства цветопередачи.

Светоотдача различных люминофоров также отличается друг от друга. Точно также как и компактные люминесцентные лампы или энергосберегающие лампы, так и стандартные люминесцентные лампы функционируют только с пускорегулирующим аппаратом. И в этом случае Вы должны приобретать лампы только с электронным пускорегулирующим аппаратом.

Люминесцентные лампы рассчитаны на так называемую оптимальную окружающую температуру, которая обычно совпадает с комнатной (18-25°С). При меньших или больших температурах светоотдача лампы падает. Если окружающая температура ниже +5°С, зажигание лампы вообще не гарантируется. С этой особенностью связаны ограничения, накладываемые на применение этих ламп в наружном освещении.

Срок службы люминесцентных ламп определяется многими факторами и в основном зависит от качества их изготовления. Физическое перегорание лампы происходит в момент разрушения активного слоя либо обрыва одного из ее электродов. Наиболее интенсивное распыление электродов наблюдается при зажигании лампы, поэтому полный срок службы сокращается при частых включениях. Полезным сроком службы принято считать период, в течение которого лампа дает не менее 70% от начального светового потока. Этот период может истекать задолго до перегорания лампы как такового. Средний полезный срок службы современных люминесцентных ламп в зависимости от модели составляет 8000-15000 ч.

Люминесцентные лампы охватывают практически весь диапазон цветовых температур от 2700 до 10000 К. Существуют также цветные лампы. Индекс цветопередачи Ra меняется от 60 для ламп со стандартными люминофорами до 92...95 у ламп с очень хорошей цветопередачей. Улучшение цветопередачи сопровождается некоторым снижением световой отдачи.

Эксплуатационными особенностями люминесцентных ламп являются мерцание светового потока с частотой питающей сети и его спад в течение срока службы. Мерцание лампы незаметно глазу, однако сказывается на утомляемости зрительной доли мозга. Подобное освещение непригодно для напряженной зрительной работы (чтения, письма и т.п.) и может вызывать стробоскопический эффект на вращающихся предметах. Электронные балласты полностью исключают эту проблему, так что на сегодняшний день их можно рекомендовать для большинства применений.

Люминесцентный свет в настоящее время абсолютно доминирует на рынке внутреннего освещения общественных зданий. Несмотря на стремительно развивающегося конкурента - светодиодные системы - традиционные люминесцентные лампы будут удерживать свои позиции еще много лет. В последнее время наблюдается также тенденция активного проникновения люминесцентного света в бытовые и дизайнерские применения. Ранее этот процесс сдерживался в основном несовершенством конструкции и не вполне удачной цветовой гаммой старого модельного ряда ламп.

Рис.3 Спектральные характеристики: а) обыкновенной люминесцентной лампы, б) ксеноновой, в) ртутной.

1.4 Разрядные лампы высокого давления

Принцип действия разрядных ламп высокого давления -- свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов. Дуговые разрядные лампы намного старше ламп накаливания, в прошлом году электрической дуге исполнилось 200 лет. Два основных разряда высокого давления, применяемых в лампах -- ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный -- в голубой области спектра, натрий -- в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света -- металлогалогенные лампы (МГЛ), отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, диапазон Тцв от 3000 К до 6000 К, средний срок службы около 15 000 часов.

Один из немногих недостатков МГЛ -- невысокая стабильность параметров в течение срока службы -- успешно преодолевается с изобретением ламп с керамической горелкой. МГЛ успешно и разнообразно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются натриевые лампы. На сегодняшний день это один самых экономичных источников света (до 150 Лм/Вт).

Рис.4 Спектральные характеристики разрядных ламп высокого давления.

Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

1.5 Светодиоды

Полупроводниковые светоизлучающие приборы -- светодиоды -- называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно констатировать, что она выходит из периода младенчества. Достигнутые характеристики светодиодов (для белых светодиодов световая отдача до 25 Лм/Вт при мощности прибора до 5 Вт, Ra=80-85, срок службы 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике. Светодиодные источники света стоят на пороге вторжения на рынок общего освещения, и это вторжение нам предстоит пережить в ближайшие годы.

По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:

- Высокий КПД. Современные светодиоды уступают по этому параметру только люминесцентной лампе с холодным катодом.

- Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

- Длительный срок службы. Но и он не бесконечен - при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости.

- Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это - достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

- Малая инерционность.

- Малый угол излучения - также может быть как достоинством, так и недостатком.

- Низкая стоимость.

- Безопасность - не требуются высокие напряжения.

- Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

Рис.5 Спектральные характеристики светодиодов.

1.6 Энергосберегающие лампы

С устройством лампы накаливания знакомы многие. Под действием электрического тока вольфрамовая нить в лампочке раскаляется до яркого свечения. Но не все знают, как устроена энергосберегающая лампа.

Энергосберегающие лампы состоят из колбы, наполненной порами ртути и аргоном, и пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор. Люминофор, это такое вещество, при воздействии на которое ультрафиолетовым излучением, начинает излучать видимый свет. Когда мы включаем энергосберегающую лампочку, под действием электромагнитного излучения, поры ртути, содержащиеся в лампе, начинают создавать ультрафиолетовое излучение, а ультрафиолетовое излучение, в свою очередь, проходя через люминофор, нанесенный на поверхность лампы, преобразуется в видимый свет.

Люминофор может иметь различные оттенки, и как результат, может создавать разные цвета светового потока. Конструкции существующих энергосберегающих ламп делают под существующие стандартные размеры традиционных ламп накаливания. Диаметр цоколя у таких ламп составляет 14 или 27 мм. Благодаря чему вы можете использовать энергосберегающие лампы в любом светильнике, бра или люстре, для которых вы раньше применяли лампу накаливания.

а) Преимущества энергосберегающих ламп

Экономия электроэнергии. Коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания. Например, энергосберегающая лампочка мощностью 20 Вт создает световой поток равный световому потоку обычной лампы накаливания 100 Вт. Благодаря такому соотношению энергосберегающие лампы позволяют экономить экономию на 80% при этом без потерь освещенности комнаты привычного для вас. Причем, в процессе долгой эксплуатации от обычной лампочки накаливания световой поток со временем уменьшается из-за выгорания вольфрамовой нити накаливания, и она хуже освещает комнату, а у энергосберегающих ламп такого недостатка нет.

Долгий срок службы. По сравнению с традиционными лампами накаливания, энергосберегающие лампы служат в несколько раз дольше. Обычные лампочки накаливания выходят из строя по причине перегорания вольфрамовой нити. Энергосберегающие лампы, имея другую конструкцию и принципиально иной принцип работы, служат гораздо дольше ламп накаливания в среднем 5-15 раз. Это примерно от 5 до 12 тысяч часов работы лампы (обычно ресурс работы лампы определяется производителем и указывается на упаковке). Благодаря тому, что энергосберегающие лампы служат долго и не требуют частой замены, их очень удобно применять в тех местах, где затруднен процесс замены лампочек, например в помещениях с высокими потолками или в люстрах со сложными конструкциями, где для замены лампочки приходится разбирать корпус самой люстры.

Низкая теплоотдача. Благодаря высокому коэффициенту полезного действия у энергосберегающих ламп, вся затраченная электроэнергия преобразуется в световой поток, при этом энергосберегающие лампы выделяют очень мало тепла. В некоторых люстрах и светильниках опасно использовать обычные лампочки накаливания, из-за того что они выделяя большое количества тепла могут расплавить пластмассовую часть патрона, прилегающие провода или сам корпус, что в свою очередь может привести к пожару. Поэтому энергосберегающие лампы просто необходимо использовать в светильниках, люстрах и бра с ограничением уровня температуры.

Большая светоотдача. В обычной лампе накаливания свет идет только от вольфрамовой спирали. Энергосберегающая лампа светится по всей своей площади. Благодаря чему свет от энергосберегающей лампы получается мягкий и равномерный, более приятен для глаз и лучше распространяется по помещению.

Выбор желаемого цвета. Благодаря различным оттенкам люминофора покрывающего корпус лампочки, энергосберегающие лампы имеют различные цвета светового потока, это может быть мягкий белый свет, холодный белый, дневной свет, и т.д.;

б) Недостатки энергосберегающих ламп

Единственным и значительным недостатком энергосберегающих ламп по сравнению с традиционными лампами накаливания является их высокая цена. Цена энергосберегающей лампочки в 10-20 раз больше обычной лампочки накаливания. Но энергосберегающая лампочка неспроста называется энергосберегающей. Учитывая экономию на электроэнергии при использовании этих ламп и с их срок службы, в итого, применение энергосберегающих ламп станет для вас и вашего бюджета более выгодным.

Есть еще одна особенность применения энергосберегающих ламп, которую нужно отнести к их недостатку. Энергосберегающая лампа наполнена внутри парами ртути. Ртуть считается опасным ядом. Поэтому очень опасно разбивать такие лампы в квартире и помещении. Следует быть очень осторожными при обращении с ними. По той же причине энергосберегающие лампы можно отнести к экологически вредным, и поэтому они требуют специальной утилизации, а выбрасывать такие лампы, по сути, запрещено. Но почему-то при продаже энергосберегающих ламп в магазине, продавцы не объясняют, куда их потом девать.

в) Мощность

Энергосберегающие лампы изготавливают с различной мощностью. Диапазон мощностей варьируется от 3 до 90 Вт. Следует учитывать, что коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания. Поэтому при выборе энергосберегающей лампы, надо придерживаться правила - делить мощность обычной лампы накаливания на пять. Если вы в своей люстре или светильнике применяли обычную лампочку накаливания мощностью 100 Вт, вам будет достаточно приобрести энергосберегающую лампочку мощностью 20 Вт.

г) Цвет света

Энергосберегающие лампы способны светить разным цветом. Данная характеристика определяется цветовой температурой энергосберегающей лампы.

· 2700 К - теплы белый свет.

· 4200 К - дневной свет.

· 6400 К - холодный белый свет.

д) Вредны ли энергосберегающие лампы?

Спор по поводу вреда люминесцентных ламп идет наверное со времени их изобретения (энергосберегающие тоже люминесцентные). Первым аргументом было то, что они якобы вредны для глаз. Как пример приведу обычные трубчатые типа ЛД, ЛБ и проч. Возможно, поначалу, это так и было потому, что люминесцентная лампа, в отличие от лампы накаливания 50 раз в секунду перезажигается то есть гаснет и зажигается вновь) глаз практически не замечает этого, однако глаза могут быстро уставать. В дальнейшем стали в основном применять светильники с двумя лампами, причем напряжение у одной из ламп сдвинуто по фазе конденсатором, то есть в тот момент, когда одна из ламп пригасает, вторая, наоборот, находится на пике своего излучения и наоборот. То есть, таким образом, исключилась пульсация света. Современные энергосберегающие лампы практически не пульсируют (это благодаря электронному ПРА, встроенному в лампу).

Сейчас имеет смысл покупать энергосберегающие лампы с «температурой» свечения 2400-2700К - это теплый белый свет, сдвинутый к красному спектру, он приятен для глаз, не такой «мёртвый», при таком свете не менее комфортно, чем при свете лампы накаливания. Свет люминесцентных ламп (особенно трубчатых) для зрения лучше, чем свет ламп накаливания - не такой резкий и более равномерный (при условии применения светильников с двумя лампами). Свое мнение по поводу комфортности люминесцентного света высказывают люди, сделавшие операции на глазах (для большинства такой свет комфортней).

По поводу ультрафиолетового излучения можно частично согласиться. Действительно, свечение люминофора, которым покрыта трубка лампы, происходит в ультрафиолетовом свете, люминофор просто увеличивает светоотдачу и исправляет спектр свечения (невидимое УФ излучение преобразует в видимое). Но ультрафиолетовое излучение не проходит через обычное силикатное стекло (из которого и сделаны трубки ламп). Оно проходит только через кварцевое. Поэтому, даже с учетом того, что трубки сделаны из очень тонкого стекла, говорить о данных лампах, как об источнике интенсивного УФ излучения некорректно. Тем более, если лампы установлены в светильники со стеклянными плафонами, УФ излучение не может проходить через них вообще.

И, наконец, третий аргумент вредности ЛЛ - наличие в них ртути. С этим сложно поспорить, действительно ртуть в них есть, правда в очень мизерных количествах (скажем, ртути из обычного медицинского термометра хватит на изготовление, пожалуй, более пары сотен таких ламп). И здесь надо иметь в виду, что с лампами надо обращаться осторожно, даже после их использования.

Рис.1 Внутренняя компоновка

Конечно, одного-двух раз вдыхания паров ртути из разбившейся лампы недостаточно, чтобы вызвать хроническое отравление.

Рис.2 Электрическая схема

Рис.6 Спектральные характеристики энергосберегающей лампы.

Но, тем не менее, надо решать вопрос с утилизацией. Здесь проще всего сдавать лампы в те же магазины, где их вам. За это магазин будет брать некоторую плату, впрочем, она может идти в зачет при покупке новой (как стеклотару меняли в свое время).

е) Внутренняя компоновка и электрическая схема энергосберегающей лампы

1.7 Гравитационная лампа

Выпускник политехнического института Вирджинии разработал напольную лампу-колонну, которая освещает помещение благодаря гравитации. Работает она за счёт медленного сползания груза, раскручивающего ротор генератора. Вырабатываемая им энергия питает десять высокоэффективных светодиодов.

Работает лампа бесшумно. Её не нужно включать в сеть, а значит и провода ей тоже не нужны, и это, пожалуй, одно из главных достоинств лампы. Ведь её можно поместить в любом месте квартиры. Чтобы "включить" такую колонну, необходимо протянуть руку центральному стержню и поднять перемещающийся по нему груз наверх. Правда, груз в лампе весит немало -- 22,5 килограмма. "Гиря" медленно начнёт сползать вниз, и через несколько секунд лампа снова начнёт освещать пространство квартиры.

"Включённая" лампа светит мягким рассеянным светом, причём "горит" почти вся поверхность колонны (кроме выреза для руки, конечно же), поскольку она представляет собой специально сконструированную акриловую линзу. Срок "годности" лампы оценивается 200 годами (при использовании каждый день в течение 8 часов).

Автор считает, что лет через 10-15 акриловая оболочка лампы состарится и начнёт "отрезать" голубоватый оттенок света, создаваемый светодиодами, делая освещение более близким к дневному свету, а значит, более комфортным. Неясным остаётся только одно - как выключить лампу, например, если время ложиться спать?

1.8 Лазер

По сравнению с другими источниками света Л. обладает рядом уникальных свойств, связанных с когерентностью и высокой направленностью его излучения. Излучение «нелазерных» источников света не имеет этих особенностей. Мощность, излучаемая нагретым телом, определяется его температурой Т. Наибольшее возможное значение потока излучения, достигаемое для абсолютно чёрного тела, W = 5,7Ч10-12ЧT4 вт/см2. Мощность излучения быстро растет с увеличением Т, и для высоких Т достигает весьма больших величин. Так, каждый 1 см2 поверхности Солнца (Т = 5800 К) излучает мощность W = 6,4Ч103 вт. Однако излучение теплового источника распространяется по всем направлениям от источника, т. е. заполняет телесный угол 2р рад. Формирование направленного пучка от такого источника, осуществляемое с помощью системы диафрагм или оптических систем, состоящих из линз и зеркал, всегда сопровождается потерей энергии. Никакая оптическая система не позволяет получить на поверхности освещаемого объекта мощность излучения большую, чем в самом источнике света.

Рис .7 Спектральные характеристики лазера.

1.9 Индукционные лампы

Индукционная лампа - разновидность безэлектродных ламп, принцип работы которой основан на электромагнитной индукции и газовом разряде для генерации видимого света. Основным отличием от существующих газоразрядных ламп является безэлектродная конструкция - отсутствие термокатодов и нитей накала, что значительно увеличивает срок службы.

Индукционная лампа состоит из трёх основных частей: газоразрядной трубки, внутренняя поверхность которой покрыта люминофором, магнитного кольца или стержня (феррита) с индукционной катушкой, электронного балласта (генератора высокочастотного тока). Возможны два типа конструкции индукционных ламп по виду индукции:

§ Внешняя индукция: магнитное кольцо расположено вокруг трубки.

§ Внутренняя индукция: магнитный стержень расположен внутри колбы.

Два типа конструкции индукционных ламп по способу размещения электронного балласта:

§ Индукционная лампа с отдельным балластом (электронный балласт и лампа разнесены как отдельные элементы).

§ Индукционная лампа с встроенным балластом (электронный балласт и лампа находятся в одном корпусе).

Электронный балласт вырабатывает высокочастотный ток, протекающий по индукционной катушке на магнитном кольце или стержне. Электромагнит и индукционная катушка создают газовый разряд в высокочастотном электромагнитном поле, и под воздействием ультрафиолетового излучения разряда происходит свечение люминофора. Конструктивно и по принципу работы лампа напоминает трансформатор, где имеется первичная обмотка с высокочастотным током и вторичная обмотка, которая представляет собой газовый разряд, происходящий в стеклянной трубке.

Характеристики

§ Длительный срок службы: 60 000 - 150 000 часов(благодаря безэлектродному исполнению срок службы значительно выше, чем у традиционных источников света)

§ Номинальная светоотдача: > 80 лм/Вт

§ Эффективная светоотдача (видимая): 120 - 180 Флм/Вт

§ Высокий уровень светового потока после длительного использования(после 60 000 часов уровень светового потока составляет свыше 70% от первоначального);

§ Энергоэффективность: при одинаковой освещенности потребляет на 30-50% меньше электроэнергии, чем металлогалогенная лампа, на 40-60% - чем натриевая лампа, в 10-13 раз эффективнее, чем лампа накаливания;

§ Отсутствуют термокатоды и нити накала

§ Мгновенное включение/выключение(отсутствует время ожидания между переключениями, что является хорошим преимуществом перед ртутной лампой ДРЛ и натриевой лампой ДНаТ, для которых требуется время выхода на режим и время остывания 5-15 минут после внезапного отключения электросети)

§ Неограниченное количество циклов включения/выключения

§ Высокий индекс цветопередачи (CRI): Ra>80(комфортное освещение, мягкий и естественный излучаемый свет, что благоприятно сказывается на восприятии оттенков цветов, в отличие от натриевых ламп (Ra>30), которым присущ желто-оранжевый оттенок света и неестественная цветопередача);

§ Номинальные напряжения: 120/220/277/347В AC, 12/24В DC

§ Номинальные мощности: 12 - 500 Вт

§ Диапазон цветовых температур: 2700К - 6500К

§ Отсутствие мерцаний: рабочая частота от 190кГц до 250кГц или единицы мегагерц в зависимости от моделей(благоприятные условия для комфортной работы персонала)

§ Низкая температура нагрева лампы: +60 °C - +85 °C

§ Широкий диапазон рабочих температур: ?40 °C ~ +50 °C

§ Возможность диммирования (изменения интенсивности света): от 30% до 100%

§ Высокий коэффициент мощности электронного балласта (л>0,95)

§ Низкие гармонические искажения (THD<5%)

§ Экологичность продукта: специальная амальгама; содержание твердотельной ртути <0,5мг, что значительно меньше, чем в обычной люминесцентной лампе

Применение

Индукционные лампы применяются для наружного и внутреннего освещения, Особенно в местах, где требуется хорошее освещение с высокой светоотдачей и цветопередачей, длительным сроком службы: улицы, магистрали, туннели, промышленные и складские помещения, производственные цеха, аэропорты, стадионы, железнодорожные станции, автозаправочные станции, автостоянки, подсветка зданий, торговые помещения, супермаркеты, выставочные залы, павильоны, учебные заведения. Светотехническое оборудование на индукционных лампах позволяет обеспечить комфортное освещение помещений и территорий благодаря приближенному к солнечному спектру и отсутствию мерцаний, имея при этом высокую энергетическую эффективность.

В настоящее время индукционные лампы как источник общего освещения имеют характеристики лучше, чем традиционные источники света, такие как ртутные, натриевые, металлогалогенные лампы и даже светодиодные лампы (наборы светодиодов, имеющие невысокое качество света, определенную лучистость света, большую зависимость от температуры нагрева кристалла, качества рассеивающих линз и применяемых в основном для декоративной, акцентирующей подсветки; светодиодные светильники в настоящее время не позволяют создать комфортное общее освещение).

Заключение

В начале XIX в. было обнаружено, что выше (по длине волны) красной части спектра видимого света находится невидимый глазом инфракрасный участок спектра, а ниже фиолетовой части спектра видимого света находится невидимый ультрафиолетовый участок спектра. Длины волны инфракрасного излучения заключены в пределах от 3·10-4 до 7,6·10-7 м. Наиболее характерным свойством этого излучения является его тепловое действие. Источником инфракрасного излучения является любое тело. Интенсивность этого излучения тем выше, чем больше температура тела. Инфракрасное излучение исследуют с помощью термопар и болометров. На использование инфракрасного излучения основан принцип действия приборов ночного видения. Длины волн ультрафиолетового излучения заключены в пределах от 4·10-7 до 6·10-9 м. Наиболее характерным свойством этого излучения является его химическое и биологическое действие. Ультрафиолетовое излучение вызывает явление фотоэффекта, свечение ряда веществ (флуоресценцию и фосфоресценцию). Оно убивает болезнетворные микробы, вызывает появление загара и т.д. В науке инфракрасное и ультрафиолетовое излучения используются для исследования молекул и атомов вещества. На экране за преломляющей призмой монохроматические цвета в спектре располагаются в следующем порядке: красный (имеющий наибольшую среди волн видимого света длину волны lк=7,6·10-7 м и наименьший показатель преломления), оранжевый, желтый, зеленый, голубой, синий и фиолетовый (имеющий наименьшую в видимом спектре длину волны lф=4·10 -7 м и наибольший показатель преломления). Итак, спектральный анализ применяется почти во всех важнейших сферах человеческой деятельности. Таким образом, спектральный анализ является одним из важнейших аспектов развития не только научного прогресса, но и самого уровня жизни человека.

Список использованной литературы

1. Физический практикум «Электричество и магнетизм» под редакцией профессора В.И. Ивероновой. Издательство «Наука», М.- 1968г.

2. Д.В. Сивухин, «Общий курс физики. Атомная и ядерная физика. Часть 1. Атомная физика». Издательство «Наука», Москва - 1986г.

3. Н.Н. Евграфова, В.Л. Каган «Курс физики для подготовительных отделений вузов». Издательство «Высшая школа», Москва - 1978г.

4. Б.М. Яворский, Ю.А.Селезнев «Справочное руководство по физике для поступающих в вузы и самообразования». Издательство «Наука», Москва - 1984г.

5. О.Ф. Кабардин «Физика». Издательство «Просвещение», М. - 1991г.


hello_html_7d8ea876.png



















Научные открытия Исаака Ньютона

4 января 1643 года в деревушке Вулсторп в доме недавно скончавшегося фермера Ньютона родился мальчик. Ему дали имя отца – Исаак. Он пришел в мир в тот год, когда во Флоренции предали земле прах Галилея.

Ньютон прожил 85 лет и отличался хорошим здоровьем.

Главные годы жизни Ньютона прошли в стенах колледжа Святой Троицы Кембриджского университета. Он любил одиночество, его голос слышали редко. Он терпеть не мог споров, особенно научных. А размышлять и писать он любил. В своем уединение этот тихий, молчаливый человек совершил переворот в отношениях человека и природы, в нашем миропонимании. Он создал язык классической науки, на котором она думает и говорит уже три века. Гений науки был достойным сыном своего времени. Отстаивая права Кембриджского университета, он один посмел сказать Якову II, что закон выше короля. Новые деньги, отчеканенные Ньютоном в невероятно короткие сроки, способствовали процветанию британской экономики в течение всего XVIII столетия. Старый Исаак Ньютон принимал на Монетном дворе Петра I. Незадолго до смерти сэр Исаак получил известие, что русский царь основал-таки в Петербурге Императорскую Академию наук и художеств. Это тоже можно считать наследием Ньютона.

Читать, писать и считать Ньютон выучился в сельских школах Вулсторпа. Когда Исааку исполнилось 12 лет, дядя Уильям отправил его учиться в бесплатную Королевскую школу в Грантеме. Здесь он изучал латинский язык, закон Божий и начала математики. После школьных занятий Исаак предпочитал проводить время дома. Он мастерил сложные механические игрушки, модели водяных мельниц, самокаты, водяные и солнечные часы. Ньютон увлекался также воздушными змеями, запуская их ночью с бумажными цветными фонарями, а в городе распространялись слухи, что опять появилась комета. В доме аптекаря, где жил Исаак, он получил элементарные сведения по химии и увлекся алхимией. Он проводил много времени в библиотеке, выписывал из книг сведения о правилах рисования пером и красками, о химических опытах, о лекарственных травах и медицинских снадобьях. Все книги были на латинском языке.

Осенью 1660 года директор школы Стокс поселил Ньютона у себя и занялся его подготовкой к Кембриджскому университету. Исаак занимался латынью, учил древнегреческий и французский языки, штудировал текст Библии. Учитель Стокс и дядя Уильям были уверены, что их любимец станет знаменитым богословом. В Грантеме Исаак прочитал книги Джона Уилкинса «Математическая магия» и «Открытие нового мира на Луне». Он узнал о механических машинах, линзах, вечном двигателе для путешествия на Луну, системе мира Коперника и законах Кеплера. Эти две научно-популярные книги разбудили гений Ньютона. Он страстно желал посвятить себя научному познанию как одной из форм служения Богу.

В мае 1661 году Ньютон прибыл в Кембридж, когда прием в университет был уже закончен. Однако, прочитав рекомендательное письмо дяди Уильяма, директор Тринити-колледжа допустил Исаака к экзамену по латыни. Экзамен был сдан, и 18-летнего Ньютона зачислили в студенты колледжа.

Исаак был прилежным студентом: деньги тратил не на пирушки и развлечения, а на инструменты и книги. В 1663 году он приобрел книгу по индивидуальной астрономии. Но она требовала знаний по геометрии и тригонометрии. Тогда Ньютон купил и изучил учебник по евклидовой геометрии. В том же году он увлекся оптическими опытами и прочитал трактат Иоганна Кеплера «Диоптрика». В марте 1664 года в колледже начал читать лекции по математике профессор Исаак Барроу, который сыграл очень важную роль в жизни Ньютона. Лекции Барроу помогли Ньютону разобраться в трудах французского мыслителя Рене Декарта. Он изучил «Геометрию», «Трактат о свете» и «Начала философии» Рене Декарта.

В январе 1665 года Ньютон получил степень бакалавра. К тому времени он имел свою программу исследований в богословии, математике и натуральной философии-физике.

В 1664 году в Англии началась эпидемия чумы. Спасаясь от заразы, жители городов убегали в деревни. В августе 1665 года Тринити-колледж был распущен до лучших времён. Ньютон уехал в Вулсторп, взяв с собой набор лекарственных трав, блокноты, книги, инструменты, призмы, линзы и зеркала. Он пробыл в Вулсторпе до марта 1667 года. За два чумных года Ньютон сделал три своих главных открытия: метод флюксий и квадратур (дифференциальное и интегральное исчисления), объяснение природы света и закон всемирного тяготения. Об удивительном творческом подъёме тех лет он позже вспоминал как о лучшей поре своей жизни. С помощью своего исчисления Ньютон мог быстро находить касательные, площади и объёмы любых сложных фигур, что было актуально для торговли и строительства. Но главное применение его открытий было впереди.

Однажды, закончив опыты, вулсторпский затворник вышел в сад. Был тихий августовский вечер. Стук упавшего яблока опять вернул его к давним размышлениям о законах падения: «Почему яблоко всегда падает отвесно… почему не в сторону, а всегда к центру Земли? Должна существовать притягательная сила в материи, сосредоточенная в центре Земли. Если материя так тянет другую материю, то должна существовать пропорциональность её количеству. Поэтому яблоко притягивает Землю так же, как Земля яблоко. Должна, следовательно, существовать сила, та, которую мы называем тяжестью, простирающаяся по всей Вселенной».

Ньютон вернулся в Кембридж в апреле 1667 года. В октябре того же года его избрали младшим членом колледжа, и он получил небольшую стипендию. В 1668 году Ньютон построил первый отражательный телескоп. Через год он получил должность профессора и кафедру в Тринити-колледже. В его обязанности входило чтение лекций по греческому языку, математике и натуральной философии, которую он читал как курс физики. На его лекции мало кто ходил: они были сложными по содержанию и непривычными по манере изложения. Ньютон не любил пространных рассуждений и примеров. Лишь со временем его лекции стали нормой преподавания науки.

6 февраля 1672 года Ньютон представил Лондонскому королевскому обществу естественных наук доклад «Новая теория света и цветов». Этот мемуар и был переработкой его «Лекций по оптике».

В библиотеке Ньютона было около 100 книг по химии алхимии. В течение 30 лет (с 1666 по 1696 годы) он занимался химическими опытами и металлургией, часто использовал ртуть и к 30 годам стал совсем седым. Сохранился только один химический мемуар Ньютона – «О природе кислот».

В 1680 году Ньютон вернулся к задачам механики и к проблеме тяготения. В тот год появилась яркая комета. Ньютон уже знал, что небесные тела вблизи Солнца должны двигаться по эллипсам, параболам или гиперболам. Лишь обладая такой гипотезой, можно было построить по нескольким наблюдениям пространственный путь кометы, так как наблюдают ведь только направление на комету, но не расстояние до неё. Ньютон лично провёл наблюдения и первым в астрономии построил и начертил орбиту кометы. Путь кометы 1680 года оказался параболой, что подтвердило теорию тяготения Ньютона. В 1687 году вышла книга Ньютона «Математические начала натуральной философии» - величайшая из книг о природе, сравнимая по своей культурно-исторической значимости, может быть, только с Библией.

«Начала» написаны в стиле Евклида, и главная их цель – доказать, что закон всемирного тяготения следует из наблюдаемого движения планет, Луны и земных тел, которое анализируется с помощью ньютоновских принципов динамики.

В 1694 году Чарлз Монтегю, друг Ньютона, был назначен канцлером казначейства (пост, равный по статусу министерскому) и пригласил Ньютона на должность смотрителя Монетного двора с 600 фунтами годового жалованья. Монтегю рассчитывал на его познания в металлургии и механике в связи с подготовкой финансовой реформы. Ньютон принял предложение и перебрался в Лондон. Он быстро разобрался в работе Монетного двора и организовал её так, что скорость чеканки увеличилась в восемь раз. Ньютон столкнулся с политическими дрязгами, забастовками служащих Монетного двора. На него писали доносы, ему предлагали взятки. Однако в эпоху всеобщей коррупции он строго и честно выполнял свои обязанности. Перечеканка закончилась в 1699 году, и денежная реформа за неделю была совершена в Лондоне. Благодаря этому успеху Ньютон получил должность главного директора Монетного двора.

В 1703 году Ньютона избрали президентом Лондонского королевского общества. Он отметил своё избрание тем, что подарил Обществу новый прибор – солнечную печь. Она состояла из системы линз и, фокусируя солнечные лучи, могла плавить металлы. Но был и другой подарок. В 1704 году опубликована вторая книга – «Оптика». В отличие от «Начал», написанных на латыни, «Оптика» написана по-английски. Ньютон хотел, чтобы его книга была доступна как можно большему кругу читателей.

«Оптика» состоит из трёх разделов. Первый раздел посвящён геометрической оптике и описанию состава белого света. Во втором рассматриваются опыты с цветами тонких плёнок, в третьем описаны явления дифракции (огибания светом препятствий).

В апреле 1705 года королева Анна посвятила Ньютона в рыцари.

В 1722 году у Ньютона начались старческие болезни, но он продолжал находиться на посту президента Общества и руководить Монетным двором. Он готовил текст «Начал» к новому изданию и пробовал опять заняться движением «строптивой» Луны, в котором оставалось много неувязок с теорией. В 1726 году он выпустил третье издание «Начал».

В ночь на 31 марта 1727 года на 85-м году жизни Ньютон тихо скончался.

Исаак Ньютон был торжественно похоронен в Вестминстерском аббатстве. На могильной плите высечены знаменательные слова: Здесь покоится Сэр Исаак Ньютон, который почти божественной силой своего ума впервые объяснил помощью своего математического метода движение и формы планет, пути комет, приливы и отливы океана. Он первый исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, которых до того времени никто даже не подозревал. Прилежный, проницательный и верный истолкователь природы, древностей и Священного Писания. Он прославил – в своем учении всемогущего Творца. Требуемую Евангелием простоту он доказал своей жизнью. Пусть смертные радуются, что в их среде жило такое украшение человеческого рода.


















Оглавление



1.Введение

.Основная часть

.1 История развития учения о трении

.2 Трение скольжения

.3 Трение покоя

.4 Трение качения

.5 Способы уменьшения трения

.6 Вредное и полезное трение

.7 Формула Эйлера

.8 Конус трения

.9 Любознательное трение

.10 Трение в жизни растений и животных

.11 Мир без трения

Заключение

Список литературы




1. Введение



В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем. Среди всех изучаемых предметов физика является одних из тех, которые вызывают у меня большой интерес. Я хочу повышать и совершенствовать свои знания в этой трудной, но увлекательной науке. Учебно-исследовательская реферативная деятельность дает мне такую возможность.

Трение, хотя и изучается в 7 классе, остается одним из самых трудных вопросов естествознания. В работе я описываю виды трения и причины возникновения каждого из них.

В исследовании собраны данные о новых открытиях в этой области и о применении этих открытий. Особый интерес представляет раздел «Трение в живой природе». Как мудро всё устроено в нашем мире! Каждое животное использует силу трения для того, чтобы быстрее двигаться, крепче держать добычу. При этом решая важную задачу его регулирования. Ведь трение не всегда наш помощник, во многих случаях с ним приходится бороться. Много собрано интересного материала по всем разделам представленной работы.

Трение встречается буквально на каждом шагу, без него и шага не сделаешь. Держу ручку в руке - трение, стоят на столе всякие предметы, не соскальзывают - трение; гвозди держат полку с книгами, не вылезают из стены - трение. Куда не бросишь свой взгляд, кругом трение, трение, трение...

Трение поругивают, когда оно препятствует движению, похваливают, когда трение способствует движению. К трению привыкли за 400 лет (со времени его открытия), увеличивают или уменьшают его, когда это необходимо, и не удивляются самому факту существования трения везде и всюду, во всех явлениях природы.

Почему с сумками в руках по скользкой дороге идти легче? Почему звучит скрипичная струна, когда по ней ведут смычком? Ведь смычок движется, а колебания струны периодические. Почему бегуны-спринтеры бегают в шиповках, а стайеры - в мягкой обуви (а то и босиком!)? Сухое мыло не выскальзывает из сухих рук, а мокрое из мокрых частенько. Почему?

Ответы на все эти и многие другие важные вопросы, связанные с движением тел, дают законы трения.

В своей работе я попытаюсь разобраться в причинах трения и способах его изменения. Главной своей задачей ставлю раскрыть тайны знакомой нам с детства силы трения




2. Основная часть



2.1 История развития учения о трении



Впервые попытки осмыслить природу трения были сделаны Аристотелем). Опираясь на наблюдаемые факты, он отмечал, что любое, в том числе равномерное, перемещение реальных тел в горизонтальной плоскости всегда встречает внешнее сопротивление, причем это сопротивление зависит от веса тела.

Открытие Галилеем в конце XVI века закона инерции и понятия о массе тела позволило четко разграничить сопротивление движению, вызываемое инерцией и возникающее лишь при изменении скорости, от сопротивления внешней среды, которое имеется и при постоянной скорости и вызвано силами внешнего трения.

Значительный вклад в изучение причин трения внес Леонардо да Винчи. Обосновывая невозможность создания вечного двигателя, одной из причин этого он считал трение. Леонардо да Винчи впервые ввел понятие коэффициента трения, показал, что сила трения зависит от материала соприкасающихся поверхностей, от качества их обработки, прямо пропорциональна нагрузке и может быть уменьшена путем установки роликов или введения смазки между поверхностями трения. Он является изобретателем роликового и шарикового подшипников.

Первые исследования трения, о которых мы знаем, были проведены Леонардо да Винчи примерно 500 лет назад. Он измерял силу трения, действующую на деревянные параллелепипеды, скользящие по доске, причём, ставя бруски на разные грани, определял зависимость силы трения от площади опоры. Но работы Леонардо да Винчи стали известны уже после того, как классические законы трения были вновь открыты французскими учёными Амонтоном и Кулоном в XVII - XVIII веках

В 1699 г. француз Амонтон (рис. 1) впервые сформулировал знаменитый эмпирический закон линейной зависимости силы трения от нагрузки:



Рис. 1. Амонтон Гийом.

= µN,



где µ - коэффициент трения;- нормальная к плоскости трения нагрузка.

Высказанная Амонтоном идея, объясняющая природу трения, как подъем одного тела по неровностям другого разделялась многими крупными ученными вплоть до конца XVIII в.

Большую роль в дальнейшем развитии представлений о трении сыграл Л. Эйлер (рис. 2), первый убедительно объяснивший (в 1750 г.) причину того факта, что сопротивление при переходе от состояния покоя к относительному движению всегда больше, чем сопротивление скольжению при тех же условиях.




Рис. 2. Леонард Эйлер.



Создателем науки о трении по праву считается великий французский ученый Шарль Кулон (рис. 3).



Рис. 3. Шарль Кулон.



В своем труде "Теория простых машин" (1781 г.) он охватил основные аспекты трения: сопротивление скольжению, сопротивление качению и сопротивление страгиванию. Кулон был первым, кто понял, что трение обусловлено множеством факторов (нагрузкой, скоростью скольжения, материалом трущихся деталей, шероховатостью их поверхностей и др.). Исследуя трение качения, Кулон впервые вывел формулу сопротивления перекатыванию:



где k- коэффициент трения качения, имеющий размерность длины;

Р- вес свободно катящегося цилиндра радиусом R.

Эта классическая формула используется и сейчас, хотя предпринимались многочисленные попытки ее опровергнуть. Несмотря на фундаментальный вклад Кулона в теорию трения, он игнорировал энергетический и тепловой аспекты этого явления, без которых механизм трения понять невозможно.

Первым ученым, доказавшим, что механическая энергия при трении не исчезает, а превращается в тепло, был англичанин Бенжамин Томпсон (Рис. 4) .

Наблюдая за сверление пушечных стволов, он пришел к выводу, что сильный нагрев заготовок есть прямой результат перехода подводимой к сверлу механической энергии в тепловую вследствие интенсивного трения инструмента о металл.



Рис. 4. Бенжамин Томпсон.



Итак, вот классические законы трения, открытые французскими учёными Амонтоном и Кулоном в XVII - XVIII веках:

. Величина силы трения F прямо пропорциональна величине силы нормального давления N тела на поверхность, по которой движется тело, т.е.

= µ N;



. Сила трения не зависит от площади контакта между поверхностями;

. Коэффициент трения зависит от свойств трущихся поверхностей;

. Сила трения не зависит от скорости движения тела.

Дальнейший вклад в энергетические аспекты теории трения был сделан Майером (1842 г.), Джоулем (1843 г.), Гельмгольцем (1847 г.). Тогда же ( в середине XIX в.) были высказаны и первые предположения об адгезионной природе трения (адгезия - сцепление, слипание поверхностей прижатых друг к другу тел). Исследование роли адгезионных связей в трении получило дальнейшее развитие в различных физических теориях трения в 30-40-х годах XX в. (советские ученые В.Д. Кузнецов, Б.В. Дерягин, англичанин Д.А. Томлинсон и др.). В течение многих лет выдвигались и обосновывались различные гипотезы и модели трения. Однако оказалось, что познать в известном смысле сложную и сверхсложную систему (явление) -- это значит разумно упростить ее, сохраняя все необходимые и достаточные факторы.

Таким выдающимся упрощением явилась модель дискретного контактирования твердых тел при трении и гипотеза о двойственной природе фрикционного контакта твердых тел. В 50-60-х годах XX в. И.В. Крагельским, Ф. Боуденом и Д. Тейбором на основе этой модели была создана современная молекулярно-механическая теория трения. На сегодняшний день важнейшим итогом развития этой теории является четкая картина процессов трения и износа твердых тел, охватывающая физические (включая механические) и химические сопутствующие явления.

Давайте рассмотрим три вида трения: трение скольжения, трение покоя, трение качения.




.2 Трение скольжения



Начнем с трения скольжения. Что же такое трение скольжения? Трение скольжения - это сила, возникающая при поступательном перемещении одного из контактирующих тел относительно другого и действующая на это тело в сторону, противоположную движению (рис. 5).



Рис. 5. Трение скольжение.



Трение - следствие многих причин, но основными из них являются две.

Во-первых, поверхности тел всегда неровны, и зазубрины одной поверхности цепляются за шероховатости другой (рис. 6) Это так называемое геометрическое трение. (Даже самые гладкие на глаз поверхности оказываются под микроскопом шероховатыми, с впадинами и выступами.)



Рис. 6. Геометрическое трение.




Во-вторых, трущиеся тела очень близко соприкасаются друг с другом (рис. 7), и на их движении сказывается взаимодействие молекул (молекулярное трение).



Рис. 7. Молекулярное трение.



Поэтому формулу для силы трения можно написать так: F=?N+?S.

В этой формуле ? и ? - постоянные коэффициенты, N - сила нормального давления, a S - площадь контакта трущихся тел. Так как площадь контакта не очень мала, деформации соприкасающихся тел ничтожны.

Приведенная формула сложна, и поэтому инженеры в своих расчетах пользуются более простой формулой:

=µN.



Она читается так: сила трения пропорциональна силе нормального давления. Коэффициент пропорциональности µ называется коэффициентом трения.

Закон F=µN становится неверным тогда, когда сила нормального давления или скорость движения велики. В этом случае выделяется слишком много тепла, что сказывается на трении.

Трение объясняется двумя причинами: неровностями трущихся поверхностей тел и молекулярным взаимодействием между ними. Если выйти за пределы механики, то следует сказать, что силы трения имеют электромагнитное происхождение, как и силы упругости. Каждая из указанных выше двух причин трения в разных случаях проявляет себя в разной мере. Например, если соприкасающиеся поверхности твердых трущихся тел имеют значительные неровности, то основная слагаемая в возникающей здесь силе трения будет обусловлена именно данным обстоятельством, т.е. неровностью, шероховатостью поверхностей трущихся тел.

Если соприкасающиеся поверхности твердых трущихся тел отлично отшлифованы и гладки, то основная слагаемая возникающей при этом силы трения будет определяться молекулярным сцеплением между трущимися поверхностями тел.



2.3 Трение покоя



Сухое трение имеет ещё одну существенную особенность: наличие трения покоя. В жидкости или газе трение возникает только при движении тела, и тело можно сдвинуть, приложив к нему даже очень маленькую силу. Однако при сухом трении тело начинает двигаться только тогда, когда проекция приложенной к нему силы F на плоскость, касательную к поверхности, на которой лежит тело, станет больше некоторой величины (рис. 8). Пока тело не начало скользить, действующая на него сила трения равна касательной составляющей приложенной силы и направлена в противоположную сторону.



Рис. 8. Трение покоя.



Попробуйте сдвинуть книгу, лежащую на столе. Для этого потребуется некоторое усилие. И если на книгу нажать слишком слабо - она не тронется с места. Ей мешает двигаться сила трения между нижней обложкой книги и столом. Эта сила трения препятствует твёрдым телам приходить в движение. Поэтому она называется силой трения покоя. С какой бы стороны вы ни нажимали на книгу, сила трения покоя препятствует началу скольжения книги. Сила трения покоя направлена всегда против направления "сдвигающей" силы (рис. 9)



Рис. 9. Трение покоя препятствует скольжению.



Итак, сила трения покоя всегда равна по величине внешней силе, действующей на тело, и направлена в противоположную сторону. Чем больше приложенная к покоящемуся телу сила, тем больше сила трения покоя! Существует максимальная сила трения покоя, превышая которую мы замечаем, что тело сдвинулось с места (рис. 10).



Рис. 10. Максимальная сила трения покоя.



Для того чтобы сдвинуть тело с места, к нему нужно приложить большую силу, чем для того, чтобы тащить тело, т.е. максимальная сила трения покоя больше силы трения скольжения.

Однако, во многих случаях приближенно максимальную силу трения покоя можно считать равной силе трения скольжения.. Эта модель силы сухого трения применяется при решении многих простых физических задач .



2.4 Трение качения



Давайте рассмотри третий вид трения. Это трение качения. Сила трения качения определяется как сила, необходимая для равномерного прямолинейного качения тела по горизонтальной плоскости. Опытом установлено, что сила трения качения вычисляется по формуле:





где F-сила трения качения; к-коэффициент трения качения; Р-сила давления катящегося тела на опору и R-радиус катящегося тела.

Из практики очевидно, из формулы ясно, что чем больше радиус катящегося тела, тем меньшее препятствие оказывают ему неровности поверхности опоры.

Заметим, что коэффициент трения качения, в отличие от коэффициента трения скольжения, именованная величина и выражается в единицах длины (обычно в см).

Трение качения обусловлено деформациями.

Поставим колесо на дорогу, приложим к нему силу тяжести G, нормальную силу N со стороны дороги и будем давить на ось колеса силой P, пытаясь сдвинуть (рис. 11).



Рис. 11. Приложение силы к колесу, поставленному на дорогу.



Мешает ли теоретически нам что-нибудь? Да нет! Получается парадокс - выходит, при качении нет никакого сопротивления? Но заметьте, что мы совершенно не учли деформацию колеса, оно у нас как бы «абсолютно твердое», тверже алмаза. Тогда, конечно, сопротивления нет. Поэтому, чтобы уменьшить сопротивление трению качения, колеса и дорогу делают из очень твердых материалов - не алмаза, конечно, а например, из стали. Железнодорожные колеса имеют сопротивление в несколько раз меньше, чем автомобильные, более мягкие.

Что же происходит с «мягким» колесом при его движении? В контакте с дорогой его немного расплющивает, и из-за гистерезиса (неупругих потерь, которые всегда есть в любом упругом теле при его деформациях) сила давления дороги N чуть смещается вперед по движению (рис. 12).




Рис. 12. «Мягкое» колесо при движении.



Вот и появилось плечо силы a, которое надо преодолевать, а значит, и трение качения! Чем больше диаметр колеса и чем тверже оно (при твердой дороге), тем меньше оно сопротивляется качению.

Вот почему у вездеходов большие колеса, а у поездов и трамваев они такие твердые. Легковому автомобилю, к сожалению, нельзя позволить себе ни того, ни другого. Если колеса будут слишком большими, как у старинных велосипедов, например, автомобиль станет уродливым, с трудом сможет поворачивать, колеса будут излишне тяжелыми. Ну а вот твердыми их тоже сделать нельзя, они будут резать асфальт, как сошедший с рельсов трамвай, а если не резать, то тряска будет невозможной - мягкие шины «демпфируют» вибрации от неровностей дороги. Вот и приходится идти на компромисс!

Но почти во всех случаях трение качения меньше трения скольжения. Сухого, заметьте. С жидкостным трением многое обстоит иначе. Поэтому еще с древних времен пытались поставить тяжелые предметы на катки, а потом и на колеса. Это делали даже древние египтяне.

Обратимся теперь к рисунку. На нем приведены различные коэффициенты трения скольжения и качения. Надпись "сталь/чугун" означает: коэффициент трения стали по чугуну". Для трения скольжения материалы можно поменять местами, значение коэффициента не изменится. А вот для коэффициента трения качения это не так. Например, колесо из стали испытывает большее сопротивление качения по дереву, чем наоборот. И это понятно. Колесо из дерева практически не вдавливается в твердую сталь, поэтому сопротивление качения в этом случае в пять раз меньше, чем когда колесо из стали катится по деревянному настилу.

Рассматривая рисунок, вы найдете много других сведений для сопоставления и размышления (таблица 1).



Таблица 1.



В гонках участвует далеко не каждый, а вот ездить на автомобиле, мотоцикле, велосипеде приходится очень многим. Как лучше тормозить, если перед вами возникает препятствие?

На поставленный вопрос отвечает вот такой график (рис. 14).



Рис. 14. Торможение.



Если вы тормозите скольжением, намертво зажимая колеса (так называемый юз), то тормозной путь будет длиннее, чем при торможении качением (колеса заторможены, но проворачиваются), зато скорость вначале падает более резко. Поэтому при опасности наезда надо всегда тормозить юзом. Лучше ударить с меньшей скоростью, так как энергия удара пропорциональна квадрату скорости. Во всех остальных случаях надо тормозить качением: и тормозной путь будет короче, и шины меньше изнашиваются.



.5 Способы уменьшения трения

трение закон скольжение качение

В технике для уменьшения влияния сил сухого трения между поверхностями вводят смазку (вязкую жидкость, создающую тонкий слой между твёрдыми поверхностями).

Влияние смазки заключается в том, что между трущимися поверхностями вводится слой вязкой жидкости, которая заполняет все неровности поверхностей и, прилипая к ним, образует два трущихся слоя жидкости (рис. 15)




Рис. 15. Влияние смазки.



Поэтому вместо трения двух твердых поверхностей при смазке возникает внутреннее трение жидкости, которое значительно меньше внешнего трения двух твердых поверхностей. Применение смазочных масел уменьшает трение в 8-10 раз. Типичный пример значения смазки представляет бег конькобежца на коньках. В результате действия силы со стороны конькобежца на нож конька снег тает и под коньком появляется вода, которая вновь замерзает, после того как пробежал конькобежец и исчезло давление. Однако в механизмах вода для смазки не годится, поскольку вследствие малой вязкости она выдавливалась бы из зазора неровностей между трущимися поверхностями.

Во всех машинах есть одна общая черта: в любой из них что-нибудь обязательно вращается. И везде есть неразлучная пара - ось и её подпорка - подшипник

Поскольку силы трения качения значительно меньше сил трения скольжения, то в машинах и механизмах в большинстве случаев подшипники скольжения заменяют подшипниками качения (рис. 16).




Рис. 16. Подшипник.



Подшипник состоит из двух колец. Одно из них - внутреннее - плотно насажено на ось и вращается вместе с ней. Другое - наружное кольцо - неподвижно зажато между основанием и крышкой подшипника.

Эти кольца - обоймы имеют на обращенных друг к другу поверхностях выточенные канавки. Между обойм находятся стальные шарики. При кручении подшипника шарики катятся по канавкам в обоймах.

Чем лучше отполированы поверхности дорожек и шариков, тем меньше трение. Чтобы шарики не сбегались в одну кучу, их разделяет сепаратор. Сепараторы обычно делаются пластиковые, стальные или бронзовые.

При вращении в таком подшипнике появляется трение качения. Потери на трение в шариковом подшипнике раз в 20-30 меньше, чем в подшипнике скольжения! Подшипники качения делают не только с шариками, но и с роликами разной формы. Без подшипников качения современная промышленность и транспорт были бы невозможны.

В настоящее время широко применяется такой способ уменьшения трения при движении транспортных средств, как воздушная подушка.

Воздушная подушка (рис. 17) - это слой сжатого воздуха под транспортным средством, который приподнимает его над поверхностью воды или земли. Слой сжатого воздуха создаётся вентиляторами. Отсутствие трения о поверхность позволяет снизить сопротивление движению. От высоты подъёма зависит способность такого судна двигаться над различными препятствиями на суше или над волнами на воде.













Рис. 17 Воздушная подушка.



Схема работы судна с воздушной подушкой: 1 - маршевые винты; 2 - поток воздуха; 3 - вентилятор; 4 - гибкая перепонка (юбка).

Первым идею подобной машины на воздушной подушке высказал К.Э. Циолковский в 1927 году, в работе «Сопротивление воздуха и скорый поезд». Это бесколесный экспресс, который мчится над бетонной дорогой, опираясь на воздушную подушку - слой сжатого воздуха.



2.6 Вредное и полезное трение



Трение может быть как вредным так и полезным.

Иногда трение - «вред»!

Трение тормозит движение; на преодоление трения всех видов расходуется громадное количество ценного топлива. Трение вызывает износ трущихся поверхностей: стираются подошвы, шины автомобилей, детали машин. Вредное трение стараются уменьшить.

Но иногда в трении - польза!

В каких-то случаях отсутствие трения грозит большими неприятностями (например, торможение автомобилей происходит только за счет сил трения, возникающих между колодками и барабаном), его стараются увеличить, например, при ходьбе в гололед.

В повседневной жизни силы трения так же играют как положительную, так и отрицательную роль, причем их проявления разнообразны. На использовании статического трения основаны скрепление деталей при помощи гвоздей, движение человека и автомобиля по земной поверхности. Можно представить, какие возникли бы трудности при ходьбе, если бы не существовало сил статического трения (например, при гололеде). Вообще говоря, если бы не было сил трения, невозможно было бы удержать любой предмет в руке. Во многих случаях роль сил трения наоборот отрицательна. Трение со временем разрушает движущиеся детали, поэтому чем больше их в механизме, тем он менее долговечен.

Но бывают исключения, когда даже если сила трения вредно, но не повреждает предмет или как то ему мешает. Такое исключение песочные часы (рис. 18).



Рис. 18. Песочные часы.



Таким образом, трение бывает в каких-то случаях полезным, а в каких-то вредным!



.7 Жюль-верновский силач и формула Эйлера



А как увеличить трение в 5, 10… 100 раз? Можно, оказывается, и это. Нужно только обмотать один трущийся предмет о другой, например, веревку о вал или опору. Так делают, когда закрепляют корабли на пристанях, обматывая канат вокруг кнехтов - столбиков на причале. Влияние навивки на силу трения просто поразительное!

Вы помните у Жюля Верна силача-атлета Матифу? «Великолепная голова, пропорциональная исполинскому росту; грудь, похожая на кузнечный мех; ноги - как хорошие брёвна, руки - настоящие подъёмные краны. С кулаками, похожими на молоты…» Вероятно из подвигов этого силача, описанных в романе «Матиас Стандорф», вам памятен поразительный случай с судном «Трабоколо», когда наш гигант силой могучих рук задержал спуск целого корабля.

Вот как рассказывает романист об этом подвиге:

«Судно, освобождённое уже от подпорок, которые поддерживали его по бокам, было готово к спуску. Достаточно было отнять швартов, чтобы судно начало спускаться вниз. Уже с полдюжины плотников возились под килем судна. Зрители с живым любопытством следили за операцией. В этот момент, обогнув береговой выступ, появилась увеселительная яхта. Чтобы войти в порт, яхта должна была пройти перед верфью, где подготовляли спуск «Трабоколо», и, как только она подала сигнал, пришлось, во избежание всяких случайностей, задержать спуск, чтобы снова приняться за дело после прохода яхты в канал. Если бы суда, - одно, стоявшее поперёк, другое, подвигающееся с большой быстротой, - столкнулись, яхта погибла бы.

Рабочие перестали стучать молотками. Все взоры были устремлены на грациозное судно, белые паруса которого казались позолоченными в косых лучах Солнца. Скоро яхта очутилась как раз против верфи, где замерла тысячная толпа любопытных. Вдруг раздался крик ужаса: «Трабоколо» закачалось и пришло в движение в тот самый момент. Когда яхта повернулась к нему штирбортом! Оба судна готовы были столкнуться, не было ни времени, ни возможности помешать этому столкновению. «Трабоколо» быстро скользило вниз по наклону… Белый дымок, появившийся вследствие трения, закрутился перед его носом, тогда как корма погрузилась уже в воду бухты.

Вдруг появился человек, схватывает швартов, висящий у передней части «Трабоколо», и старается удержать его, пригнувшись к земле. В одну минуту он наматывает швартов на вбитую в землю железную трубу и, рискуя быть раздавленным, держит с нечеловеческой силой в руках канат в продолжение 10 секунд. Наконец швартов обрывается. Но этих 10 секунд было достаточно: «Трабоколо», погрузившись в воду, только слегка задело яхту и пронеслось вперёд.

Яхта была спасена. Что касается человека, которому никто не успел даже прийти на помощь, - так быстро и неожиданно всё произошло, - то это был Матифу!»

Как бы изумился автор романа, если бы ему сказали, что для совершения подобного подвига не нужно вовсе быть великаном и обладать, как Матифу, «силою тигра». Каждый находчивый человек мог бы сделать то же самое!

Механика учит, что при скольжении каната, навитого на тумбу, сила трения достигает большой величины. Чем больше число оборотов каната, тем трение больше; правило возрастания трения таково, что, с увеличением числа оборотов в прогрессии арифметической, трение растёт в прогрессии геометрической. Поэтому даже слабый ребёнок, держа за свободный конец каната, 3-4 раза навитого на неподвижный вал, может уравновесить огромную силу.

На речных пароходных пристанях подростки останавливают этим приёмом подходящие к пристаням пароходы с сотней пассажиров. Помогает им не феноменальная сила их рук, а трение верёвки о сваю.

Знаменитый математик XVIII века Эйлер установил зависимость силы трения от числа оборотов верёвки вокруг сваи. Для тех, кого не пугает сжатый язык алгебраических выражений, приводим эту поучительную формулу Эйлера:





Здесь F1 - та сила, против которой направлено наше усилие F0. Буквой e обозначено число 2,718… (основание натуральных логарифмов), µ - коэффициент трения между канатом и тумбой. Буквой ? обозначен «угол навивания». Например, если верёвка обвита вокруг трубы один раз, то «угол навивания» ?=2?= =2×3,14=6,28радиан.





Эта формула выведена великим Эйлером. По этой формуле легко рассчитать, зная коэффициент трения, что если бы Матифу обмотал канат вокруг трубы всего 3 раза, то уменьшил бы натяжение каната в 500 раз! Тут и ребенок мог бы удержать его: даже если судно, съезжая со стапелей, натягивало канат с силой F1 = 50 кН, то на Матифу пришлось бы всего 100 Н(10кг).



2.8 Конус трения



Пусть тело веса Р движется под действием силы Т по шероховатой поверхности С одной стороны, поверхность не позволяет телу падать вниз под действием силы тяжести Р. С другой стороны, поверхность мешает свободному перемещению тела под действием силы Т. Таким образом, сила трения F так же, как и нормальная реакция, вызвана к жизни поверхностью, т. е. сила трения - это тоже реакция. Нормальная реакция и сила трения складываются в полную реакцию R, которая отклонена от нормали на угол ?. Этот угол называется углом трения. С помощью рис. легко вычислить, чему равен тангенс угла трения tg?=F/N=µN/N=µ, т. е. тангенс угла трения численно равен коэффициенту трения.

Теперь представьте себе, что вы вращаете полную реакцию вокруг нормали к поверхности. В этом случае сила R описывает конус, который называется конусом трения. Он интересен тем, что область, ограниченная конусом трения, определяет область равновесия для тела: если сила действует на тело внутри конуса трения, она не сдвинет тело, как бы велика ни была; если сила действует на тело вне конуса трения, она сдвигает тело, как бы мала ни была (рис. 19).



Рис. 19. Конус трения.



Давайте посмотрим, почему так происходит (Рис. 20).



Рис. 20. Конус трения.




Если сила Q действует внутри конуса трения, то сдвигающая сила Q1=Qsin?. Вычислим силу трения:



F=µN=µQcos?=Qcos?tg?.



Запас прочности F-Q1=Q(cos? tg?-sin ?) = Qsin(?-?)/cos?. Таким образом, запас прочности пропорционален Q, так как sin(?-?)/cos? - постоянная величина. Чем больше сила Q, тем больше удерживающая сила F-Q1.

Уметь строить конус трения нужно вот почему.

Однажды в Мюнхене рухнул мост, и виноват в этом был не ураганный ветер, не полк идущих в ногу солдат, а... конус трения.

Этот мост одним своим концом был закреплен при помощи шарнира, а другим - положен на катки (рис. 21). Мост всегда крепят таким образом, чтобы он не покривился при колебаниях температуры. Шарнир был заполнен пастой, предохранявшей его от коррозии. В жаркий летний день паста растопилась, и вязкость ее стала меньше. Характер трения изменился - оно также уменьшилось. Конус трения сузился, и сила давления на опору вышла за пределы конуса.



Рис. 21. Мост в Мюнхене.



Равновесие нарушилось, и мост рухнул. Инженерам часто приходится строить конус трения, чтобы определить, будет ли находиться в равновесии данная конструкция или нет. Но с конусом трения имеют дело не одни только инженеры. Каждый из нас ежедневно сталкивается с этим физическим явлением.

Чтобы пробраться к выходу в переполненном автобусе или троллейбусе, приходится извиваться ужом. Делаем мы это бессознательно, не задумываясь, что таким образом мы выходим из конусов трения в местах касания с другими пассажирами.

Катаемся ли мы на коньках, идем ли на работу, переворачиваем ли страницу в книге - всюду мы сталкиваемся с трением и, в частности, с конусом трения.



2.9 Любознательное трение



С трением связанно очень много интересных вещей и событий. Я хочу рассказать вам о некоторых из них. В конце прошлого века английский промышленник Гарвей прислал в Россию образцы новых броневых плит для защиты кораблей. На испытаниях снаряды тяжелых орудий вместо того, чтобы разбивать плиты, сами разбивались о броню, не принося вреда тому, что могло скрываться за ней. Но вот русские попросили повторить испытания. И снаряды начали разбивать броневые плиты (а позже и пробивать в них отверстия рис. 22).



Рис. 22. Снаряд, пробивающий броневые плиты.




Теперь снаряды были снабжены специальными колпачками из мягкой стали. Колпачок расплющивался, плавился и , с одной стороны, мешал снаряду расколоться, а с другой - служил своеобразной смазкой при его прохождении через броневую плиту.

Изобретателем колпачка был русский ученый и моряк адмирал Макаров.

Когда-то чтобы добыть огонь, люди брали острую деревянную палочку, упирали её в деревянный брусок и быстро вращали (рис. 23). При достаточном упорстве через некоторое время в месте трения появлялся дым, начиналось тление и возгорание образовавшихся опилок и подложенного, например, сухого мха. Частые неудачи при извлечении огня трением дерево о дерево объяснялись недостаточной сухостью древесины.



Рис. 23. Добыча огня.



Точно известно, что такой способ применялся австралийцами, а также индейцами Южной Америки. При этом способе добычи огня зачастую один человек сменял другого, но вращение не прекращалось, пока не добивались успеха.

Можно видоизменить немного этот способ, использовав небольшой лук, и обернув тетиву вокруг вращаемой палочки.

Другой способ добывание огня - высекание искр, и тоже сопровождается треним! Можно получать огонь, нанося по твердому камню удары каким-нибудь металлическим предметом, например, ножом. Такое устройство по извлечению огня существовало с древних времен и позднее стало называться "огниво" (рис. 24).



Рис. 24. Огниво.



Огниво - это приспособление для получения огня, широко применявшееся до появления спичек. Оно состоит из кресала, "кремня"и трута. Сноп высекаемых при ударе кремня о кресало искр воспламеняет трут.

Кресало (от слова «резать») представляет собой полоску стали с насечкой, необходимой для откалывания от кремня мелких частиц. При этом температура повышается до 900-1100°С, и разогретые частицы воспламеняются. Это похоже на шлифование стального предмета на точильном камне, когда вокруг образуется сноп искр.

Впоследствии кресало превратилось в колесико с насечкой, которое нашло свое применение сначала в огнестрельном оружии, а затем в зажигалке (рис. 25).



Рис. 25. Колесико с насечкой используемое в зажигалке.



А первые спички были изобретены в 1830 году 19-летним французским химиком Шарлем Сориа. Это были фосфорные спички. Эти спички загорались даже от взаимного трения в коробке и при трении о любую твёрдую поверхность, например, подошву сапога. Эти спички не имели запаха, но были вредны для здоровья, так как белый фосфор очень ядовит.

В 1855 году шведский химик Лундстрем начал использовать для производства спичек безвредный красный фосфор. Такие спички легко зажигались о заранее приготовленную поверхность и практически не самовоспламенялись. Первая «шведская спичка» Лундстрема дошедшая практически до наших дней (рис. 26).



Рис. 26. «Шведская спичка».



Для пьедестала памятника Петру Первому в Санкт-Петербурге была использована монолитная гранитная глыба весом 80 тыс. пудов .

Обнаружена эта глыба была местным крестьянином Вишняковым. Глыбу называли Гром камнем, так как в него однажды ударила молния, отбив большой осколок Доставили ее в Петербург с берега Финского залива из деревни Лахти. Как же в XVIII веке, не имея ни мощных тягачей, ни подъемных кранов, люди могли совершить такое чудо? Около 9 км пропутешествовал Гром-камень по суше, а потом по Неве на плотах был доставлен в Петербург. Это событие было отмечено особой медалью, на которой была вычеканена надпись: «Дерзновению подобно, 1770 год». Вся Европа только и говорила об этой невиданной операции, какой не повторялось со времен перевозки в древний Рим египетских памятников.

Как же это было сделано?

Невиданный проект передвижения Гром-камня дал кузнец из казенных мужиков, оставшийся, к сожалению, неизвестным. Он предложил перекатить камень на специально отлитых бронзовых шарах, заключенных в салазки. Салазки представляли собой большие бревна с выдолбленными вдоль них желобами, обитыми внутри медью (рис. 27).



Рис.27. Передвижение Гром-камня.



Гранитную глыбу поместили на помост из нескольких рядов плотно уложенных бревен, под которым находились желоба с шарами. Согнанные из ближайших деревень крестьяне при помощи канатов и воротов двигали камень к берегу. Несколько мужиков должны были все время смазывать шары говяжьим салом и переставлять их вперед. 120 дней путешествовал так по суше Гром-камень.

Доставленный в Петербург и обработанный мастерами-каменотесами, он стал прекрасным пьедесталом памятника Петру (рис. 29).



Рис. 30. Памятник Петру I.



Американские астронавты члены экипажа «Аполлон-12» Ч. Конрад и А. Бин рассказывали, что по Луне ходить легко, но они часто теряли равновесие, так как даже при легком наклоне вперед можно было упасть. Устойчивость ходьбы человека определяется силой трения между подошвой обуви и почвой. Поскольку сила тяжести на Луне в шесть раз меньше, чем на Земле, то и сила трения тоже уменьшается в шесть раз, а сила мышц такая же, как и на Земле. Это все равно, что на Земле стать в шесть раз сильнее. Ходьба сразу превратится в прыжки, и устойчивость потеряется (рис. 31).



Рис. 31. Астронавт на Луне.



2.10 Трение в жизни растений и животных



В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и другие вьющиеся растения благодаря трению могут цепляться за находящиеся поблизости опоры, удерживаются на них и тянутся к свету (рис. 32). Между опорой и стеблем возникают достаточно большое трение, т.к. стебли многократно обвивают опоры и очень плотно прилегают к ним.



Рис. 32.



У растений, имеющих корнеплоды, такие, как морковь, свекла, брюква, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода давление окружающей земли на него увеличивается, а это значит, что сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую свеклу, редьку или репу (рис. 33).



Рис. 33.



Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах. Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, орехи благодаря своей шарообразной форме и малому трению качения перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеет обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам.

У животных и человека образующие сустав кости не касаются друг друга; они покрыты суставным хрящом, который выполняет роль буфера между костными поверхностями (рис. 34).




Рис. 34. Сустав кости.



А по краям хряща прикрепляется синовиальная оболочка, в которой имеется жидкость, уменьшающая трение между суставными поверхностями. Проблема трения и изнашивания в суставах решена природой на таком уровне, о котором инженеры - трибологи могут пока только мечтать. Ежедневные нагрузки, например, в тазобедренном суставе человека превышают тысячу ньютонов при прыжках, а трение и изнашивание практически отсутствует. В результате безотказная работа в течение всей жизни!

При действии же органов движения у животных и человека трение проявляется как полезная сила.

Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд различных приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками.

Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности и хвост некоторых пород обезьян; хобот слона) тоже тесно связано с трением (Рис. 35).







Рис. 35. Органы хватания различных животных.



Ведь предмет или живое существо будет тем прочнее схвачено, чем больше трение между ним и органом хватания. Величина же силы трения находится в прямой зависимости от прижимающей силы.

У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя (рис. 36).



Рис. 36. Дождевой червь.



Щетинки, направленные назад, свободно пропускают тело червя вперед, но тормозят обратное движение. При удлинении тела головная часть продвигается вперед, а хвостовая остается на месте, при сокращении головная часть задерживается, а хвостовая подтягивается к ней.




2.11 Мир без трения



Как выглядел бы мир без трения?

А представьте себе... что пол в вашей комнате стал ещё более скользким, чем каток; вот в этом случае вы и получите отдалённое представление о ходьбе в мире без трения - она в таком мире почти невозможна. Люди поминутно падали бы и не могли подняться. Ведь только трение (точнее: трение покоя) позволяет нам отталкиваться ногами, шагая вдоль по ровной дороге.

На столе ничего не лежало бы: при малейшем -наклоне всё съезжало бы на пол, скользило и катилось по нему, стараясь добраться до самого низкого места. В самом деле, ведь только сила трения покоя удерживает предметы на слегка наклонном гладком столе и полу и не даёт им съезжать под действием силы тяжести.

Все узлы немедленно развязывались бы; ведь узлы держатся только благодаря трению одних частей верёвки, шнурка или бечёвки о другие.

Все ткани расползались бы по ниткам, а нитки - в мельчайшие волокна.

Но не только ходить в мире без трения было бы невозможно.

Каким образом, например, мог бы шофёр остановить свою машину? Ведь автомобиль тормозят тем, что прижимают к специальным барабанам, вращающимся вместе с колёсами, тормозные колодки (или ленты). Повернуть машину в мире без трения тоже не удалось бы. Вспомните, что в гололедицу автомобиль не только «идёт юзом», но и не слушается руля. Без трения автомобиль не только нельзя остановить или повернуть, его вообще нельзя заставить катиться. Мотор приводит во вращение задние ведущие колёса автомобиля. Но в мире без трения вращающиеся ведущие колёса автомобиля будут «буксовать», как это часто бывает в зимнее время на обледеневшей дороге. Чтобы колёса катились, необходимо трение их о дорогу.

В мире без трения нельзя было бы ничего толком построить или изготовить: все гвозди выпадали бы из стен, - ведь вбитый гвоздь держится только из-за трения о дерево. Все винты, болты, шурупы вывинчивались бы при малейшем сотрясении - они удерживаются только из-за наличия трения покоя.

Нельзя было бы построить самой простой машины. Приводные ремни, бегущие со шкива на шкив и передающие вращение от моторов к станкам и машинам, немедленно соскакивали бы: ведь именно трение заставляет ремень, надетый на ведущий шкив, двигаться вместе с ним.

И без жидкого трения жизнь на Земле была бы затруднительной. Из-за неравномерного нагревания Солнцем различных участков поверхности Земли воздух над ними не бывает одинаково плотным. Более плотный воздух из холодных мест перемещается в места более тёплые, вытесняя оттуда нагретый воздух. Возникает движение воздуха - ветер. Но при наличии внутреннего трения (вязкости) движение воздуха тормозится, ветер рано или поздно стихает. В мире без трения ветры дули бы с невероятной скоростью.

Реки, текущие с гор, не тормозились бы о берега и дно. Вода в них текла бы всё быстрее и быстрее и, с бешеной силой налетая на излучины берегов, размывала и разрушала бы их. Упавшие в воду глыбы (например, при извержении вулканов) вызывали бы волны, которые бушевали бы, не стихая - ведь усмирявшее их раньше внутреннее трение между слоями воды, а также трение о берега и дно исчезли! Огромные волны на морях и океанах, раз образовавшись, никогда не стихали бы.

Картина мира без трения: ползущие без торможения со склонов гор на равнины громадные каменные глыбы, рассыпающиеся песчаные холмы... Всё, что может двигаться, будет скользить и катиться, пока не окажется на самом низком возможном уровне.

Может быть, одним из полезнейших явлений природы, делающим возможным наше существование, является именно трение?



Заключение



В своей работе я попытался разобраться в причинах трения. Меня поразило насколько разнообразно и порой неожиданно проявляется трение в окружающей нас обстановке. Трение принимает участие, там, где мы о нём даже и не подозреваем. Если бы трение внезапно исчезло из мира, множество обычных явлений протекало бы совершенно иным образом. Никакие тела, будь они величиною с каменную глыбу или малы, как песчинки, никогда не удержатся одно на другом: всё будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля представляла бы шар без неровностей, подобный росинке. К этому можно прибавить, что при отсутствии трения гвозди и винты выскальзывали бы из стен, ни одной вещи нельзя было бы удержать в руках, никакой вихрь никогда бы не прекращался, никакой звук не умолкал бы, а звучал бы бесконечным эхом, неослабно отражаясь, например, от стен комнаты.

Чем больше я читал о трении, тем сложней, казались мне его законы.

Раскрыть все тайны трения оказалось мне не по силам. Но работа, проведённая мной заставила задуматься над многими вопросами.




Список литературы



1. Л.П. Лисовский. "Трение в природе и технике", журн. "Квант".

. Дерягин Б. В. Что такое трение? М.: Изд. АН СССР, 1963.

. Крагельский И. В., Щедров В. С. Развитие науки о трении. Сухое трение. М.: Изд. АН СССР, 1956.

. Фролов, К. В. (ред.) Современная трибология: Итоги и перспективы. ЛКИ, 2008.

. Силин А.А. "Трение и мы" 1987.

. Интернет - ресурсы:

http://ru.wikipedia.org/wiki/%D2%F0%E5%ED%E8%E5#.D0.9B.D0.B8.D1.82.D0.B5.D1.80.D0.B0.D1.82.D1.83.D1.80.D0.B0

://www.home-edu.ru/user/f/00001491/profil/Les_pr_15/Les_pr_15_4.htm




Отчет заведующего кабинетом «Физика»

за 1 семестр 2014-2015 учебного года


№ кабинета 8

Ф.И.О. зав.кабинетом Заблоцкая Инна Васильевна


В кабинете имеется:


  1. Документация:

    1. План работы кабинета на 2014-2015 уч. год

    2. Паспорт учебного кабинета

    3. Стандарт среднего (полного) общего образования по физике

    4. Сборник нормативных документов. Физика – М. :Дрофа, 2008 г. (Федеральный компонент государственного стандарта, федеральный базисный учебный план, примерные программы пофизике)

    5. Примерная программа учебной дисциплины по физики для профессий начального профессионального образования и специальностей среднего профессионального образования, М., 2008

    6. План учебного процесса (основная профессиональная образовательная программа ) 110800.02 «Тракторист-машинист сельскохозяйственного производства»

План учебного процесса (основная профессиональная образовательная программа ) 100701.01 «Продавец, контролер-кассир»

План учебного процесса (основная профессиональная образовательная программа ) 190631.01 «Автомеханик»

План учебного процесса (основная профессиональная образовательная программа ) «Автомеханик»

План учебного процесса (основная профессиональная образовательная программа ) 110800.02 «Тракторист-машинист сельскохозяйственного производства»


    1. Рабочие программы учебной дисциплины «Физика» по профессиям: 110800.02 «Тракторист-машинист сельскохозяйственного производства»,

190631.01 «Автомеханик»

35.01.13«Тракторист-машинист сельскохозяйственного производства»,

23.01.03 « Автомеханик»



    1. Перспективно-тематическое планирование по физике для всех профессий

    2. Конспекты уроков по физике для всех профессий

    3. План воспитательной работы группы №11

  1. Методические указания и рекомендации:

    1. Методические указания по выполнению лабораторных работ физике и к лабораторному практикуму.

2. Методические указания по выполнению самостоятельной работы обучающихся.:

а) Самостоятельная работа студентов при изучении нового материала

б) Самостоятельная работа студентов при решении задач

в) Самостоятельные работы и индивидуальные задания, тестов

г) Опыты и наблюдения в домашних заданиях по физике

3. Методические рекомендации по выполнению проектов, рефератов, докладов

и работы с информационными источниками:

а) план работы над проектом

б) Памятка учащемся по составлению реферата

в)Работа над докладом

г) Поиск и работа с нужными источниками информации: книга,

периодическая печать, интернет- ресурс.

  1. Экзаменационные билеты по физике для всех профессий;

Приложения к билетам. Комплект карточек с индивидуальными заданиями для входного контроля по физике.

  1. Дидактический материал: Карточки- задания по всем разделам курса; таблицы в электронном виде по всему курсу; презентации к урокам, видеофильмы, опорные конспекты по разделам Механика , Электродинамика.



7. Разработано 8 компьютерных презентации по разделам : механика , МКТ,.

  1. В первом полугодие выполнялись студентами второго курса самостоятельные работы, для этого был доработан перечень самостоятельных работ. Организовывались дополнительные занятия.

  2. Проведена подготовка обучающихся к Международному блиц- турниру по физики. Планируется во втором полугодии провести неделю физики и вечер посвященный дню космонавтики. В общетехникумовских мероприятиях участия не принималось. Участие в к Международному блиц- турнире по физики.(2место Ивлева Лидия-1курс)

  3. Для проведения недели ПЦМК, материал в стадии разработки и оформления. Материал для проведения внутри училищной олимпиады по физике имеется в наличии.

11.Тема реферата по физике:

12. Использование  электронных опорных конспектов и презентаций

составленный  с помощью приложения PowerPoint и OpenOffice3.1 . Использование  готовых цифровых образовательных ресурсов в учебном процессе, таких, как:

- Учебный курс «Открытая физика»,

- Учебное электронноеиздание «Электронные уроки и тесты. Физика в школе». 

Средства Microsoft  Office (Word, Excel, PowerPoint). Интернет – ресурсы

 (домашний интернет). Создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности учащихся . Проектный метод обучения.

.




57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Автор
Дата добавления 09.10.2016
Раздел Физика
Подраздел Другие методич. материалы
Просмотров12
Номер материала ДБ-248437
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх