Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 9 класс (учебник Л.С. Атанасян)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по геометрии 9 класс (учебник Л.С. Атанасян)

библиотека
материалов



«Утверждаю »

Директор МБОУ Кагальницкой СОШ

Приказ от 28.08. 2014г. № 271

___________ / Демидова Н. И./



Муниципальное бюджетное общеобразовательное учреждение

Кагальницкая средняя общеобразовательная школа

Азовского района




Рабочая программа

по алгебре


Уровень общего образования: базовый, основное общее, 9 класс.

Количество часов: 4 часа в неделю, всего 135 часов.

Учитель: Уланкина Лариса Сергеевна

Программа разработана на основе примерной программы основного общего образования по математике

(Сборник нормативных документов. Математика. М.: Дрофа, 2009)

2014-2015 учебный год



Пояснительная записка

Данная рабочая программа ориентирована на учащихся 9 класса и реализуется на основе следующих документов: 

  1. Геометрия 7 - 9 классы. Программы общеобразовательных школ к учебнику Л.С.Атанасяна и др./   М., Просвещение, 2009/.

  2. Федерального компонента государственного стандарта основного общего образования.

  1. Федерального перечня учебников, рекомендованных Министерством образования РФ,

с учетом требований к оснащению образовательного процесса, в соответствии с содержанием компонента государственного стандарта общего образования.

4. Базисного учебного плана РО 2014 - 2015 учебного года

5. Учебного плана МБОУ Кагальницкой СОШ.

В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.

Геометрия-один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Практические умения и навыки геометрического характера необходимы для трудовой и профессиональной подготовки школьников. Изучение геометрии на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственного мышления и воображения, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Цель изучения курса геометрии в VII—IX классах- систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин (физика, черчение и др.) и курса стереометрии в старших классах.

Геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления), умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения, требуя от обучающихся умственных и волевых усилий, концентрации внимания, активности развитого воображения.





Общая характеристика курса.



Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты математических умозаключений, правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими фигурами и их свойствами.

Курс рационально сочетает логическую строгость и геометрическую наглядность. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстракции изучаемого материала. Обучающиеся должны овладеть приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изучение курса позволит начать работу по формированию представлений учащихся о строении математической теории, обеспечит развитие логического мышления учащихся. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

В курсе геометрии 9 класса обучающиеся учатся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; знакомятся с использованием векторов и метода координат при решении геометрических задач; развивается умение обучающихся применять тригонометрический аппарат при решении геометрических задач; расширяется знания обучающихся о многоугольниках; рассматриваются понятия длины окружности и площади круга и формулы для их вычисления; знакомятся обучающиеся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений; даётся более глубокое представление о системе аксиом планиметрии и аксиоматическом методе; даётся начальное представление телах и поверхностях в пространстве; знакомятся обучающиеся с основными формулами для вычисления площадей; поверхностей и объемов тел.

Таким образом, в ходе освоения содержания курса обучающиеся получают возможность

-развить пространственные представления и изобразительные умения;

- освоить основные факты и методы планиметрии;

- познакомиться с простейшими пространственными телами и их свойствами.

В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Место предмета в федеральном базисном учебном плане.

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии в 9 классе отводится 68 часов из расчета 2 ч в неделю. Так как 1час приходится на праздничные дни, то курс геометрии в 9 классе будет изучен за 67 часов. Учебник «Геометрия» для 7—9 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2009.

В том числе: контрольных работ- 5 (включая итоговую контрольную работу).

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала.


Личностные, метапредметные и предметные результаты освоения предмета.

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов:

Личностные образовательные результаты.

  1. формирование ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

  2. формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  3. формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  6. креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

  7. умение контролировать процесс и результат учебной математической деятельности;

  8. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.


Метапредметные образовательные результаты.

  1. умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  2. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  3. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

  4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

  5. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  6. умение создавать, применять и преобразовывать знако-символические средства, модели и схемы для решения учебных и познавательных задач;

  7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстраивать свое мнение;

  8. формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ–компетентности);

  9. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования процессов и явлений;

  10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера


Предметные образовательные результаты.

  1. овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  2. умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с использованием математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

  3. овладение навыками устных, письменных, инструментальных вычислений;

  4. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

  5. усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне – о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

  6. умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей геометрических фигур;


Требования к подготовке обучающихся в 9 классе.

Умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

-планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

-решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

-исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

-ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

-проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

-поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами.


Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве.


Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

-описания реальных ситуаций на языке геометрии;

-расчетов, включающих простейшие тригонометрические формулы;

-решения геометрических задач с использованием тригонометрии

-решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

-построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

-выстраивания аргументации при доказательстве (в форме монолога и диалога);

-распознавания логически некорректных рассуждений;

-записи математических утверждений, доказательств;

-анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

-решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

-решения учебных и практических задач, требующих систематического перебора вариантов;

-сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

-понимания статистических утверждений.

Содержание обучения.


Вводное повторение (2 часа) Треугольники. Четырехугольники.

Глава 1X. Векторы (9 часов) Определение вектора, законы сложения векторов, умножение вектора на число. Применение векторов к решению задач.

Основная цель— научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

Глава X . Метод координат (11 час). Нахождение координат вектора, уравнение окружности и прямой, формулы координат середины отрезка, длины вектора. Решение простейших задач в координатах.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками. На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Глава XI. Соотношения между сторонами и углами треугольника (12 часов).

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Формулы площади треугольников.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

Глава XII. Длина окружности и площадь круга (11 часов).

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного п-угольника. Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Глава XIII. Движения (9 часов)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Теорема Фалеса.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

Глава XIY. Начальные сведения из стереометрии (6 часов)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: конус, сфера, шар, формулы для вычисления площадей их поверхностей и объемов.

дать начальное представление телах и поверхностях в пространстве; познакомить обучающихся с основными формулами для вычисления площадей; поверхностей и объемов тел.

Основная цель -рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

Об аксиомах планиметрии (2 часа). Беседа об аксиомах геометрии.

Основная цель: дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

Повторение. Решение задач на повторение (5 часов). Параллельные прямые. Треугольники. Решение задач.

Основная цель-повторение ,обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.


Тематическое планирование учебного материала

Название раздела

Кол-во часов по плану

Контрольные работы

Вводное повторение

2


Векторы

9


Метод координат

11

1

Соотношение между сторонами и углами треугольника

12

1

Длина окружности и площадь круга

11

1

Движение

9

1

Начальные сведения из стереометрии

6


Об аксиомах планиметрии

2


Итоговое повторение.

5

1

Итого

67 часов

5















Из них контрольных работ 5 часов, которые распределены по разделам следующим образом:

  1. " Метод координат"

  2. "Соотношение между сторонами и углами треугольника "

  3. "Длина окружности .Площадь круга"

  4. "Движение"

  5. Итоговая контрольная работа



Календарно-тематическое планирование



п/п

Дата

Раздел учебной программы

Тема урока

Контрольные работы

Кол-во часов

Основные виды учебной деятельности

1

2

3

4

5

6

7

1


Вводное повторение

(2 часа)


Повторение. Треугольники.




1

Применение признаков равенства треугольников и свойств равнобедренного и прямоугольного треугольников при решении задач.

2



Повторение. Четырёхугольники. Окружность.



1

Применение определения и свойств четырёхугольников при решении задач.

3


Векторы

(9 часов)













Понятие вектора, равенство векторов.



1

Обозначение и изображение векторов; откладывание вектора, равного данному.

4




Сумма двух векторов. Законы сложения.




1

Построение суммы двух векторов по правилу треугольника, параллелограмма.

5



Сумма нескольких векторов



1

Нахождение суммы нескольких векторов, использование правила многоугольника

6



Вычитание векторов



1

Построение вектора, равного разности двух векторов

7-8


Произведение вектора на число



2

Построение вектора, равного произведению вектора на число.

9-11



Применение векторов к решению задач



3

Применение свойства векторов к решению задач, нахождение средней линии трапеции.

12-13


Метод координат

(11 часов)


Координаты вектора


2

Нахождение координат вектора, координат суммы и разности векторов, произведения вектора на число

14


Решение задач


1

Решение задач на нахождение координат

15



Контрольная работа № 1 по теме: «Метод координат»

1

Проверка знаний по пройденной теме.

16,17



Простейшие задачи в координатах



2

Решение простейших задач в координатах.

18-20



Уравнения окружности и прямой.



3

Решение задач на определение координат центра окружности и его радиуса по заданному уравнению; составление уравнения окружности.


21-22



Решение задач



2


Изображение окружности и прямой, заданных уравнениями; решение простейших задач в координатах

23-25


Соотношения между сторонами и углами треугольника

(12 часов)



Синус, косинус и тангенс угла.



3

Применение основного тригонометрического тождества при решении задач на нахождение одних тригонометрических функций через другие

26



Теорема о площади треугольника



1

Доказывать теоремы о площади треугольника; решать задачи на её применение

27



Теорема синусов



1

Доказывать теорему и применять её при решении задач

28



Теорема косинусов



1

Доказывать теорему и применять её для нахождения элементов треугольника.

29-30



Решение треугольников. Измерительные работы



2

Применять теоремы синусов и косинусов при выполнении измерительных работ на местности

31



Угол между векторами. Скалярное произведение векторов



1

Изображение угла между векторами , вычисление скалярного произведения

32


Скалярное произведение в координатах. Свойства скалярного произведения



1

Нахождение угла между векторами, используя формулу скалярного произведения в координатах

33



Решение задач.




1

Решение простейших планиметрических задач по данной теме

34




Контрольная работа №2 по теме: «Соотношения между сторонами и углами треугольника»


1

Проверка знаний по пройденной теме.

35


Длина окружности и площадь круга

(11 часов)




Правильные и неправильные многоугольники



1

Выведение формулы для вычисления угла правильного n-угольника и применение её в процессе решения задач

36



Окружность, описанная около правильного многоугольника и вписанная в правильный многоугольник



1

Доказательство теоремы и следствий из теорем и применение их при решении задач

37


Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности



1

Применять формул для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

при решении задач

38



Построение правильных многоугольников.



1

Построение правильных многоугольников.

39-40



Длина окружности.



2

Вывод формулы длины окружности и длины дуги

41-42



Площадь круга и кругового сектора



2

Изучение формул площади круга и кругового сектора; применение их при решении задач.

43-44



Решение задач



2

Решение задач на применение формул для вычисления площади, стороны и радиуса вписанной окружности

45



Контрольная работа № 3 по теме:«Длина окружности. Площадь круга»

1

Проверка знаний по пройденной теме.

46-47


Движение

(9 часов)













Отображение плоскости на себя



2

Выполнение построения движений, осуществляющих отображение плоскости на себя

48



Понятие движения



1

Распознавать по чертежам осевую и центральную симметрию, осуществлять эти преобразования фигур .

49-50



Параллельный перенос



2

Применение параллельного переноса при решении задач

51-52


Поворот


2

Применение поворота при решении задач

53



Решение задач



1


Выполнение параллельного переноса и поворота фигур при решении задач


54



Контрольная работа № 4 по теме: «Движение»

1

Проверка знаний по пройденной теме.

55,56


Начальные сведения из стереометрии

(6 часов)


Многогранники. Призма. Пирамида. Параллелепипед.



2


Ознакомление с предметом стереометрии, с многогранниками.

57,58


Тела и поверхности вращения.


2

Ознакомление с телами вращения.

59,60


Решение задач.


2

Решать задачи на нахождение площадей тел вращения и их поверхностей.

61,62


Об аксиомах планиметрии

(2 часа)

Об аксиомах планиметрии


2

Ознакомление с системой аксиом как необходимых утверждений при создании геометрии изучение основных аксиом планиметрии.

63


Итоговое повторение

(5 часов)



Повторение темы « Параллельные прямые»



1

Решение задач по теме « Параллельные прямые»

64


Повторение темы «Треугольники»


1

Применять основные соотношения между сторонами и углами треугольника, формулы площади треугольника

65



Итоговая контрольная работа.

1

Проверка знаний.

66,67



Решение задач.


2

Решать задачи.


Учебно – методический комплект:

1. Геометрия. Рабочая программа к учебнику Л. С. Атанасяна и других.7-9 классы: пособие для учителей общеобразовательных учреждений/ В.Ф.Бутузов. – М.: Просвещение, 2011 г.

2. Геометрия 7-9 классы: учебник для общеобразовательных учреждений./ Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. – М.: Просвещение, 2010.

3. Контрольные работы по геометрии: 9 класс: к учебнику Л.С. Атанасян и др. «Геометрия 7-9»/ Н.Б.Мельникова. М.: Издательство «Экзамен» , 2011 г.

4. Геометрия 9 класс: поурочные планы по учебнику Л.С. Атанасян и др. «Геометрия 7-9»/ авт.-сост. Т.Л.Афанасьева, Л. А. Тапилина. Волгоград: Учитель, 2011 г.

6. Контрольно – измерительные материалы. Геометрия 9 класс / сост. Н.Ф. Гаврилова. – М.: ВАКО, 2011год.


Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.


1. Оценка письменных контрольных работ обучающихся по математике.


Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.



Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.


Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.



Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.



Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.



Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.





Общая классификация ошибок.


При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.


3.2. К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.













Приложение




Контрольная работа № 1 по теме « Метод координат»

1 вариант.


1). Начертите два неколлинеарных вектора hello_html_m5e1be4f1.gifи hello_html_m3025ebd5.gif. Постройте векторы, равные:

а). hello_html_m6603fee0.gif; б). hello_html_60d8369.gif

2). На стороне ВС ромба АВСD лежит точкаК такая, что ВК = КС, О – точка пересечения диагоналей. Выразите векторы hello_html_m78137acd.gif через векторы hello_html_56f29d3d.gifи hello_html_2c90a87c.gif.

3). В равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. Найдите среднюю линию трапеции.

4). В треугольнике АВС О – точка пересечения медиан. Выразите вектор hello_html_m43d52dad.gif через векторы hello_html_56f29d3d.gif и hello_html_7f3e36ca.gif.


2 вариант


1). Начертите два неколлинеарных вектора hello_html_30048bfc.gifи hello_html_m1825961a.gif. Постройте векторы, равные:

а). hello_html_7c95f134.gif; б). hello_html_m2cc7f108.gif

2). На стороне СD квадрата АВСD лежит точка Р такая, что СР = РD , О – точка пересечения диагоналей. Выразите векторы hello_html_4006d799.gif через векторы hello_html_208ef767.gifи hello_html_4faa4896.gif.

3). В равнобедренной трапеции один из углов равен 600, боковая сторона равна 8 см, а меньшее основание 7 см. Найдите среднюю линию трапеции.

4). В треугольнике МNK О – точка пересечения медиан, hello_html_mb7bdd4.gif. Найдите число k.


Контрольная работа № 2 по теме « Соотношения между сторонами и углами треугольника»

1 вариант.


1). Найдите координаты и длину вектора hello_html_m5e1be4f1.gif, если hello_html_58ea0fcf.gif.

2). Напишите уравнение окружности с центром в точке А (- 3;2), проходящей через точку В (0; - 2).


3). Треугольник МNK задан координатами своих вершин: М ( - 6; 1 ), N (2; 4 ), К ( 2; - 2 ).

а). Докажите, что Δhello_html_d50b405.gif- равнобедренный;

б). Найдите высоту, проведённую из вершины М.


4). * Найдите координаты точки N, лежащей на оси абсцисс и равноудалённой от точек Р и К, если Р( - 1; 3 ) и К( 0; 2 ).


2 вариант.


1). Найдите координаты и длину вектора hello_html_aa66555.gif, если hello_html_m5eafd679.gif.

2). Напишите уравнение окружности с центром в точке С ( 2; 1 ), проходящей через точку D ( 5; 5 ).


3). Треугольник СDЕ задан координатами своих вершин: С ( 2; 2 ), D (6; 5 ), Е ( 5; - 2 ).

а). Докажите, что Δhello_html_m5fa749ab.gif- равнобедренный;

б). Найдите биссектрису, проведённую из вершины С.


4). * Найдите координаты точки А, лежащей на оси ординат и равноудалённой от точек В и С, если В( 1; - 3 ) и С( 2; 0 ).



Контрольная работа № 3 по теме «Длина окружности. Площадь круга»

1 вариант


1). В треугольнике АВС hello_html_f199cb4.gifА = 450,

hello_html_f199cb4.gifВ = 600, ВС = hello_html_m17c34b48.gifНайдите АС.


2). Две стороны треугольника равны

7 см и 8 см, а угол между ними равен 1200. Найдите третью сторону треугольника.


3). Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).


4). * В ΔАВС АВ = ВС, hello_html_f199cb4.gifСАВ = 300, АЕ – биссектриса, ВЕ = 8 см. Найдите площадь треугольника АВС.



2 вариант


1). В треугольнике СDEhello_html_f199cb4.gifС = 300,

hello_html_f199cb4.gifD = 450, СЕ =hello_html_cf36e30.gifНайдите DE.


2). Две стороны треугольника равны

5 см и 7 см, а угол между ними равен 600. Найдите третью сторону треугольника.


3). Определите вид треугольника АВС, если

А ( 3;9 ), В ( 0; 6 ), С ( 4; 2 ).


4). * В ромбе АВСD АК – биссектриса угла САВ, hello_html_f199cb4.gifВАD = 600, ВК = 12 см. Найдите площадь ромба.

Контрольная работа № 4 по теме «Движения»

1 вариант


1). Найдите площадь круга и длину ограничивающей его окружности, если сторона правильного треугольника, вписанного в него, равна hello_html_4f05b217.gif

2). Вычислите длину дуги окружности с радиусом 4 см, если её градусная мера равна 1200. Чему равна площадь соответствующего данной дуге кругового сектора?

3). Периметр правильного треугольника, вписанного в окружность, равенhello_html_m46b6633b.gif Найдите периметр правильного шестиугольника, описанного около той же окружности.


2 вариант


1). Найдите площадь круга и длину ограничивающей его окружности, если сторона квадрата, описанного около него, равна 6 см.

2). Вычислите длину дуги окружности с радиусом 10 см, если её градусная мера равна 1500. Чему равна площадь соответствующего данной дуге кругового сектора?

3). Периметр квадрата, описанного около окружности, равен 16 дм. Найдите периметр правильного пятиугольника, вписанного в эту же окружность.




Итоговая контрольная работа по геометрии в 9 классе.

Вариант 1.

Часть 1.

  1. Какое утверждение относительно треугольника со сторонами 5, 9,15 верно?

а) треугольник остроугольный;

б) треугольник тупоугольный;

в) треугольник прямоугольный;

г) такого треугольника не существует.

  1. Если одна из сторон треугольника на 3 см меньше другой, высота делит третью сторону на отрезки 5 см и 10 см, то периметр треугольника равен:

а) 25 см; б) 40 см;

в) 32 см; г) 20 см.

  1. Если один из углов ромба равен 60°, а диагональ, проведённая из вершины этого угла, равна hello_html_m1fa037c8.gif см, то периметр ромба равен:

а) 16 см; б) 8 см;

в) 12 см; г) 24 см.

  1. Величина одного из углов треугольника равна 20°. Найдите величину острого угла между биссектрисами двух других углов треугольника.

а) 84°; б) 92°;

в) 80°; г) 87°.

  1. В треугольнике ABC сторона hello_html_m4e8686cf.gif, а сторона hello_html_c0ebe93.gif, сторона hello_html_m459be7e6.gif. Вычислите угол hello_html_m500c41b3.gif.

а) 120° б) 45°;

в) 30°; г) 60°.

Часть 2.

  1. В равнобедренном треугольнике боковая сторона делится точкой касания со вписанной окружностью в отношении 8 : 5, считая от вершины, лежащей против основания. Найдите основание треугольника, если радиус вписанной окружности равен 10.

  2. В треугольнике BCE C=60°, CE : BC =3 : 1. Отрезок CKбиссектриса треугольника. Найдите KE, если радиус описанной около треугольника окружности равен hello_html_63ce4188.gif.

  3. Найдите площадь треугольника KMP, если сторона KP равна 5, медиана PO равна hello_html_5cd7e6ac.gif, KPO= 135°.

  4. Диагонали равнобедренной трапеции перпендикулярны. Найдите площадь трапеции, если средняя линия равна 5.

  5. Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается катетов AC и BC соответственно в точках E и D. Найдите величину угла ABC (в градусах), если известно, что AE = 1, BD = 3.



Вариант 2.

Часть 1.

  1. Какое утверждение относительно треугольника со сторонами 15, 9,12 верно?

а) треугольник остроугольный;

б) треугольник тупоугольный;

в) треугольник прямоугольный;

г) такого треугольника не существует.

  1. Если сходные стороны подобных треугольников равны 2 см и 5 см, площадь первого треугольника равна 8 см2 , то площадь второго треугольника равна:

а) 50 см2; б) 40 см2;

в) 60 см2; г) 20 см2.

  1. Если в равнобедренном треугольнике длина основания равна 12 см, а его периметр равен 32 см, то радиус окружности, вписанной в треугольник, равен:

а) 4 см; б) 3 см;

в) 6 см; г) 5 см.

  1. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки 5 см и 12 см. Найдите катеты треугольника.

а) 12 см и 16 см; б)7 см и 11 см;

в) 10 см и 13см; г) 8 см и 15 см.

  1. Стороны прямоугольника равны hello_html_m8f522f9.gif и hello_html_m417594b3.gif. Найдите радиус окружности, описанной около этого прямоугольника.

а) hello_html_38682b3f.gif; б) hello_html_mf4b5ca.gif;

в) hello_html_m71d2615f.gif; г) hello_html_65a8c5e0.gif.

Часть 2.

  1. Окружность с центром O, вписанная в равнобедренный треугольник ABC с основанием AC, касается стороны BC в точке K, причем CK : BK = 5 : 8. Найдите площадь треугольника, если его периметр равен 72.

  2. Около треугольника ABC описана окружность. Медиана треугольника AM продлена до пересечения с окружностью в точке K. Найдите сторону AC, если AM= 18, MK= 8, BK=10.

  3. Найдите основание равнобедренного треугольника, если угол при основании равен 30°, а взятая внутри треугольника точка находится на одинаковом расстоянии, равном 3, от боковых сторон и на расстоянии hello_html_m12c9ba9.gifот основания.

  4. Пусть Mточка пересечения диагоналей выпуклого четырёхугольника ABCD, в котором стороны AB, AD и BC равны меду собой. Найдите угол CMD (в градусах), если известно, что DM = MC, а угол CAB не равен углу DBA.

  5. На боковой стороне BC равнобедренного треугольника ABC как на диаметре построена окружность, пересекающая основание этого треугольника в точке D. Найдите квадрат расстояния от вершины A до центра окружности, если AD =hello_html_5909bbae.gif, а угол ABC равен 120°.























«Согласовано»


«Согласовано»


Протокол №1 заседания

методического совета

МБОУ Кагальницкой СОШ

от 28 августа 2014 года


Руководитель МС: ______ / Скорикова Е. Н/

Заместитель директора по УВР

____________ /Плотникова Е. М./


27 августа 2014 года


















Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

    Данная рабочая программа ориентирована на учащихся 9 класса и реализуется на основе следующих документов:

1.Геометрия 7-9 классы. Программа общеобразовательных школ к учебнику Л.С. Атанасяна и др./М., Просвещение, 2009г./

2.Федерального компонента государственного стандарта основного общего образования.

3.Федерального перечня учебников, рекомендованных Министерством образования РФ, с учетом требований к оснащению образовательного процесса, в соответствии с содержанием компонента государственного стандарта общего образования.

4.Базисного учебного плана РО 2014-2015 учебного года.

   В ней также учитываются основные идеи и положения Программы развития  и формирования УУД для основного общего образования.

Автор
Дата добавления 15.02.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров378
Номер материала 389729
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх