Инфоурок Физика Рабочие программыФизика, программа курса 10, 11 кл, технологический класс

Физика, программа курса 10, 11 кл, технологический класс

Скачать материал

 

 

Государственное бюджетное образовательное учреждение

города Севастополя

 «Средняя общеобразовательная школа №29 имени М.Т. Калашникова»

 

 

 

 

«Рассмотрено»

Педагогическим

советом

Протокол № 1

от «30» 08. 2021 

 

 

 

 

 

 

Рабочая программа

по физике

для  10-А, 11-А  классов

профиль технологический

 

 

Количество часов в неделю – 5 час, за год-170 часов

Срок  реализации – два года

Программа разработана на основе примерной программы среднего (полного)общего образования: “Физика” 10-11 классы (профильный уровень) и авторской программы Г.Я. Мякишева для общеобразовательных учреждений 10-11 классы,2008г., 

 

Программу составила учитель физики Красовская  М. В.

 

 

 

 

Севастополь

2021 год

 

II ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 

Рабочая программа учебного предмета «Физика» для 10-11 классов среднего общего образования составлена на основе:  

- примерной программы среднего (полного)общего образования: “Физика” 10-11 классы (профильный уровень) и авторской программы Г.Я. Мякишева для общеобразовательных учреждений 10-11 классы,2008г., 

- учебного плана ГБОУ СОШ № 29 им М.Т. Калашникова.

Для реализации Рабочей программы используется учебно-методический комплект, включающий учебники:

1)                    Мякишев Г.Я, Буховцев Б.Б., Сотский Н.Н., 10 класс, под редакцией Н.А. Парфентьевой.;

2)                    Мякишев Г.Я, Буховцев Б.Б.,Чаругин В.М. 11 класс, под редакцией Н.А. Парфентьевой.;

Направленность программы: общеобразовательная.

Уровень изучения учебного материала: профильный

         Срок освоения программы - 2 года.

Рабочая программа учебного предмета «Физика» в 10-11 классах включает все темы, предусмотренные федеральным государственным образовательным стандартом основного общего образования по физике и основной образовательной программой основного общего образования.

Календарно-тематическое планирование предполагает наличие контрольных и проверочных работ, которые проводятся после завершения изучения конкретной темы или раздела. Преобладающей формой текущего контроля выступает письменный (самостоятельные, контрольные работы, тесты) и устный опрос.

Учебный план ГБОУ СОШ № 29 им МТ. Калашникова  предусматривает обязательное изучение физики на уровне основного общего образования в объеме 340 ч. В том числе:

в 10 классе -170 ч,

в 11 классе - 170 ч.

 

Рабочая программа  также используется для обучения учащихся по медицинским показаниям на дому по состоянию здоровья.

 

III Планируемые результаты освоения учебного предмета «Физика»

Личностные результаты освоения учебного предмета физики:

·Формирование мотивации к дальнейшей образовательной деятельности, оценки собственных возможностей и личных интересов при выборе профессиональной деятельности, к сознательному отношению к непрерывному образованию как условию успешной профессиональной и общественной деятельности: обсуждению физики как науки, её связей с другими естественными науками, выполнение исследовательских и конструкторских заданий;

·Развитие познавательных интересов, интеллектуальных и творческих способностей: объяснение физических процессов и явлений на основе теорий, знакомство с работами физиков-классиков, выполнение проектов и учебных исследований;

·Развитие самостоятельности в приобретении и совершенствовании новых знаний и умений: экспериментальное исследование объектов физики, опытное подтверждение физических законов и теорий, объяснение наблюдаемых явлений на основе физических теорий, теоретическое обобщение с использованием общенаучных понятий и методологических принципов;

·Ценностное отношение к физике и результатам обучения, воспитание уважения к творцам науки и техники: обсуждение вклада ученых в развитие фундаментальных физических теорий, астрофизики.

 Метапредметные результаты освоения учебного предмета физики:

·Владение умением проектировать самостоятельную учебно-познавательную деятельность: определение объекта исследования, постановка целей, выбор теоретического материала или экспериментального метода исследования, формулировка гипотезы исследования, получение из неё следствий, выводов, экспериментальная проверка следствий, оценка полученных результатов и проведение самоконтроля;

·Развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели физических явлений, экспериментально проверять выдвигаемые гипотезы, предсказывать результаты опытов или наблюдений на основе физических законов и теорий, устанавливать границы их применимости;

·Понимание различий между теоретическими и эмпирическими методами исследования, теоретическими и техническими моделями, теоретическими моделями и реальными объектами, отличий научных данных от непроверенной информации; ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека, для дальнейшего научно-технического прогресса;

·Формирование основ экологического мышления, осознание влияние социально-экономических процессов на состояние природной среды, приобретение опыта эколого-направленной деятельности: рассмотрение экологических проблем, связанных с использованием тепловых двигателей, с эксплуатацией АЭС, выполнение метапредметных проектов экологического содержания;

·Совершенствование опыта самостоятельного поиска информации естественнонаучного содержания с использованием различных источников и информационных технологий, её обработки и представления в разных формах;

·Готовность к самостоятельному исследованию физических объектов, оформлению его результатов в виде докладов, рефератов, проектов; приобщение к опыту проектной и учебно-исследовательской деятельности и публичного представления её результатов, в том числе и с использованием средств ИКТ;

·Развитие умений вести дискуссию, выслушивать разные точки зрения, признавать право другого человека на иное мнение, отстаивать свои взгляды и убеждения, работать в группе с выполнением различных социальных ролей.

Предметные результаты изучения учебного предмета физики:

·Владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное использование физической терминологии;

·Сформированность умений использовать научный метод познания: проводить наблюдения, строить модели и выдвигать гипотезы исследований, планировать и выполнять эксперименты с использованием аналоговых и цифровых измерительных приборов, представлять результаты измерений с помощью таблиц, графиков и формул, объяснять полученные результаты и делать выводы, понимать неизбежность погрешностей измерений физических величин, оценивать погрешности результатов измерений, обнаруживать зависимости между физическими величинами, выводить из экспериментальных фактов и теоретических моделей физические законы;

·Правильное обращение с физическими приборами и проведение простых экспериментальных исследований физических процессов(явлений): проведение необходимых измерений и их математическая обработка, анализ и обобщение результатов экспериментального исследования;

·Способность объяснять на основе физических законов и теорий процессы  и явления, решать физические задачи;

·Сформирование знаний о становлении физики как науки,о вкладе отечественных и зарубежных ученых-физиков в развитие науки и техники, об элементах физической картины мира и их эволюции;

·Понимание физических основ и принципов действия машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознания возможных причин техногенных и экологических катастроф;

·Использование приобретённых знаний и умений в практической деятельности и в повседневной жизни для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники, электропроводки, водопровода, сантехники и газовых приборов в квартире, рационального природопользования, применения простых механизмов, оценки безопасности радиационного фона.

Для углубленного уровня изучения физики дополнительно:

·Владение системными знаниями об общих физических закономерностях, законах, теориях; об особенностях современной физической картины мира;

·Сформированность умений исследовать и анализировать разнообразные физические явления и свойства объектов; объяснять и предсказывать результаты опытов и наблюдений;

·Способность описывать и объяснять действие приборов и технических устройств, их технические характеристики;

·Сформированность умения решать задачи разного уровня сложности: выбирать физическую модель, выстраивать логические цепочки рассуждений при анализе процесса, предложенного в задаче, и предсказания результатов, оценивать реалистичность полученного ответа и корректировать свои рассуждения с учетом этой оценки;

·Готовность к теоретическим и экспериментальным исследованиям физических процессов и явлений( в том числе и практикуме) их компьютерному моделированию, к участию в тематических дискуссиях, проектной и учебно-исследовательской деятельности, к подготовке докладов, рефератов, выполнению других творческих работ.

 

 

 

 

 

 

 

10   Класс

 

Тема № 1Физика как наука. Методы научного познания природы

Ученик научится:

· наблюдать и описывать физические явления;

· переводить значения величин из одних единиц в другие;

· объяснять различные фундаментальные взаимодействия;

· сравнивать интенсивность и радиус действия взаимодействий

Ученик получит возможность научиться:

· понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

· владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;

Механика.

Ученик научится:

·  использовать идею атомизма для объяснения структуры вещества; интерпретировать физическую информацию, полученную

 из других источников.

·  использовать для описания механического движения кинематические величины: радиус-вектор, перемещение, путь, средняя путевая скорость, мгновенная и относительная скорости, мгновенное и центростремительное ускорения, период и частота вращения, угловая и линейная скорости; разъяснять основные положения кинематики; описывать демонстрационные опыты Бойля и опыты Галилея

для исследования явления свободного падения тел; описывать эксперименты по измерению ускорения свободного

падения и изучению движения тела, брошенного горизонтально;

·  делать выводы об особенностях свободного падения тел в вакууме и в воздухе, сравнивать их траектории;

·  применять полученные знания для решения практических задач. давать определения понятий: инерциальная система отсчета, инертность, сила тяжести, сила упругости, сила реакции опоры, сила натяжения, вес тела, сила трения покоя, сила трения скольжения, сила трения качения;  формулировать принцип инерции, принцип относительности Галилея, принцип суперпозиции сил, законы Ньютона, закон

всемирного тяготения, закон Гука;

·  разъяснять предсказательную и объяснительную функции классической механики; описывать опыт Кавендиша по измерению гравитационной постоянной, эксперимент по измерению коэффициента трения скольжения; наблюдать и интерпретировать результаты демонстрационного опыта, подтверждающего закон инерции; исследовать движение тела по окружности под действием сил тяжести и упругости; делать выводы о механизме возникновения силы упругости с помощью механической модели кристалла; объяснять принцип действия крутильных весов;

·  прогнозировать влияние невесомости на поведение космонавтов при длительных космических полетах; применять полученные знания для решения практических задач. давать определения понятий: замкнутая система, реактивное движение, устойчивое, неустойчивое и безразличное равновесия; потенциальные силы, консервативная система, абсолютно упругий и абсолютно неупругий удары;  давать определения физических величин: импульс силы, импульс тела, работа силы, потенциальная, кинетическая и полная механическая энергия, мощность; формулировать законы сохранения импульса и энергии с учетом границ их применимости; объяснять принцип реактивного движения;

·  описывать эксперимент по проверке закона сохранения энергии при действии сил тяжести и упругости;

·  делать выводы и умозаключения о преимуществах использования энергетического подхода при решении ряда задач динамики. давать определения понятий: вынужденные, свободные (собственные) и затухающие колебания, периодическое движение, резонанс;

·  давать определение физических величин: первая и вторая космические скорости, амплитуда колебаний, статическое смещение;

·  исследовать возможные траектории тела, движущегося в гравитационном поле, движение спутников и планет; зависимость периода колебаний пружинного маятника от жесткости пружины и массы груза, математического маятника — от длины нити и ускорения свободного падения;

·  применять полученные знания о явлении резонанса для решения практических задач, встречающихся в повседневной жизни;

·  прогнозировать возможные варианты вынужденных колебаний одного и того же пружинного маятника в средах с

разной плотностью;

·  делать выводы и умозаключения о деталях международных космических программ, используя знания о первой и второй космических скоростях.

·  давать определения понятий:  поступательное движение, вращательное движение, абсолютно твердое тело,

рычаг, блок, центр тяжести тела, центр масс;

·  давать определение физических величин: момент силы, плечо силы;

·  формулировать условия статического равновесия для поступательного и вращательного движения;

·  применять полученные знания для нахождения координат центра масс системы тел давать определения понятий: радиус Шварцшильда, горизонт событий, собственное время, энергия покоя тела;

·  формулировать постулаты специальной теории относительности и следствия из них; условия, при которых происходит

аннигиляция и рождение пары частиц;

·  описывать принципиальную схему опыта Майкельсона —Морли; делать вывод, что скорость света — максимально возможная скорость распространения любого взаимодействия;

·  оценивать критический радиус черной дыры, энергию покоя частиц;

·  объяснять эффект замедления времени, определять

собственное время, время в разных инерциальных системах отсчета, одновременность событий;

·  применять релятивистский закон сложения скоростей для решения практических задач.

Ученик получит возможность научиться:

· В познавательной сфере: умение раскрывать на примерах роль физики в формировании современной научной картины мира и в практической деятельности человека; демонстрировать на примерах взаимосвязь между физикой и другими естественными науками; давать определения изученным понятиям; называть основные положения изученных теорий и гипотез; описывать и демонстрационные и самостоятельно проведенные эксперименты, используя для этого русский язык и язык физики; классифицировать изученные объекты и явления; делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты; структурировать изученный материал; интерпретировать физическую информацию, полученную из других источников; применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального природоиспользования и охраны окружающей среды.

· В ценностно-ориентационной сфере: анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов.

· В трудовой сфере: проводить физический эксперимент.

· В сфере физической культуры: оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

Молекулярная физика и термодинамика

Ученик научится: 

·  давать определения понятий: молекула, атом, изотоп, относительная атомная масса, дефект массы, моль, постоянная Авогадро, фазовый переход, ионизация, плазма; разъяснять основные положения молекулярно-кинетической теории строения вещества; классифицировать агрегатные состояния вещества; характеризовать изменения структуры агрегатных

состояний вещества при фазовых переходах; формулировать условия идеальности газа;

·  описывать явление ионизации; объяснять влияние солнечного ветра на атмосферу Земли. давать определения понятий: стационарное равновесное состояние газа, температура тела, абсолютный нуль температуры, изопроцесс, изотермический, изобарный и изохорный процессы;

·  использовать статистический подход для описания поведения совокупности большого числа частиц, включающий введение микроскопических и макроскопических параметров; описывать демонстрационные эксперименты, позволяющие установить для газа взаимосвязь между его давлением, объемом, массой и температурой; эксперимент по изучению изотермического процесса в газе;

·  объяснять опыт с распределением частиц идеального газа по двум половинам сосуда, газовые законы на основе молекулярно-кинетической теории строения вещества; представить распределение молекул идеального газа по скоростям;

·  применять полученные знания к объяснению явлений, наблюдаемых в природе и быту. давать определения понятий: число степеней свободы, теплообмен, теплоизолированная система, адиабатный процесс, тепловые двигатели, замкнутый цикл, необратимый процесс; физических величин: внутренняя энергия, количество теплоты, КПД теплового двигателя;

·  объяснять особенность температуры как параметра состояния системы; наблюдать и интерпретировать результаты опытов, иллюстрирующих изменение внутренней энергии тела при совершении работы, явление диффузии;

·  объяснять принцип действия тепловых двигателей; оценивать КПД различных тепловых двигателей; формулировать законы термодинамики; делать вывод о том, что явление диффузии является необратимым процессом;

·  применять полученные знания по теории тепловых двигателей для рационального природопользования и охраны окружающей среды.

·  давать определения понятий: пар, насыщенный пар, испарение, кипение, конденсация, поверхностное натяжение, смачивание, мениск, угол смачивания, капиллярность; давать определение физических величин:  критическая температура, удельная теплота парообразования, температура кипения, точка росы, давление насыщенного пара, относительная влажность воздуха, сила поверхностного натяжения;

·  описывать эксперимент по изучению капиллярных явлений, обусловленных поверхностным натяжением жидкости; наблюдать и интерпретировать явление смачивания и капиллярные явления, протекающие в природе и быту; строить графики зависимости температуры тела от времени при нагревании, кипении, конденсации, охлаждении; находить из графиков значения необходимых величин.

·  давать определения понятий: плавление, кристаллизация, удельная теплота плавления, кристаллическая решетка, элементарная ячейка, монокристалл, поликристалл, аморфные тела, композиты, полиморфизм, анизотропия, изотропия, деформация (упругая, пластическая);  давать определения физических величин: механическое напряжение, относительное удлинение, предел упругости, предел прочности при растяжении и сжатии;

·  объяснять отличие кристаллических твердых тел от аморфных; описывать эксперимент по измерению удельной теплоемкости вещества; формулировать закон Гука; применять полученные знания для решения практических задач

·  давать определение физических величин: длина волны, интенсивность звука, уровень интенсивности звука;

·  исследовать распространение сейсмических волн, явление поляризации; описывать и воспроизводить демонстрационные опыты по распространению продольных волн в пружине и в газе, поперечных  волн — в пружине и шнуре, описывать эксперимент по измерению с помощью эффекта Доплера скорости движущихся объектов: машин, астрономических объектов;

·  объяснять различие звуковых сигналов по тембру и громкости.

Ученик получит возможность научиться:

·  применять полученные знания для решения практических задач;

·  владеть экспериментальными методами исследования;

·  систематизировать полученные знания и применять их на практике;

·  в познавательной сфере: умение раскрывать на примерах роль физики в формировании современной научной картины мира и в практической деятельности человека; демонстрировать на примерах взаимосвязь между физикой и другими естественными науками; давать определения изученным понятиям; называть основные положения изученных теорий и гипотез; описывать и демонстрационные и самостоятельно проведенные эксперименты, используя для этого русский язык и язык физики; классифицировать изученные объекты и явления; делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты; структурировать изученный материал; интерпретировать физическую информацию, полученную из других источников; применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального  природоиспользования и охраны окружающей среды.

·  в ценностно-ориентационной сфере: анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов.

·  в трудовой сфере: проводить физический эксперимент.

·  в сфере физической культуры: оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

Электродинамика

Ученик научится:

·  давать определения понятий: точечный электрический заряд, электрическое взаимодействие, электризация тел, электрически изолированная система тел, электрическое поле, линии напряженности электростатического поля; физической величины: напряженность электростатического поля;

·  объяснять принцип действия крутильных весов, светокопировальной машины, возможность использования явления электризации при получении дактилоскопических отпечатков; формулировать закон сохранения электрического заряда и закон Кулона, границы их применимости;

·  устанавливать аналогию между законом Кулона и законом всемирного тяготения; описывать демонстрационные эксперименты по электризации тел и объяснять их результаты; описывать эксперимент по измерению электроемкости конденсатора; применять полученные знания для объяснения неизвестных ранее  электрических явлений; давать определения понятий: эквипотенциальная поверхность, конденсатор, свободные и связанные заряды, проводники, диэлектрики, полупроводники;

·  объяснять физический смысл величин: величин: потенциал электростатического поля, разность потенциалов, относительная диэлектрическая проницаемость среды, электроемкость уединенного проводника, электроемкость конденсатора;

·  наблюдать и интерпретировать явление электростатической индукции; объяснять принцип очистки газа от угольной пыли с помощью электростатического фильтра; описывать эксперимент по измерению электроемкости конденсатора;

·  объяснять зависимость электроемкости плоского конденсатора от площади пластин и расстояния между ними;

·  применять полученные знания для объяснения неизвестных ранее электрических явлений, владеть экспериментальными методами исследования. давать определения понятий: электрический ток, постоянный электрический ток, источник тока, сторонние силы, дырка, изотопический эффект, последовательное и параллельное соединения проводников, электролиты, электролитическая диссоциация, степень диссоциации, электролиз; физических величин: сила тока, ЭДС, сопротивление проводника, мощность электрического тока;

·  объяснять условия существования электрического тока, принцип действия шунта и добавочного сопротивления; объяснять качественно явление сверхпроводимости согласованным движением;

·  формулировать законы Ома для однородного проводника, для замкнутой цепи с одним и несколькими источниками, закон Фарадея;

·  рассчитывать ЭДС гальванического элемента;

·  исследовать смешанное сопротивление проводников;

·  описывать демонстрационный опыт на последовательное и параллельное соединения проводников; самостоятельно проведенный эксперимент по измерению силы тока и напряжения с помощью амперметра и вольтметра, по измерению ЭДС и внутреннего сопротивления проводника;

·  наблюдать и интерпретировать тепловое действие электрического тока, передачу мощности от источника к потребителю;

·  использовать законы Ома для однородного проводника и замкнутой цепи, закон Джоуля-Ленца для расчета электрических цепей;

  исследовать электролиз с помощью законов Фарадея.

·  давать определения понятий: магнитоэлектрическая индукция, колебательный контур, резонанс в колебательном контуре, собственная и примесная проводимость, донорные и акцепторные примеси, р—n-переход, запирающий слой;

·  использовать на практике транзистор в усилителе и генераторе электрических сигналов;

·  объяснять принцип действия полупроводникового диода, транзистора.

Ученик получит возможность научиться:

·  применять полученные знания для решения практических задач;

·  владеть экспериментальными методами исследования;

·  систематизировать полученные знания и применять их на практике;

·  в познавательной сфере: умение раскрывать на примерах роль физики в формировании современной научной картины мира и в практической деятельности человека; демонстрировать на примерах взаимосвязь между физикой и другими естественными науками; давать определения изученным понятиям; называть основные положения изученных теорий и гипотез; описывать и демонстрационные и самостоятельно проведенные эксперименты, используя для этого русский язык и язык физики; классифицировать изученные объекты и явления; делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты; структурировать изученный материал; интерпретировать физическую информацию, полученную из других источников; применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального природоиспользования и охраны окружающей среды.

·  в ценностно-ориентационной сфере: анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов.

·  в трудовой сфере: проводить физический эксперимент.

·  в сфере физической культуры: оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

 

10    класс

 

Основы электродинамики( 2 часть)

Ученик научится

·  решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

·  давать определения понятий: магнитное  взаимодействие,  линии магнитной индукции, однородное магнитное поле, собственная индукция, диамагнетики, парамагнетики, ферромагнетики, остаточная намагниченность, кривая намагничивания; физических величин: вектор магнитной индукции, магнитный поток, сила Ампера, сила Лоренца, индуктивность контура, магнитная проницаемость среды;

·  описывать фундаментальные физические опыты Эрстеда и Ампера, поведение рамки с током в однородном магнитном поле, взаимодействие токов; определять направление вектора магнитной индукции и силы, действующей на проводник с током в магнитном поле; формулировать правило буравчика и правило левой руки, принципы суперпозиции магнитных полей, закон Ампера;

·  объяснять принцип действия электроизмерительного прибора магнитоэлектрической системы, электродвигателя постоянного тока, масс-спектрографа и циклотрона; изучать движение заряженных частиц в магнитном поле;

·  исследовать механизм образования и структуру радиационных поясов Земли, прогнозировать и анализировать их влияние на жизнедеятельность в земных условиях;

·  давать определения понятий: электромагнитная индукция, индукционный ток, самоиндукция, токи замыкания и размыкания, трансформатор; физических величин: коэффициент трансформации;

·  описывать демонстрационные опыты Фарадея с катушками и постоянным магнитом, опыты Генри, явление электромагнитной индукции;

·  использовать на практике токи замыкания и размыкания; объяснять принцип действия трансформатора, генератора переменного тока; приводить примеры использования явления электромагнитной индукции в современной технике: детекторе металла в аэропорту,  в поезде на магнитной подушке, бытовых СВЧ-печах, записи и оспроизведении информации, в генераторах переменного  тока;

·  объяснять принципы передачи электроэнергии на большие расстояния.

·  давать определения понятий: магнитоэлектрическая индукция, колебательный контур, резонанс в колебательном контуре,  выпрямление переменного тока, транзистор; физических величин: фаза колебаний, действующее значение силы переменного тока, ток смещения, время релаксации, емкостное сопротивление, индуктивное сопротивление, коэффициент усиления;

·  описывать явление магнитоэлектрической индукции, энергообмен между электрическим и магнитным полем в колебательном контуре и явление резонанса, описывать выпрямление переменного тока с помощью полупроводникового диода;

Ученик получит возможность научиться:

·  применять полученные знания для решения практических задач;

·  владеть экспериментальными методами исследования;

·  систематизировать полученные знания и применять их на практике;

·  в познавательной сфере: умение раскрывать на примерах роль физики в формировании современной научной картины мира и в практической деятельности человека; демонстрировать на примерах взаимосвязь между физикой и другими естественными науками; давать определения изученным понятиям; называть основные положения изученных теорий и гипотез; описывать и демонстрационные и самостоятельно проведенные эксперименты, используя для этого русский язык и язык физики; классифицировать изученные объекты и явления; делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты; структурировать изученный материал; интерпретировать физическую информацию, полученную из других источников; применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального  природоиспользования и охраны окружающей среды.

·  в ценностно-ориентационной сфере: анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов.

·  в трудовой сфере: проводить физический эксперимент.

·  в сфере физической культуры: оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

Колебания и волны.

Ученик научится:

·  давать определения понятий: электромагнитная волна, бегущая гармоническая электромагнитная волна, плоско-поляризованная (или линейно-поляризованная) электромагнитная волна, плоскость поляризации электромагнитной волны, фронт волны, луч, радиосвязь, модуляция и демодуляция сигнала, амплитудная и частотная модуляция; физических величин: длина волны, поток энергии и плотность потока энергии электромагнитной волны, интенсивность электромагнитной волны;

·  объяснять зависимость интенсивности электромагнитной волны от ускорения излучающей заряженной частицы, от расстояния до источника излучения и его частоты; описывать механизм давления электромагнитной волны;

·  классифицировать диапазоны частот спектра электромагнитных волн;

·  описывать опыт по сборке простейшего радиопередатчика и радиоприемника;

Ученик получит возможность научиться:

·  использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;

·  различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);

·  использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

·  находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Оптика

Ученик научится:

·  давать определения понятий: передний фронт волны, вторичные механические волны, мнимое и действительное изображения, преломление, полное внутреннее отражение, дисперсия света, точечный источник света, линза, фокальная плоскость, аккомодация, лупа; физических величин: угол падения, угол отражения, угол преломления, абсолютный показатель преломления среды, угол полного внутреннего отражения, преломляющий угол призмы, линейное увеличение оптической системы, оптическая сила линзы, поперечное увеличение линзы, расстояние наилучшего зрения, угловое увеличение;

·  наблюдать и интерпретировать явления отражения и преломления световых волн, явление полного внутреннего отражения, явления дисперсии; формулировать принцип Гюйгенса, закон отражения волн, закон преломления;

·  описывать опыт по измерению показателя преломления стекла;

·  строить изображения и ход лучей при преломлении света, изображение предмета в собирающей и рассеивающей линзах;

·  определять положения изображения предмета в линзе с помощью формулы тонкой линзы;

·  анализировать человеческий глаз как оптическую систему;

·  корректировать с помощью очков дефекты зрения; объяснять принцип действия оптических приборов, увеличивающих угол зрения: лупу, микроскоп, телескоп; применять полученные знания для решения практических задач.

·  давать определения понятий: монохроматическая волн, когерентные волны и источники, интерференция, просветление оптики, дифракция, зона Френеля; физических величин: время и длина когерентности, геометрическая разность хода интерферирующих волн, период и разрешающая способность дифракционной решетки;

·  наблюдать и интерпретировать результаты (описывать) демонстрационных экспериментов по наблюдению явлений интерференции и дифракции света;

·  формулировать принцип Гюйгенса—Френеля, условия минимумов и максимумов при интерференции волн, условия дифракционного минимума на щели и главных максимумов при дифракции света на решетке;

·  описывать эксперимент по измерению длины световой волны с помощью дифракционной решетки;

·  объяснять взаимное усиление и ослабление волн в пространстве;

·  делать выводы о расположении дифракционных минимумов на экране за освещенной щелью;

·  выбирать способ получения когерентных источников; различать дифракционную картину при дифракции света на щели и на дифракционной решетке.

Ученик получит возможность научиться:

·  применять полученные знания для решения практических задач;

·  владеть экспериментальными методами исследования;

·  систематизировать полученные знания и применять их на практике;

·  в познавательной сфере: умение раскрывать на примерах роль физики в формировании современной научной картины мира и в практической деятельности человека; демонстрировать на примерах взаимосвязь между физикой и другими естественными науками; давать определения изученным понятиям; называть основные положения изученных теорий и гипотез; описывать и демонстрационные и самостоятельно проведенные эксперименты, используя для этого русский язык и язык физики; классифицировать изученные объекты и явления; делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты; структурировать изученный материал; интерпретировать физическую информацию, полученную из других источников; применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального природоиспользования и охраны окружающей среды.

·  в ценностно-ориентационной сфере: анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов.

·  в трудовой сфере: проводить физический эксперимент.

·  в сфере физической культуры: оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

Квантовые явления

Ученик научится:

·  распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;

·  описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

·  анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;

·  различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;

·  приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

·  физических величин: работа выхода, красная граница фотоэффекта, энергия ионизации;

·  разъяснять основные положения волновой теории света, квантовой гипотезы Планка, теории атома водорода;

·  формулировать законы теплового излучения: Вина и Стефана—Больцмана, законы фотоэффекта, соотношения неопределенностей Гейзенберга, постулаты Бора;

·  оценивать длину волны де Бройля, соответствующую движению электрона, кинетическую энергию электрона при фотоэффекте, длину волны света, испускаемого атомом водорода;

·  описывать принципиальную схему опыта Резерфорда, предложившего планетарную модель атома;

·  объяснять принцип действия лазера;

·  сравнивать излучение лазера с излучением других источников света. давать определения понятий: протонно-нейтронная модель ядра, изотопы, радиоактивность, альфа- и бета-распад, гамма-излучение, искусственная радиоактивность, цепная реакция деления, ядерный реактор, термоядерный синтез; физических величин: удельная энергия связи, период полураспада, активность радиоактивного вещества, энергетический выход ядерной реакции, коэффициент размножения нейтронов, критическая масса, доза поглощенного излучения, коэффициент качества;

·  объяснять принцип действия ядерного реактора;

·  объяснять способы обеспечения безопасности ядерных реакторов и АЭС;

·  прогнозировать контролируемый естественный радиационный

·  фон, а также рациональное природопользование при внедрении управляемого термоядерного синтеза (УТС).

·  давать определения понятий: элементарные частицы, фундаментальные частицы, античастица, аннигиляция, лептонный заряд, переносчик взаимодействия, барионный заряд, адроны, лептоны, мезоны, барионы, гипероны, кварки, глюоны;

·  классифицировать элементарные частицы, подразделяя их на лептоны и адроны;

·  формулировать принцип Паули, законы сохранения лептонного и барионного зарядов;

·  описывать структуру адронов, цвет и аромат кварков; приводить примеры мезонов, гиперонов, глюонов.

Ученик получит возможность научиться:

·  использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

·  соотносить энергию связи атомных ядер с дефектом массы;

·  приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;

·  понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Значение физики для понимания мира и

развития производительных сил

Учащийся научится:

·объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

· характеризовать взаимосвязь между физикой и другими естественными науками;

· характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;

· понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

· владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;

· самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;

· самостоятельно планировать и проводить физические эксперименты;

· решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;

· объяснять границы применения изученных физических моделей при решении физических и метапредметных задач;

· выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

· характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;

· объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;

· объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Учащийся получит возможность научиться:

· проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;

· описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;

·понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;

·решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;

·анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;

·формулировать и решать новые задачи, возникающие в ходе учебно- исследовательской и проектной деятельности;

·усовершенствовать приборы и методы исследования в соответствии с поставленной задачей; – использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

 

IV  Содержание учебного предмета

10 класс

Тема №1 Физика как наука. Методы научного познания природы.  

       Повторение(2 час)   

Физика – фундаментальная наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Моделирование явлений и объектов природы. Научные гипотезы. Роль математики в физике. Физические законы и теории, границы их применимости. Принцип соответствия. Физическая картина мира.

 

Тема № 2Механика (66 час)

Механическое движение и его относительность. Способы описания механического движения. Материальная точка как пример физической модели. Перемещение, скорость, ускорение.

Уравнения прямолинейного равномерного и равноускоренного движения. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение.

Принцип суперпозиции сил. Законы динамики Ньютона и границы их применимости. Инерциальные системы отсчета. Принцип относительности Галилея. Пространство и время в классической механике.

Силы тяжести, упругости, трения. Закон всемирного тяготения. Законы Кеплера. Вес и невесомость. Законы сохранения импульса и механической энергии. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Момент силы. Условия равновесия твердого тела.

Механические колебания. Амплитуда, период, частота, фаза колебаний. Уравнение гармонических колебаний. Свободные и вынужденные колебания. Резонанс. Автоколебания. Механические волны. Поперечные и продольные волны. Длина волны. Уравнение гармонической волны. Свойства механических волн: отражение, преломление, интерференция, дифракция. Звуковые волны.

Лабораторные работы:

№ 1. Изучение движения тела, брошенного горизонтально

№ 2. Изучение движения тела по окружности.

№ 3. Измерение жесткости пружины.

№ 4. Измерение коэффициента трения скольжения

№ 4. Изучение закона сохранения механической энергии.

№ 5. Изучение равновесия тела под действием нескольких сил

 

Тема №3 Молекулярная физика и термодинамика (44 час)

Атомистическая гипотеза строения вещества и ее экспериментальные доказательства. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул.

Уравнение состояния идеального газа. Изопроцессы. Границы применимости модели идеального газа.

Модель строения жидкостей. Поверхностное натяжение. Насыщенные и ненасыщенные пары. Влажность воздуха.

Модель строения твердых тел. Механические свойства твердых тел. Дефекты кристаллической решетки. Изменения агрегатных состояний вещества.

Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Расчет количества теплоты при изменении агрегатного состояния вещества. Адиабатный процесс. Второй закон термодинамики и его статистическое истолкование. Принципы действия тепловых машин. КПД тепловой машины. Проблемы энергетики и охрана окружающей среды.

Лабораторные работы:

№ 6. Экспериментальная проверка закона Гей-Люссака.

 

Тема № 4Основы электродинамики. (30 час)

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей. Потенциал электрического поля. Потенциальность электростатического поля. Разность потенциалов. Напряжение. Связь напряжения с напряженностью электрического поля.

Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле. Энергия электрического поля.

Электрический ток. Последовательное и параллельное соединение проводников. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи.

Лабораторные работы:

№ 7. Последовательное и параллельное соединения проводников.

№ 8. Измерение ЭДС и внутреннего сопротивления источника тока

Тема № 5 Физический практикум (18 час)

 

Тема № 6 Резерв (10 час)

 

11  класс

 

Тема № 1 Повторение ( 8 час)

 Повторение тем за 10 класс Механика, молекулярно-кинетической теории, законов по электростатике законов постоянного тока.

 

Тема № 2Основы электродинамики (продолжение)(34 час)

 Электрический ток в металлах, электролитах, газах и вакууме. Закон электролиза. Плазма. Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.

Магнитное поле. Взаимодействие токов. Магнитное поле. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Магнитные свойства вещества.

Электромагнитная индукция. Открытие электромагнитной индукции. Правило Ленца. Электроизмерительные приборы. Магнитный поток. Закон электромагнитной индукции. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля. Магнитные свойства вещества. Электромагнитное поле.

Лабораторные работы:

№ 1. Наблюдение действия магнитного поля на ток.

№ 2. Изучение явления электромагнитной индукции.

 

Тема № 3Колебания и волны (35 час)

Механические колебания. Свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.

Электромагнитные колебания. Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Активное сопротивление, емкость и индуктивность в цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи. Генерирование энергии. Трансформатор. Передача электрической энергии.

Механические волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Звуковые волны. Интерференция волн. Принцип Гюйгенса. Дифракция волн.

Электромагнитные волны. Излучение электромагнитных волн. Свойства электромагнитных волн. Принцип радиосвязи. Модуляция и детектирование. Радиолокация. Телевидение.

Лабораторные работы:

№ 3. Определение ускорения свободного падения при помощи маятника.

 

Тема № 4  Оптика (31 час)

Скорость света. Принцип Гюйгенса. Закон отражения света. Световые лучи. Закон преломления света. Полное внутреннее отражение. Призма. Формула тонкой линзы. Получение изображения с помощью линзы. Оптические приборы. Их разрешающая способность. Свето-электромагнитные волны. Скорость света и методы ее измерения. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

Основы специальной теории относительности

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы и энергии.

Лабораторные работы:

№ 4. Измерение показателя преломления стекла.

№ 5. Определение оптической силы и фокусного расстояния собирающей линзы.

№ 6. Измерение световой волны.

№ 7. Оценка информационной емкости компакт-диска.

№ 8. Наблюдение сплошного и линейчатого спектров.

 

Тема № 5 Квантовая физика (36 час)

Световые кванты. Тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Опыты Лебедева и Вавилова.

Атомная физика. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Соотношение неопределенностей Гейзенберга. Корпускулярно-волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра. Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада и его статистический характер. Протонно-нейтронная модель строения атомного ядра. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Физика элементарных частиц. Статистический характер процессов в микромире. Античастицы.

Тема № 6 Практикум по подготовке к экзамену

Тема №7  Значение физики для понимания мира и развития производительных сил (2 час)

Единая физическая картина мира. Фундаментальные взаимодействия. Физика и научно-техническая революция. Физика и культура.

 

Тема № 8 Резерв ( 6 час)

 

 

V Тематическое планирование

10 класс

 

№ п/п

Наименование раздела

Количество часов

1

Введение. Основные особенности физического метода исследования

2

2

Механические явления

66

3

Молекулярная физика. Термодинамика

44

4

Основы электродинамики

30

5

Практикум

18

6

Резерв

10

Итого

170

 

11  класс

 

№ п/п

Наименование раздела

Количество часов

1

Повторение

8

2

Основы электродинамики

34

3

Колебания и волны

35

4

Оптика

31

5

Квантовая физика

36

6

Практикум по подготовке к экзамену

18

7

Значение физики для объяснения мира и развития производительных сил общества

2

8

Резерв

6

Итого

170

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Физика, программа курса 10, 11 кл, технологический класс"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Главный бухгалтер

Получите профессию

Няня

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 666 321 материал в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 25.02.2022 207
    • DOCX 223.5 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Красовская Марина Вячеславовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 8 лет и 6 месяцев
    • Подписчики: 0
    • Всего просмотров: 3648
    • Всего материалов: 11

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Интернет-маркетолог

Интернет-маркетолог

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Теоретическая механика: векторная графика

36 ч. — 180 ч.

от 1580 руб. от 940 руб.
Подать заявку О курсе

Курс повышения квалификации

Особенности подготовки к сдаче ОГЭ по физике в условиях реализации ФГОС ООО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 82 человека из 33 регионов
  • Этот курс уже прошли 569 человек

Курс профессиональной переподготовки

Физика: теория и методика преподавания в профессиональном образовании

Преподаватель физики

300/600 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 45 человек из 24 регионов
  • Этот курс уже прошли 127 человек

Мини-курс

Национальная система учительского роста: путь к эффективности

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Психология сиблингов в семейной структуре

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 30 человек из 16 регионов

Мини-курс

Семантическое ядро: теория и практика сбора

8 ч.

1180 руб. 590 руб.
Подать заявку О курсе