Инфоурок Информатика Другие методич. материалыМесто моделирования в деятельности человека. Этапы моделирования.

Место моделирования в деятельности человека. Этапы моделирования.

Скачать материал

Место моделирования в деятельности человека.

 

Схема, представленная на рис. 4.1., показывает, что моделирование занимает центральное место в исследовании объекта. Оно позволяет обоснованно принимать решение: как совершенствовать привычные объекты, надо ли создавать новые, как изменять процессы управления и, в конечном итоге, — как менять окружающий нас мир в лучшую сторону.

 

Рис.4.1. От прототипа – к принятию решения.

 

Прежде чем браться за какую-либо работу, нужно четко представить себе отправной и конечный пункты деятельности, а также примерные ее этапы. То же можно сказать и о моделировании.

Отправной пункт здесь — прототип (рис. 4.1.). Им может быть существующий или проектируемый объект либо процесс.

Конечный этап моделирования – принятие решения. Во многих житейских ситуациях нам приходится принимать то или иное решение. В моделировании это означает, что мы либо создаем новый объект, модель которого мы исследовали, либо улучшаем существующий, либо получаем о нем дополнительную информацию.

Поясним это на примерах. Примером моделирования при создании новых технических средств может служить история   развития   космической   техники. Для реализации космического полета надо было решить две проблемы: преодолеть земное притяжение и обеспечить продвижение в безвоздушном пространстве. О возможности преодоления притяжения Земли говорил еще Ньютон в XVII веке. К. Э. Циолковский предложил для передвижения в пространстве создать реактивный двигатель, где используется топливо из смеси жидкого кислорода и водорода, выделяющих при сгорании значительную энергию. Он составил довольно точную описательную модель будущего межпланетного корабля с чертежами, расчетами и обоснованиями.

Не прошло и полувека, как описательная модель К. Э. Циолковского стала основой для реального моделирования в конструкторском бюро под руководством С. П. Королева. В натурных экспериментах испытывались различные виды жидкого топлива, форма ракеты, система управления полетом и жизнеобеспечения космонавтов, приборы для научных исследований и т. п. Результатом разностороннего моделирования стали мощные ракеты, которые вывели на околоземное пространство искусственные спутники земли, корабли с космонавтами на борту и космические станции.

Рассмотрим другой пример. Известный химик XVIII века Антуан Лавуазье, изучая процесс горения, производил многочисленные опыты. Он моделировал процессы горения с различными веществами, которые нагревал и взвешивал до и после опыта. При этом выяснилось, что некоторые вещества после нагревания становятся тяжелее. Лавуазье предположил, что к этим веществам в процессе нагревания что-то добавляется. Так моделирование и последующий анализ результатов привели к определению нового вещества — кислорода, к обобщению понятия «горение», дали объяснение многим известным явлениям и открыли новые горизонты для исследований в других областях науки, в частности в биологии, т. к. кислород оказался одним из основных компонентов дыхания и энергообмена животных и растений.

Моделирование — творческий процесс. Заключить его в формальные рамки очень трудно. В наиболее общем виде его можно представить поэтапно, как изображено на рис. 4.2.

I этап. Постановка задачи

ОПИСАНИЕ ЗАДАЧИ
ЦЕЛЬ МОДЕЛИРОВАНИЯ
АНАЛИЗ ОБЪЕКТА
II этап. Разработка модели.

ИНФОРМАЦИОННАЯ МОДЕЛЬ
ЗНАКОВАЯ МОДЕЛЬ
КОМПЬЮТЕРНАЯ МОДЕЛЬ
III этап. Компьютерный эксперимент

ПЛАН МОДЕЛИРОВАНИЯ
ТЕХНОЛОГИЯ МОДЕЛИРОВАНИЯ
Результаты не соответствуют цели
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Результаты соответствуют целиРис. 4.2. Этапы моделирования.

Каждый раз при решении конкретной задачи такая схема может подвергаться некоторым изменениям: какой-то блок будет убран или усовершенствован, какой-то — добавлен. Все этапы определяются поставленной задачей и целями моделирования. Рассмотрим основные этапы моделирования подробнее.

 

 

I этап. Постановка задачи.

 

Под задачей в самом общем смысле этого слова понимается некая проблема, которую надо решить. На этапе постановки задачи необходимо отразить три основных момента: описание задачи, определение целей моделирования и анализ объекта или процесса.

 

Описание задачи

Задача (проблема) формулируется на обычном языке, и описание должно быть понятным. Главное здесь — определить объект моделирования и понять, что собой должен представлять результат. От того, как будет понята проблема, зависит результат моделирования и, в конечном итоге, принятие решения.

По характеру постановки все задачи можно разделить на две основные группы.

К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него. Такую постановку задачи принято называть «что будет, если?..». Например, как изменится скорость автомобиля через 6 с, если он движется прямолинейно и равноускоренно с начальной скоростью 3 м/с и ускорением 0,5 м/с2? Или: что будет, если повысить оплату за  квартиру в два раза?

Иногда задачи формулируются несколько шире. Что будет, если изменять характеристики объекта в заданном диапазоне с некоторым шагом? Такое исследование помогает проследить зависимость параметров объекта от исходных данных. Например, модель информационного взрыва: «Один человек увидел НЛО и в течение следующих 15 минут рассказал об этом трем своим знакомым. Те в свою очередь еще через 15 минут сообщили о новости еще трем своим знакомым каждый и т. д. Проследить, каково будет количество оповещенных через 15, 30 и т. д. минут».

Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется «как сделать, чтобы?..». Например, какого объема должен быть воздушный шар, наполненный газом гелием, чтобы он мог подняться с грузом 100 кг?

Наибольшее количество задач моделирования, как правило, являются комплексными. Например, задача изменения концентрации раствора:  «Химический раствор объемом 5 частей имеет начальную концентрацию 70 %. Сколько частей воды надо добавить, чтобы получить раствор заданной концентрации?» Сначала проводится расчет концентрации при добавлении 1 части воды. Затем строится таблица концентраций при добавлении 2, 3, 4... частей воды. Полученный расчет позволяет быстро пересчитывать модель с разными исходными данными. По расчетным таблицам можно дать ответ на поставленный вопрос: сколько частей воды надо добавить для получения требуемой концентрации.

 

Цель моделирования

Зачем человек создает модели?

Чтобы ответить на этот вопрос, надо заглянуть в далекое прошлое. Несколько миллионов лет назад, на заре человечества, первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать.

Накопленные знания передавались из поколения в поколение устно, позже письменно и наконец с помощью предметных моделей. Так родилась, к примеру, модель Земного шара — глобус — позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и расположении материков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром. В этом случае целью построения моделей является познание окружающего мира.

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

Таким образом, другая важная цель моделирования — создание объектов с заданными свойствами. Эта цель определяется постановкой задачи «как сделать, чтобы...».

Цель моделирования задач типа «что будет, если...» определение последствий воздействия на объект и принятие правильного решения. Подобное моделирование имеет важное значение при обращении к социальным и экологическим проблемам: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?

Например, для спасения города на Неве от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно для того, чтобы предсказать последствия вмешательства в природу.

Нередко целью моделирования бывает эффективность управления объектом (или процессом). Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, если будут «и волки сыты и овцы целы».

Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой — нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей — технология приготовления должна соответствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.

Можно без конца рассматривать все новые и новые цели и перспективы моделирования, но у нас еще будет немало случаев убедиться в полезности и целесообразности использования моделей в самых разных сферах деятельности человека.

 

Анализ объекта

На этом этапе, отталкиваясь от общей формулировки задачи, четко выделяют моделируемый объект и его основные свойства. По сути, все эти факторы можно назвать входными параметрами моделирования. Их может быть довольно много, причем некоторые невозможно описать количественными соотношениями.

Очень часто исходный объект — это целая совокупность более мелких составляющих, находящихся в некоторой взаимосвязи. Слово «анализ» (от греч. «analysis») означает разложение, расчленение объекта с целью выявления составляющих, называемых элементарными объектами. В результате появляется совокупность более простых объектов. Они могут находиться между собой либо в равноправной связи, либо во взаимном подчинении. Схемы таких связей представлены на рис. 4.3. и 4.4.

 

Рис. 4.3. Равноправные связи объектов.

 

Например, объект «комната» может быть представлен совокупностью более простых объектов — предметов мебели, расположенных в ней. Под моделированием будем понимать поиск наиболее удобной расстановки предметов мебели. Все они находятся в равноправной связи, т. е. могут занимать в комнате любое место. Схематично это показано на рис. 4.3.

 

 

Рис. 4.4. Подчиненные связи объектов (иерархическая связь)

 

Простой пример подчиненных связей объектов (рис. 4.4.) — разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные члены, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д. Расположение объектов по степени подчиненности называется иерархией.

Есть объекты и с более сложными взаимосвязями.

Как правило, сложные объекты могут состоять из более простых с разными видами взаимосвязей.

В основу любой серьезной работы (будь то конструкторская разработка или проектирование технологического процесса, разработка алгоритма или моделирование) должен быть положен системный принцип «сверху вниз», т.е. от общих проблем к конкретным деталям. На этой идее основан и метод пошаговой детализации при создании алгоритмов, и процесс управления государством, и процесс обучения детей в школе...

Например, объект «самолет» можно представить совокупностью разнородных объектов, без которых полет невозможен: двигатели, фюзеляж, крылья, система измерительной и контролирующей аппаратуры, система безаварийного энергоснабжения и т. п. Эти объекты, в свою очередь, тоже можно расчленять на более элементарные — детали.

Таким образом, результат анализа объекта появляется в процессе выявления его составляющих (элементарных объектов) и определения связей между ними.

 


 

II этап. Разработка модели.

 

Информационная модель

На этом этапе выясняются свойства, состояния, действия и другие характеристики элементарных объектов в любой форме: устно, в виде схем, таблиц. Формируется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель.

Модели должны отражать наиболее существенные признаки, свойства, состояния и отношения объектов предметного мира. Именно они дают полную информацию об объекте. Она может быть разносторонней и весьма обширной. Представьте себе, что нужно отгадать загадку. Вам предлагают перечень свойств реального предмета: круглое, зеленое, глянцевое, прохладное, полосатое, звонкое, зрелое, ароматное, сладкое, сочное, тяжелое, крупное, с сухим хвостиком...

Список можно продолжать, но вы, наверное, уже догадались, что речь идет об арбузе. Информация о нем дана самая разнообразная: и цвет, и запах, и вкус, и даже звук... Очевидно, ее гораздо больше, чем требуется для решения этой задачи. Попробуйте выбрать из всех перечисленных признаков и свойств минимум, позволяющий  безошибочно  определить  объект. В русском фольклоре давно найдено решение: «Сам алый, сахарный, кафтан зеленый, бархатный».

Если бы информация предназначалась художнику для написания натюрморта, можно было ограничиться следующими свойствами объекта: круглый, большой, зеленый, полосатый. Чтобы вызвать аппетит у сладкоежки выбрали бы другие свойства: зрелый, сочный, ароматный, сладкий. Для человека, выбирающего арбуз на бахче, можно было бы предложить следующую модель: крупный, звонкий, с сухим хвостиком. Этот пример показывает, что информации не обязательно должно быть много. Важно, чтобы она была «по существу вопроса», т. е. соответствовала цели, для которой используется. Например, в школе учащиеся знакомятся с информационной моделью кровообращения. Этой информации достаточно для школьника, но мало для тех, кто проводит операции на сосудах в больницах.

Чтобы изучить объект, человек собирает о нем информацию. Некоторые свойства объекта буквально «бросаются в глаза». Например, цветок желтый, молния сверкает. Но как только ставится вопрос, а почему объект обладает тем или иным свойством, начинается его целенаправленное изучение. В зависимости от того, с какой целью он исследуется, какими средствами и знаниями обладает человек, будет получена разная по объему информация.

Какие сведения могут получить о растущем на лугу цветке биолог, медик или же усердная ученица?

Биолог сравнит его с другими, уже известными цветами, изучит его корневую систему, стебель, клеточное строение, особенности почвы.

Медик заинтересуется химическим составом растения, чтобы выявить полезные и вредные вещества, содержащиеся в нем. В дальнейшем это растение может быть использовано в медицине.

Девочка зарисует внешний вид цветка, запомнит запах, проверит, как долго может простоять в воде сорванное растение, запишет время года, когда оно зацвело.

Или, например: что можно узнать, наблюдая такое природное явление, как радуга?

Художник обратит внимание на плавные переходы от цвета к цвету, выделит семь основных цветов и поймет законы их смешения.

Физик, применив законы распространения света, объяснит, что радуга — это преломление солнечных лучей в капельках дождя. Зная суть явления, он способен создать реальную модель радуги в лабораторных условиях.

Мальчик, впервые увидевший радугу, запомнит ее поразительную красоту и поделится своими впечатлениями с ребятами, которые еще не встречались с подобным природным чудом. И по его рассказам они смогут узнать радугу.

Значит, один и тот же объект можно рассматривать с разных точек зрения и, соответственно, описывать его по-разному. Некоторые свойства объекта можно записать в виде формул, связывающих различные параметры. Например, закон сохранения массы при химических реакциях или законы преломления света и т. д. Для описания объектов, их свойств и отношений можно использовать различные схемы, рисунки, знаковые системы, числовые характеристики. И хотя информация не может заменить реальный объект, но каждое такое описание будет с разной степенью точности его характеризовать.

В информационной модели параметры объекта и его составляющих представлены в числовой, текстовой или иной форме, а действия в ходе исследования — в виде процессов обработки информации.

Информационные модели играют очень важную роль в жизни человека.

Знания, получаемые вами в школе, имеют вид информационной модели, предназначенной для целей изучения предметов и явлений.

Уроки истории дают возможность построить модель развития общества, а знание ее позволяет строить собственную жизнь, либо повторяя ошибки предков, либо учитывая их.

На уроках географии вам сообщают информацию о географических объектах: горах, реках, странах и пр. Это тоже информационные модели. Многое, о чем рассказывается на занятиях по географии, вы никогда не увидите в реальности.

На уроках химии информация о свойствах разных веществ и о законах их взаимодействия подкрепляется опытами, которые есть не что иное, как реальные модели химических процессов.

Солнце — центральное светило нашей планетной системы, дающее свет и тепло, а значит, жизнь и питание всему сущему на Земле. На уроках астрономии вам рассказывают о нем и показывают различные модели.

Информационная модель никогда не характеризует объект полностью, да и не должна делать этого. Для одного и того же объекта можно построить различные информационные модели.

Выберем для моделирования такой объект, как «человек». Человека можно рассмотреть с различных точек зрения: как отдельного индивидуума и как человека вообще.

Если иметь в виду конкретного человека, то можно построить модели, которые представлены в табл. 1 – 3.

 

Таблица 1. Информационная модель ученика.

Фамилия, имя

Дата рождения

Школа

Класс

Средний балл

Павлов Иван

02.08.1994

51

7

4,7

 

Таблица 2. Информационная модель посетитель школьного медкабинета

Фамилия, имя

Полных лет

Рост

Вес

Прививки

Хронические заболевания

Днепрова Мария

14

158

50

Реакция Манту 05.09.08

Сколиоз

Таблица 3. Информационная модель работника мероприятия

Фамилия И.О.

Дата рождения

Адрес

Подразделение

Должность

Оклад

Смирнов А.П.

08.08.76

Гагарина, 11-36

Отдел персонала

Менеджер

10 000 руб.

 

Если рассматривать человека как биологический вид, то можно построить информационные модели, описывающие строение или функционирование различных систем организма, например нервной системы или системы кровообращения.

Рассмотрим и другие примеры различных информационных моделей для одного и того же объекта.

Многочисленные свидетели преступления сообщили разнообразную информацию о предполагаемом злоумышленнике — это их информационные модели. Представителю милиции следует выбрать из потока сведений наиболее существенные, которые помогут найти преступника и задержать его. У представителя закона может сложиться не одна информационная модель бандита. От того, насколько правильно будут выбраны существенные черты и отброшены второстепенные, зависит успех дела.

Разнообразные информационные модели можно построить и для любой географической точки. Климатическая карта содержит сведения о климате, физическая карта — о горах, реках, лесах, полезных ископаемых. Есть специальные карты распространения животных, расположения промышленных объектов и многие другие. Каждая из них характеризует объект лишь с одной стороны. Но если бы всю эту информацию поместили на одном листе, вряд ли она оказалась бы удобной для восприятия.

 

 

Выбор наиболее существенной информации при создании информационной модели и ее сложность обусловлены целью моделирования.

 

 

Построение информационной модели является отправным пунктом этапа разработки модели.

Все входные параметры объектов, выделенные при анализе, располагают в порядке убывания значимости и проводят упрощение модели в соответствии с целью моделирования. При этом отбрасываются факторы, несущественные с точки зрения того, кто определяет модель. Если же отбросить наиболее существенные факторы, то модель окажется неверной.

В зависимости от количества определяющих факторов можно построить несколько моделей. Во многих исследованиях используется прием создания моделей для одного объекта, начиная с простейших — с минимальным набором определяющих параметров. Далее модели усложняются, т. е. вводятся те параметры, которые прежде были отброшены.

Иногда задача изначально может быть сформулирована в упрощенной форме. В ней четко поставлены цели и определены параметры модели, которые надо учесть.

Все элементарные объекты, выделенные при анализе, должны быть показаны во взаимосвязи. В информационной модели отображаются только бесспорные связи и очевидные действия. Такая модель дает первичную идею, определяющую дальнейший ход моделирования.

 

Знаковая модель

Информационная модель, как правило, представляется в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной. Прежде чем взяться за компьютерное моделирование, человек делает предварительные наброски чертежей либо схем на бумаге, выводит расчетные формулы. Процесс творчества и исследования всегда предполагает мучительные поиски и корзины выброшенных черновиков. И лишь для простых, знакомых по содержанию задач не нужны некомпьютерные знаковые модели. Сегодня, когда компьютер стал основным инструментом исследователя, многие предпочитают и предварительные наброски, формулы сразу составлять и записывать на нем.

 

Компьютерная модель

Теперь, когда сформирована информационная знаковая модель, можно приступать собственно к компьютерному моделированию — созданию компьютерной модели. Сразу возникает вопрос о средствах, которые необходимы для этого, т. е. об инструментах моделирования.

Существует бесчисленное множество программных комплексов, которые позволяют проводить исследование (моделирование) информационных моделей. Каждая программная среда имеет свой инструментарий и позволяет работать с определенными видами информационных объектов. Поэтому перед исследователем возникает нелегкий вопрос выбора наиболее удобной и эффективной среды для решения поставленной задачи.

Некоторые программные среды используются человеком как эффективное вспомогательное средство для реализации собственных замыслов. Иначе говоря, человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды, для словесных или табличных описаний — среда текстового редактора.

Другие программные среды используются как средство обработки исходной информации и получения и анализа результатов. Здесь компьютер выступает как интеллектуальный помощник. Так ведется обработка больших объемов информации в среде баз данных или проводятся вычисления в электронных таблицах.

В процессе разработки компьютерной модели исходная информационная знаковая модель будет претерпевать некоторые изменения по форме представления, т. к. должна ориентироваться на конкретную программную среду и инструментарий.

Например, если вы исследуете геометрическую модель, состоящую из элементарных графических объектов, для моделирования удобна среда графического редактора.

Для словесных моделей используются текстовые процессоры с широкими возможностями оформления выходного документа — редактором формул, встроенной деловой графикой, элементами таблиц.

Существуют разнообразные программы, позволяющие включать в описание блок-схемы алгоритмов, электронные схемы, диаграммы и т. п.

Информационные модели, где отображена не только информация об объектах, но и указаны их взаимосвязи, реализуются в системах управления базами данных.

Если же вы исследуете математическую модель, то вам не подходит ни среда графического редактора, ни среда базы данных, ни среда текстового процессора. Эффективное средство исследования математических моделей — среда программирования, где компьютерная модель представляется в форме программы. Другой мощный инструмент исследования таких моделей — среда электронной таблицы. Тут исходная информационная знаковая модель представляется в форме таблицы, связывающей элементарные объекты по правилам построения связей в этой среде.

Исходя из вышесказанного можно сделать вывод, что при моделировании на компьютере необходимо иметь представление о классах программных средств, их назначении, инструментарии и технологических приемах работы. И тогда вы легко можете преобразовать исходную информационную знаковую модель в компьютерную и провести соответствующий эксперимент.

 

III этап. Компьютерный эксперимент.

 

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям. Для исследования, к примеру, эксплуатационных свойств какого-либо агрегата или узла его помещали в термостат, морозили в специальных камерах, трясли на вибростендах, роняли и т. п. Хорошо, если это новые часы или пылесос — невелика потеря при разрушении. А если самолет или ракета?

Лабораторные и натурные эксперименты требуют больших материальных затрат и времени, но их значение тем не менее очень велико.

Уже говорилось о том, что на первом этапе при анализе исходного объекта выявляются элементарные объекты, которые в процессе моделирования должны подвергаться разнообразным экспериментам. Если вернуться к примеру с самолетом, то для экспериментов с узлами и системами, как говорится, все средства хороши. Для проверки обтекаемости корпуса применяется аэродинамическая труба и натурные модели крыльев и фюзеляжа, для испытания систем безаварийного энергоснабжения и пожарной безопасности возможны различные имитационные модели, для отработки системы выпуска шасси не обойтись без специального стенда.

С развитием вычислительной техники появился новый уникальный метод исследования — компьютерный эксперимент. В помощь, а иногда и на смену экспериментальным образцам и испытательным стендам во многих случаях пришли компьютерные исследования моделей. Этап проведения компьютерного эксперимента включает две стадии: составление плана моделирования и технологию моделирования.

План моделирования должен четко отражать последовательность работы с моделью.

Часто план отображается в виде последовательности пронумерованных пунктов с описанием действий, которые необходимо осуществить исследователю с компьютерной моделью. Здесь не следует конкретизировать, каким надо воспользоваться программным инструментарием. Подробный план является своего рода отражением стратегии компьютерного эксперимента.

Первым пунктом такого плана всегда является разработка теста, а затем тестирование модели.

 

 

Тестирование — процесс проверки правильности модели.

Тест — набор исходных данных, для которых заранее известен ре­зультат.

 

 

Чтобы быть уверенным в правильности получаемых результатов моделирования, необходимо предварительно провести компьютерный эксперимент на модели для составленного теста. При этом вы должны помнить следующее:

   Во-первых, тест всегда должен быть ориентирован на то, чтобы проверить разработанный алгоритм функционирования компьютерной модели. Тест не отражает ее смыслового содержания. Однако полученные в процессе тестирования результаты могут натолкнуть вас на мысль изменения исходной информационной или знаковой модели, где заложено прежде всего смысловое содержание постановки задачи.

   Во-вторых, исходные данные в тесте могут совершенно не отражать реальную ситуацию. Это может быть любая совокупность простейших чисел или символов. Важно то, чтобы вы могли заранее знать ожидаемый результат при конкретном варианте исходных данных.

Например, модель представлена в виде сложных математических соотношений. Надо ее протестировать. Вы подбираете несколько вариантов простейших значений исходных данных и заранее просчитываете конечный ответ, т. е. вам известен ожидаемый результат. Далее вы проводите компьютерный эксперимент с этими исходными данными и полученный результат сравниваете с ожидаемым. Они должны совпадать. Если не совпали, надо искать и устранять причину.

После тестирования, когда у вас появилась уверенность в правильности функционирования модели, вы переходите непосредственно к технологии моделирования.

 

 

Технология моделирования — совокупность целенаправленных дей­ствий пользователя над компьютерной моделью

 

 

Каждый эксперимент должен сопровождаться осмыслением результатов, которые станут основой анализа результатов моделирования.

 

 

IV этап. Анализ результатов моделирования.

 

Конечная цель моделирования — принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий — либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение. На рис. 4.2. видно, что этап анализа результатов не может существовать автономно. Полученные выводы часто способствуют проведению дополнительной серии экспериментов, а подчас и изменению модели.

Основой для выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, т. е. возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

Главное, надо всегда помнить: выявленная ошибка — тоже результат. Как говорит народная мудрость, на ошибках учатся. Об этом писал и великий русский поэт А. С. Пушкин:

О сколько нам открытий чудных

Готовит просвещенья дух,

И опыт, сын ошибок трудных,

И гений, парадоксов друг,

И случай, бог изобретатель.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Место моделирования в деятельности человека. Этапы моделирования."

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Овощевод

Получите профессию

Технолог-калькулятор общественного питания

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 668 206 материалов в базе

Материал подходит для УМК

  • «Информатика (углублённый уровень) (в 2 частях)», Семакин И.Г., Хеннер Е.К., Шестакова Л.В.

    «Информатика (углублённый уровень) (в 2 частях)», Семакин И.Г., Хеннер Е.К., Шестакова Л.В.

    Тема

    Глава 3. Компьютерное моделирование

    Больше материалов по этой теме
Скачать материал

Другие материалы

Рабочая программа элективного курса: «Математические основы моделирования» 10-11 класс
  • Учебник: «Информатика (углублённый уровень) (в 2 частях)», Семакин И.Г., Хеннер Е.К., Шестакова Л.В.
  • Тема: Глава 3. Компьютерное моделирование
Рейтинг: 5 из 5
  • 15.02.2018
  • 1017
  • 32
«Информатика (углублённый уровень) (в 2 частях)», Семакин И.Г., Хеннер Е.К., Шестакова Л.В.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 25.05.2018 3802
    • DOCX 207 кбайт
    • 14 скачиваний
    • Оцените материал:
  • Настоящий материал опубликован пользователем Куликов Василий Константинович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 8 лет и 10 месяцев
    • Подписчики: 5
    • Всего просмотров: 2289884
    • Всего материалов: 1535

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Экскурсовод

Экскурсовод (гид)

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Методика преподавания информатики в начальных классах

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Этот курс уже прошли 67 человек

Курс профессиональной переподготовки

Информационные системы и технологии: теория и методика преподавания в профессиональном образовании

Преподаватель информационных систем и технологий

300/600 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Этот курс уже прошли 13 человек

Курс повышения квалификации

Компьютерная грамотность для пенсионеров

36 ч. — 180 ч.

от 1580 руб. от 940 руб.
Подать заявку О курсе
  • Этот курс уже прошли 23 человека

Мини-курс

Прощение и трансформация: освобождение от родовых программ и травм

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 181 человек из 56 регионов
  • Этот курс уже прошли 53 человека

Мини-курс

Налогообложение и компенсация потерь: предотвращение ошибок и снижение рисков

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Аспекты эмоционального благополучия и влияния социальных ролей на психологическое состояние

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 21 человек из 13 регионов