Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Рабочие программы / Рабочая программа по физике 11 класс

Рабочая программа по физике 11 класс


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Физика

Поделитесь материалом с коллегами:


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.


Рабочая программа по физике разработана для 11 класса на основе программы Г. Я. Мякишева. Данная программа содержит все темы, включенные в федеральный компонент содержания образования: электродинамика, квантовая физика (атомная физика и физика атомного ядра).

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 70 часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования в XI классе по 2 учебных часа в неделю. В качестве основных учебников взят комплект учебников Мякишев Г.Я., Буховцев Б.Б. Физика 11 класс, М.: Просвещение, 2012 г.

Общая характеристика учебного предмета

Значение физики в школьном образовании определяется ролью физической науки в жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Обучение физике вносит вклад в политехническую подготовку путем ознакомления учащихся с главными направлениями научно-технического прогресса, физическими основами работы приборов, технических устройств, технологических установок. Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих целей:

  • освоение знаний о методах научного познания природы; современной физической картине мира: свойствах вещества и поля, пространственно-временных закономерностях, динамических и статистических законах природы, элементарных частицах и фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с основами фундаментальных физических теорий: классической механики, молекулярно-кинетической теории, термодинамики, классической электродинамики, специальной теории относительности, квантовой теории

  • овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;

  • применение знаний по физике для объяснения явлений природы, свойств вещества, принципов работы технических устройств, решения физических задач, самостоятельного приобретения и оценки достоверности новой информации физического содержания, использования современных информационных технологий для поиска, переработки и предъявления учебной и научно-популярной информации по физике;

  • развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний и умений по физике с использованием различных источников информации и современных информационных технологий; выполнения экспериментальных исследований, подготовки докладов, рефератов и других творческих работ;

  • воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;

  • использование приобретенных знаний и умений для решения практических, жизненных задач, рационального природопользования и защиты окружающей среды, обеспечения безопасности жизнедеятельности человека и общества.


Общеучебные умения, навыки и способы деятельности


Познавательная деятельность:

  • использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;

  • формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

  • овладение адекватными способами решения теоретических и экспериментальных задач;

  • приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

  • владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;

  • использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

  • владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:

организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Технология обучения

В каждый раздел курса включен основной материал, глубокого и прочного усвоения которого следует добиваться, не загружая память учащихся множеством частных фактов. Некоторые вопросы разделов учащиеся должны рассматривать самостоятельно. Некоторые материалы даются в виде лекций. В основной материал 11 класса входят: учение об электромагнитном поле, явление электромагнитной индукции, квантовые свойства света, квантовые постулаты Бора, закон взаимосвязи массы и энергии. В основной материал также входят важнейшие следствия из законов и теорий, их практическое применение. В обучении отражена роль в развитии физики и техники следующих ученых: Э.Х.Ленца, Д.Максвелла, А.С.Попова, А.Эйнштейна, А.Г.Столетова, М.Планка, Э.Резерфорда, Н.Бора, И.В.Курчатова.

На повышение эффективности усвоения основ физической науки направлено использование принципа генерализации учебного материала – такого его отбора и такой методики преподавания, при которых главное внимание уделено изучению основных фактов, понятий, законов, теорий. Наглядность преподавания физики и создание условий наилучшего понимания учащимися физической сущности изучаемого материала возможно через применение демонстрационного эксперимента. Перечень демонстраций необходимых для организации наглядности учебного процесса по каждому разделу указан в программе. У большинства учащихся дома в личном пользовании имеют компьютеры, что дает возможность расширять понятийную базу знаний учащихся по различным разделам курса физики. Использование обучающих программ расположенных в образовательных Интернет-сайтах или использование CD – дисков с обучающими программами («Живая физика», «Открытая физика» и др.) создает условия для формирования умений проводить виртуальный физический эксперимент.

Задачи физического образования решаются в процессе овладения школьниками теоретическими и прикладными знаниями при выполнении лабораторных работ и решении задач. Решение физических задач должно проводиться в оптимальном сочетании с другими методами обучения. При решении задач требующих применение нескольких законов, учитель показывает образец решения таких задач и предлагает подобные задачи для домашнего решения. Для учащихся испытывающих затруднение в решении указанных задач организуются индивидуальные консультации.

Программа предусматривает использование Международной системы единиц (СИ), а в ряде случаев и некоторых внесистемных единиц, допускаемых к применению.

Основной учебный материал должен быть усвоен учащимися на уроке. Это требует от учителя постоянного продумывания методики проведения урока: изложение нового материала в форме бесед или лекций, выдвижение учебных проблем; широкое использование учебного эксперимента (демонстрационные опыты, фронтальные лабораторные работы, в том числе и кратковременные), самостоятельная работа учащихся. Необходимо совершенствовать методы повторения и контроля знаний учащихся, с тем, чтобы основное время урока было посвящено объяснению и закреплению нового материала. Наиболее эффективным методом проверки и коррекции знаний, учащихся при проведении промежуточной диагностики внутри изучаемого раздела является использование кратковременных (на 7-8 минут) тестовых тематических заданий. Итоговые контрольные работы проводятся в конце изучения соответствующего раздела. Все это способствует решению ключевой проблемы — повышению эффективности урока физики.

При преподавании используются: классно-урочная система; лабораторные и практические занятия; применение мультимедийного материала; решение экспериментальных задач.

Учебно-тематический план по курсу физики 11 класс. (2 ч в неделю).

Раздел

Тема раздела

Количество часов

Лабораторная работа

Самостоятельная работа

Контрольная работа

Основы электродинамики (продолжение)


12





Магнитное поле

5

№ 1. Наблюдение действия магнитного поля на ток




Электромагнитная индукция

7

№ 2. Изучение явления электромагнитной индукции


№1 по теме «Основы электродинамики».

Колебания и волны


19






Механические колебания

4

№ 3. Определение ускорения свободного падения при помощи маятника


Электромагнитные колебания.

4



Производство, передача и использование электрической энергии

5



№2 по теме «Колебания»

Механические волны

2




Электромагнитные волны

4



№3 по теме «Волны»

Оптики


18





Световые волны

12

№ 4. Измерение показателя преломления стекла.

№ 5. Определение оптической силы и фокусного расстояния собирающей линзы.

№ 6. Измерение длины световой волны

по теме «Геометрическая оптика».

№4 по теме «Световые волны»


Элементы теории относительности

3





Излучение и спектры

3

№ 7. Наблюдение сплошного и линейчатого спектров



Квантовая физика


21





Световые кванты

6



№5 по теме «Световые кванты».



Атомная физика

3




Физика атомного ядра.

9



№6 по теме «Физика атомного ядра»


Элементарные частицы

1





Значение физики для объяснения мира и развития производительных сил общества

2



ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА




Календарно - тематическое планирование

11 класс

№ урока

Тема

№ параграфа.

Примечания/

сроки


Основы электродинамики (продолжение) (12часов)




1. Магнитное поле (5 часов)



1/1

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции.

1, 2


2/2

Модуль вектора магнитной индукции. Сила ампера. Электроизмерительные приборы. Применение закона ампера. Громкоговоритель.

3, 4, 5


3/3

Действие магнитного поля на движущийся заряд. Сила Лоренца. Магнитные свойства вещества.

6, 7


4/4

Решение задач.



5/5

Лабораторная работа №1 «Наблюдение действия магнитного поля на ток»




2. Электромагнитная индукция (7 часов)



6/1

Открытие электромагнитной индукции. Магнитный поток.

8, 9


7/2

Направление индукционного тока. Правило Ленца. Закон электромагнитной индукции.

10, 11


8/3

Лабораторная работа № 2 «Изучение явления электромагнитной индукции».



9/4

Вихревое электрическое поле. ЭДС индукции в движущихся проводниках. Электродинамический микрофон.

12, 13, 14


10/5

Самоиндукция. Индуктивность.

15


11/6

Энергия магнитного поля тока. Электромагнитное поле.

16, 17


12/7

Контрольная работа №1 по теме «Основы электродинамики»




Колебания и волны (19 часов)




1. Механические колебания (4 часа)



13/1

Свободные и вынужденные колебания. Условия возникновения свободных колебаний. Математический маятник.

18, 19, 20


14/2

Лабораторная работа №3 «Определение ускорения свободного падения при помощи маятника»



15/3

Динамика колебательного движения. Гармонические колебания. Фаза колебаний. Превращение энергии при гармонических колебаниях.

21, 22, 23, 24


16/4

Вынужденные колебания. Резонанс. Применение резонанса и борьба с ним.

25, 26



2. Электромагнитные колебания (4 часа)



17/1

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях.

27, 28


18/2

Аналогия между механическими и электромагнитными колебаниями. Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний.

29, 30


19/3

Переменный электрический ток. Активное сопротивление. Действующие значения силы тока и напряжения. Конденсатор в цепи переменного тока. Катушка индуктивности в цепи переменного тока.

31, 32, 33, 34


20/4

Резонанс в электрической цепи. Генератор на транзисторе. Автоколебания.

35, 36



3. Производство, передача и использование электрической энергии (5 часов)



21/1

Генерирование электрической энергии.

37


22/2

Трансформаторы.

38


23/3

Производство и использование электрической энергии. Передача электроэнергии. Эффективное использование электроэнергии.

39, 40, 41


24/4

Решение задач.



25/5

Контрольная работа №2 по теме «Колебания».




4. Механические волны (2 часа)



26/1

Волновые явления. Распространение механических волн. Длина волны, скорость волны.

42, 43, 44


27/2

Уравнение бегущей волны. Волны в среде. Звуковые волны.

45, 46, 47



5. Электромагнитные волны (4 часа)



28/1

Что такое электромагнитная волна. Экспериментальное обнаружение электромагнитных волн. Плотность потока электромагнитного излучения.

48, 49, 50


29/2

Изобретение радио А.С.Поповым. Принципы радиосвязи. Как осуществляется модуляция и детектирование.

51, 52, 53


30/3

Свойства электромагнитных волн. Распространение радиоволн. Радиолокация. Понятие о телевидении. Развитие средств связи.

54, 55, 56, 57, 58


31/4

Контрольная работа №3 по теме «Волны»




Оптика (18 часов)




1. Световые волны (12 часов)



32/1

Скорость света. Принцип Гюйгенса. Закон отражения света.

59, 60


33/2

Закон преломления света. Полное отражение.

61, 62


34/3

Лабораторная работа № 4 «Измерение показателя преломления стекла».



35/4

Линза. Построение изображения в линзе.

63, 64


36/5

Формула тонкой линзы. Увеличение линзы.

65


37/6

Лабораторная работа №5 «Определение оптической силы и фокусного расстояния собирающей линзы»



38/7

Дисперсия света.

66


39/8

Интерференция механических волн. Интерференция света. Некоторые применения интерференции.

67, 68, 69


40/9

Дифракция механических волн. Дифракция света. Дифракционная решетка.

70, 71, 72


41/10

Лабораторная работа № 6 «Измерение длины световой волны».



42/11

Поперечность световых волн. Поляризация света. Поперечность световых волн и электромагнитная теория света.

73, 74


43/12

Контрольная работа №4 по теме «Световые волны»




2. Элементы теории относительности (3 часа)



44/1

Законы электродинамики и принцип относительности. Постулаты теории относительности. Относительность одновременности.

75, 76, 77


45/2

Основные следствия, вытекающие из постулатов теории относительности.

78


46/3

Зависимость массы от скорости. Релятивистская динамика. Связь между массой и энергией.

79, 80



3. Излучение и спектры (3 часа)



47/1

Виды излучений. Источники света. Спектры и спектральные аппараты. Виды спектров. Спектральный анализ.

81, 82, 83, 84


48/2

Лабораторная работа № 7 «Наблюдение сплошного и линейчатого спектров».



49/3

Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи. Шкала электромагнитных излучений.

85, 86, 87



Квантовая физика (21 час)




1. Световые кванты (6 часов)



50/1

Фотоэффект. Теория фотоэффекта.

88, 89


51/2

Фотоны. Применение фотоэффекта.

90, 91


52/3

Давление света.

92


53/4

Химическое действие света. Фотография.

93


54/5

Решение задач.



55/6

Контрольная работа №5 по теме «Световые кванты».




2. Атомная физика (3 часа)



56/1

Строение атома. Опыты Резерфорда.

94


57/2

Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика.

95, 96


58/3

Лазеры.

97



3. Физика атомного ядра (9 часов)



59/1

Методы наблюдения и регистрации элементарных частиц.

98


60/2

Открытие радиоактивности. Альфа, бета, гамма излучения. Радиоактивные превращения.

99, 100, 101


61/3

Закон радиоактивного распада. Период полураспада. Изотопы. Открытие нейтрона.

102, 103, 104


62/4

Строение атомного ядра. Ядерные силы.

105


63/5

Энергия связи атомных ядер.

106


64/6

Ядерные реакции.

107


65/7

Деление ядер урана. Цепные ядерные реакции. Ядерный реактор.

108, 109, 110


66/8

Термоядерные реакции. Применение ядерной энергии. Получение радиоактивных изотопов и их применение. Биологическое действие радиоактивных излучений.

111, 112, 113, 114


67/9

Контрольная работа №6 по теме «Физика атомного ядра».




4. Элементарные частицы (1 час)



68/1

Три этапа в развитии физики элементарных частиц. Открытие позитрона. Античастицы.

115, 116



Значение физики для объяснения мира и развития производительных сил общества. (2 часа)



69/1

Единая физическая картина мира. Физика и научно- техническая революция.

117, 118


70/2

Итоговая контрольная работа.



Содержание курса 11 класс

Электродинамика

Электромагнитная индукция (продолжение)

Магнитное поле. Вектор магнитной индукции. Сила Ампера. Сила Лоренца. Магнитные свойства вещества. Электромагнитная индукция. Закон электромагнитной индукции. Самоиндукция. Индуктивность. Энергия магнитного поля.

Лабораторная работа №1: «Наблюдение действие магнитного поля на ток».

Лабораторная работа №2: «Изучение явления электромагнитной индукции».

Демонстрации:

  • Взаимодействие параллельных токов.

  • Действие магнитного поля на ток.

  • Устройство и действие амперметра и вольтметра.

  • Устройство и действие громкоговорителя.

  • Отклонение электронного лучка магнитным полем.

  • Электромагнитная индукция.

  • Правило Ленца.

  • Зависимость ЭДС индукции от скорости изменения магнитного потока.

  • Самоиндукция.

  • Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктивности проводника.

Колебания и волны.

Механические колебания. Свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.

Электрические колебания.

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Емкость и индуктивность в цепи переменного тока. Мощность в цеди переменного тока. Резонанс в электрической цепи.

Производство, передача и потребление электрической энергии. Генерирование электрической энер- гии. Трансформатор. Передача электрической энергии.

Механические волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Звуковые волны. Интерференция воли. Принцип Гюйгенса. Дифракция волн.

Электромагнитные волны. Излучение электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

Лабораторная работа №3: «Определение ускорения свободного падения при помощи маятника».

Демонстрации:

  • Свободные электромагнитные колебания низкой частоты в колебательном контуре.

  • Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.

  • Незатухающие электромагнитные колебания в генераторе на транзисторе.

  • Получение переменного тока при вращении витка в магнитном поле.

  • Устройство и принцип действия генератора переменного тока (на модели).

  • Осциллограммы переменною тока

  • Устройство и принцип действия трансформатора

  • Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.

  • Электрический резонанс.

  • Излучение и прием электромагнитных волн.

  • Модуляция и детектирование высокочастотных электромагнитных колебаний.

Оптика

Световые лучи. Закон преломления света. Призма. Дисперсия света. Формула тонкой линзы. Получение изображения с помощью линзы. Светоэлектромагнитные волны. Скорость света и методы ее измерения, Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

Лабораторная работа №4: Измерение показателя преломления стекла.

Лабораторная работа №5: «Определение оптичнской силы и фокусного расстояния собирающей линзы».

Лабораторная работа №6: «Измерение длины световой волны».

Демонстрации:

  • Законы преломления света.

  • Полное отражение.

  • Световод.

  • Получение интерференционных полос.

  • Дифракция света на тонкой нити.

  • Дифракция света на узкой щели.

  • Разложение света в спектр с помощью дифракционной решетки.

  • Поляризация света поляроидами.

  • Применение поляроидов для изучения механических напряжений в деталях конструкций.

Основы специальной теории относительности.

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

 Квантовая физика

Световые кванты.

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. [Гипотеза Планка о квантах.] Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. [Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенности Гейзенберга.]

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

Лабораторная работа №7: «Наблюдение сплошного и линейчатого спектров».

Демонстрации:

  • Фотоэлектрический эффект на установке с цинковой платиной.

  • Законы внешнего фотоэффекта.

  • Устройство и действие полупроводникового и вакуумного фотоэлементов.

  • Устройство и действие фотореле на фотоэлементе.

  • Модель опыта Резерфорда.

  • Невидимые излучения в спектре нагретого тела.

  • Свойства инфракрасного излучения.

  • Свойства ультрафиолетового излучения.

  • Шкала электромагнитных излучений (таблица).

  • Зависимость плотности потока излучения от расстояния до точечного источника.

  • Фотоэлектрический эффект на установке с цинковой платиной.

  • Законы внешнего фотоэффекта.

  • Устройство и действие полупроводникового и вакуумного фотоэлементов.

  • Устройство и действие фотореле на фотоэлементе.

Атомная физика.

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода Бора. [Модели строения атомного ядра: протонно-нейтронная модель строения атомного ядра.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Корпускулярное волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра.

Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада. Протон-нейтронная модель строения атомного ядра. Энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. [Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: частицы и античастицы. Фундаментальные взаимодействия]

Демонстрации:

  • Модель опыта Резерфорда.

  • Наблюдение треков в камере Вильсона.

  • Устройство и действие счетчика ионизирующих частиц.




Требования к уровню подготовки обучающихся 11 класса.

 Обучающиеся должны знать:

Электродинамика.

Понятия: электромагнитная индукция, самоиндукция, индуктивность, свободные и вынужденные колебания, колебательный контур, переменный ток, резонанс, электромагнитная волна, интерференция, дифракция и дисперсия света, магнитное поле тока, индукция магнитного поля, электромагнитная индукция; закон электромагнитной индукции; правило Ленца, самоиндукция; индуктивность, электромагнитное поле, свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн, интерференция, дифракция и дисперсия света, принцип постоянства скорости света в вакууме, связь массы и энергии.

Законы и принципы: закон электромагнитной индукции, правило Ленца, законы отражения и преломления света, связь массы и энергии, отражения и преломления света.

Практическое применение: генератор, схема радиотелефонной связи, полное отражение, электроизмерительные приборы магнитоэлектрической системы, генератор переменного тока, схема радиотелефонной связи, телевидение, полного отражения, интерференции, дифракции и поляризации света


Учащиеся должны уметь:

-         Измерять силу тока и напряжение в цепях переменного тока.

-         Использовать трансформатор.

-         Измерять длину световой волны.

Решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампер, на применение закона электромагнитной индукции, самоиндукции, на применение формул:hello_html_m189ed9b8.gif, hello_html_m5dae28c3.gif, hello_html_m35486c02.gif, hello_html_14bd8ee.gif,

hello_html_m6c7a36cc.gif, hello_html_2af5bc13.gif, hello_html_m45a8e1d.gif, на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света.


объяснять явление электромагнитной индукции и самоиндукции, распространение электромагнитных волн.

Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами, границы применения законов классической и релятивистской механики


 Квантовая физика

В результате изучения физики на базовом уровне ученик должен

знать/понимать

Понятия: фотон, фотоэффект, корпускулярно – волновой дуализм, ядерная модель атома, ядерная реакция, энергия связи, радиоактивный распад, цепная реакция, термоядерная реакция, элементарные частицы, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;

Законы и принципы: электромагнитной индукции, законы фотоэффекта, постулаты Бора, закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента, принцип спектрального анализа, принцип работы ядерного реактора.


Учащиеся должны уметь:

решать задачи на применение формул, связывающих энергию и импульс фотона с частотой световой волны, вычислять красную границу фотоэффекта, энергию фотозлектронов на основе уравнения Эйнштейна, определять продукты ядерной реакции. Рассчитывать энергетический выход ядерной реакции.

  • приводить примеры практического использования физических знаний: электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

  • оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

  • рационального природопользования и защиты окружающей среды.

объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты.

Определять продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа, знак заряда или направление движения элементарных частиц по их трекам на фотографиях.


Знать: ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро.

закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.


Для всех разделов при изучении курса физики средней школы в раздел «Требования к уровню подготовки выпускников»:

знать/понимать

  • основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;

  • вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь

  • приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;

  • описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;

  • применять полученные знания для решения физических задач;

  • представлять результаты измерений с учетом их погрешностей;

  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях; использовать новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернета);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

  • анализа и оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

  • рационального природопользования и защиты окружающей среды.





Проверка знаний учащихся

Оценка ответов учащихся

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, 6eз использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «3» ставиться, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

Оценка «1» ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка контрольных работ

Оценка «5» ставится за работу,  выполненную  полностью без ошибок  и недочётов.

Оценка «4» ставится за работу выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и.двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок,  одной  негрубой  ошибки   и  трех   недочётов,  при   наличии 4   -  5 недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Оценка «1» ставится, если ученик совсем не выполнил ни одного задания.

Оценка лабораторных работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

Оценка «4» ставится, если выполнены требования к оценке «5» , но было допущено два – три недочета, не более одной негрубой ошибки.

Оценка   «3»   ставится,   если   работа  выполнена   не   полностью,   но  объем выполненной   части  таков,   позволяет  получить   правильные  результаты   и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

Оценка   «2»   ставится,   если   работа   выполнена   не   полностью   и   объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Оценка «1» ставится, если учащийся совсем не выполнил работу.

Темы проектов:


  1. Использование электроэнергии;

  2. Развитие средств связи;

  3. Применения в технике различных видов электромагнитных излучений;

  4. Специальная теория относительности;

  5. Будущее квантовой техники;

  6. Открытие радиоактивности;

  7. Экология использования атомной энергии;

  8. Единая физическая картина Мира;

  9. Астрология – ветреная сестра астрономии


Цифровые образовательные ресурсы:


п/п

Наименование

Издательство

Виртуальная физическая лаборатория

Лабораторный практикум по физике 8 кл

Лиен

Лабораторные работы по физике 11 кл

Дрофа

Библиотека наглядных пособий

1 с: школа. Физика, 7- 11 кл

дрофа

Интерактивный курс физики для 7- 11 кл

физикон

Живая физика

Институт новых технологий

Физика 7-11 кл

Кирилл и Мефодий

Интерактивная энциклопедия «от плуга до лазера 2.0»

Компания «новый диск»

Открытая физика 1.1

физикон

«Астрономия» 9-10 кл

физикон

Презентации уроков по физике

(собственные)

Сайт: «Teachpro»

Интернет


Литература



  1. Физика: Учеб. для 11 кл. общеобразоват. учреждений / Г.Я. Мякишев, Б.Б. Буховцев. - 15-е изд. -М.: Просвещение, 2006.-381с.

  2. Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А. П. - 12-е изд., стереотип. - М.: Дрофа, 2008. - 192 с.

  3. Самостоятельные и контрольные работы. Физика. Кирик, Л. А П.-М.:Илекса,2005.

  4. Экспериментальные задания по физике. 9—11 кл.: учеб. пособие для учащихся общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. — М.: Вербум-М, 2001. — 208 с.

  5. Демонстрационный эксперимент по физике в средней школе: пособие для учителей / В. А. Буров, Б. С. Зворыкин, А. П. Кузьмин и др.; под ред. А. А. Покровского. — 3-е изд., перераб. — М.: Просвещение, 1979. — 287 с.

  6. Фронтальные лабораторные работы по физике в 7-11 классах общеобразовательных учреждениях: Кн. для учителя / В.А. Буров, Ю.И. Дик, Б.С. Зворыкин и др.; под ред. В.А. Бурова, Г.Г. Никифорова. - М.: Просвещение: Учеб, лит., 1996. - 368 с.

  7. Физика. 10 класс: поурочные планы по учебнику Г. Я. Мякишева, Б. Б. Буховцева, Н. Н. Сотского «Физика. 10 класс»/ авт.-сост. Г. В. Маркина, С. В. Боброва. - Волгоград: Учитель, 2008. -302 с.

  8. Физика. 11 класс: поурочные планы по учебнику Г. Я. Мяки-шева, Б. Б. Буховцева. - Изд. 2-е, перераб. и доп. / авт.-сост. Г. В. Маркина. - Волгоград: Учитель, 2008. - 175 с.

  9. Поурочное планирование по физике к Единому Государственному Экзамену/ Н.И. Одинцова, Л.А. Прояненкова. – М.: Издательство «Экзамен», 2009 г.

  10. Контрольные работы по физике 10 – 11 классы: Кн. Для учителя/ А.Е. Марон, Е.А. Марон. – 2-е изд. М.: Просвещение.

  11. Единый государственный экзамен: Физика: Сборник заданий / Г.Г.Никифоров, В.А.Орлов, Н.К.Ханнанов. – М.:Просвещение,Эксмо,2006. 240 с.

  12. Готовимся к единому государственному экзамену. Физика А. Н. Москалев, Г. А. Никулова. — 3-е изд., стереотип. — М. : Дрофа, 2007. — 224 с.

  13. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений / Е.П. Левитан. - 12 -е изд. - М.: Просвещение, 2007. - 224 с.






57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 17.09.2015
Раздел Физика
Подраздел Рабочие программы
Просмотров175
Номер материала ДA-049131
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх