Инфоурок Геометрия Другие методич. материалыМетодический материал по математике на тему "Правильные и полуправильные многогранники"

Методический материал по математике на тему "Правильные и полуправильные многогранники"

Скачать материал

«Правильные и полуправильные  многогранники »

Введение

В нашем мире много необычного и прекрасного. Нас окружают предметы, формы которых нас удивляют. Таковыми, например, являются правильные многогранники. Эти фигуры обладают и красотой, и совершенностью форм, и притягательностью.

С раннего детства мы уже встречаемся с правильными многогранниками, играя в кубики и развивающие конструкторы, решая головоломки Кубика-Рубика и его разновидностей. Архитекторы, строители и дизайнеры воплощают свои оригинальные идеи, используя эти фигуры.

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух — октаэдру, вода — икосаэдру, а огонь — тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент — эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу.

 

В этом году на занятиях математики  мы изучали правильные многогранники, которые называют ещё Платоновыми телами. В учебных пособиях по геомет­рии  даны очень не богатые сведения о многогранниках. Задач на эту тему предлагается совсем немного, из-за чего возможности темы совершенно не раскрываются. А ведь она в теоретическом отношении очень богата, позволяет сформулиро­вать много интересных задач. Решение предложенных задач позволит увидеть, что опреде­ленные приемы построения помогают в значительной мере упростить как само построение, так и понимание свойств фигуры.

Я  решил больше узнать о правильных многогранниках, познакомиться с историей их появления, исследовать их роль в окружающем мире, и найти их практическое применение.

Гипотеза: правильные многогранники – гармоничные и выгодные фигуры и их можно широко использовать.

 Цель исследования: Познакомиться с новым типом выпуклых многогранников-правильными многогранниками и полуправильными многогранниками.

Задачи исследования:

- изучить литературные источники по данной теме;

- изготовить коллекцию правильных многогранников и отследить интерес к ним.

-найти примеры правильных многогранников в окружающей природе и в бытовой среде;

-доказать, что формы правильных многогранников применимы в быту.

Объект исследования: правильные многогранники.

Предмет исследования: значение и применение этих фигур

Методы исследования:

- поиск, сбор и обработка информации по теме

- наблюдение;

-практическая работа.

 

Глава 1.  ПРАВИЛЬНЫЕ И ПОЛУПРАВИЛЬНЫЕ МНОГОГРАННИКИ

 

Многогранники - это простейшие фигуры в пространстве, как, например, многоугольники - простейшие фигуры на плоскости. Если рассматривать многогранник с точки зрения геометрии, то это часть пространства, ограниченная плоскими многоугольниками, называемыми гранями. Стороны и вершины граней называют рёбрами и вершинами самого многогранника.

Правильный многогранник это фигура, обладающая следующими свойствами:

- он выпуклый;

- все его грани являются равными правильными многоугольниками;

- в каждой его вершине сходится одинаковое число граней;

- все его двугранные углы равны.

Доказано существование только пяти правильных многогранников.

 

1.            Понятие правильного многогранника

  • Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией

Доказательство того, что существует ровно пять правильных выпуклых многогранников , очень проста – каждая вершина может принадлежать трем и более граням.

 

Примеры: правильный гексаэдр(куб), правильный тетраэдр, правильный октаэдр, правильный икосаэдр, правильный додекаэдр.

2.Тетраэдр

Определение:

  • Тетра́эдр (греч. τετραεδρον — четырёхгранник) — простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Свойства:

  • Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.
  • Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам.
  • Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части

Тетраэдры в микромире

  • Молекула метана СН4
  • Молекула аммиака NH3
  • Алмаз C — тетраэдр с ребром равным 2,5220 ангстрем
  • Флюорит CaF2, тетраэдр с ребром равным 3, 8626 ангстрем
  • Сфалерит, ZnS, тетраэдр с ребром равным 3,823 ангстрем
  • Комплексные ионы [BF4] -, [ZnCl4]2-, [Hg(CN)4]2-, [Zn(NH3)4]2+
  • Силикаты, в основе структур которых лежит кремнекислородный тетраэдр [SiO4]4

Тетраэдры в природе

Некоторые плоды, находясь вчетвером  на одной кисти, располагаются в вершинах  тетраэдра, близкого к правильному. Такая   конструкция обусловлена тем, что центры  четырёх одинаковых шаров, касающихся

друг друга, находятся в вершинах  правильного тетраэдра. Поэтому похожие

на шар плоды образуют подобное  взаимное расположение. Например,

таким образом могут располагаться   грецкие орехи.

Тетраэдры в технике

  • Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов и т. д. Стержни испытывают только продольные нагрузки.
  • Прямоугольный тетраэдр используется в оптике. Если грани, имеющие прямой угол, покрыть светоотражающим составом или весь тетраэдр выполнить из материала с сильным светопреломлением, чтобы возникал эффект полного внутреннего отражения, то свет, направленный в грань, противоположную вершине с прямыми углами, будет отражаться в том же направлении, откуда он пришёл. Это свойство используется для создания уголковых отражателей, катафотов.
  • Граф четверичного триггера представляет собой тетраэдр.

2.      Гексаэдр

Определение:

  • Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат.

Свойства:

  • Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.
  • В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.
  • В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
  • В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба .

3.      Октаэдр

  • Определение:

Окта́эдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») — один из пяти выпуклых правильных многогранников, так называемых Платоновых тел.

Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.

Свойства:

  • Октаэдр можно вписать в тетраэдр, притом четыре из восьми граней октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести ребер тетраэдра.
  • Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
  • Правильный октаэдр имеет симметрию Oh, совпадающую с симметрией куба

 

4.      Икосаэдр

Определение:

Икоса́эдр (от др.-греч. εἴκοσι «двадцать»; ἕδρον «сидение», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.

  • Свойства:
  • Икосаэдр можно вписать в куб, при этом шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба
  • В икосаэдр может быть вписан тетраэдр, так что четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра.
  • В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.
  • Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12×5=90.
  • Собрать модель икосаэдра можно при помощи 20 тетраэдров.

 

5.      Додекаэдр

Определение:

Додека́эдр (от греч. δώδεκα — двенадцать и εδρον — грань) — двенадцатигранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.

Свойство:

В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра.

 

Названия этих фигур запомнить очень легко. В переводе с греческого «эдра» означает грань, «тетра» - 4, «гекса» - 6, «окта» - 8, «икоса» - 20, «додека» - 12.

Основными характеристиками многогранника являются число и вид граней, число вершин и число ребер. Эти характеристики для правильных многогранников представлены в таблице (Приложение 1)

Архимедовы тела — выпуклые многогранники, обладающие двумя свойствами:

·         Все грани являются правильными многоугольниками двух или более типов (если все грани — правильные многоугольники одного типа, это — правильный многогранник, или платоново тело);

·         для любой пары вершин существует симметрия многогранника (то есть движение, переводящее многогранник в себя), переводящая одну вершину в другую. В частности,

·         все многогранные углы при вершинах конгруэнтны.

 

Доказано существование только пяти правильных многогранников.

Тетраэдр составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников.

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794aa.jpg

Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов.

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794ab.jpg

Октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников.

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794ac.jpg

Додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794ad.jpg

Икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников.

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794ae.jpg

 

 

Звездчатые многогранники

Правильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются одинаковые правильные или звёздчатые многоугольники. Коши установил, что существует всего 4 правильных звёздчатых тела, не являющиеся соединениями платоновых и звёздчатых тел, называемые телами Кепплера — Пуансо: все 3 звёздчатых формы додекаэдра и одна из звёздчатых форм икосаэдра. Остальные правильные звёздчатые многогранники являются или соединениями платоновых тел, или соединениями тел Кепплера — Пуансо.

 

Название

вид

Из каких фигур состоит

число вершин

число ребер

 

Кубооктаэдр

 

Cuboctahedron.jpg

8 треугольников,,

 

6 квадратов

12

24

 

Икосододекаэдр

 

Icosidodecahedron.jpg

20 треугольников,

 

 12 пятиугольников.

 

30

60

 

Усеченный икосаэдр

 

Truncatedicosahedron.jpg

 12 пятиугольников


20 шестиугольников.

 

60

90

 

усеченный куб   

 

Truncatedhexahedron.jpg

8 треугольников


6 восьмиугольников  

24

36

Ромбокубооктаэдр

 

Rhombicuboctahedron.jpg

  8 треугольников
18 квадратов

24

48

ромбоикосододекаидр

 

Rhombicosidodecahedron.jpg

  20 треугольников


30 квадратов


12 пятиугольников 

 

60

120

курносый куб 

 

Snubhexahedronccw.jpg

32 треугольника


6 квадратов 

 

24

60

курносый додекаэдр 

Snubdodecahedronccw.jpg

 80 треугольников


12 пятиугольников  

 

60

150

 

 

Глава 2 Исследование  закономерности между  ребрами, вершинами и гранями многогранников.

Изучив внимательно содержание таблицы мы увидели закономерность: если число ребер рассматриваемого многогранника увеличить на 2, то получится число, равное сумме числа граней и вершин этого многогранника. Сформулируем это правило так: « Сумма числа граней и вершин равна числу рёбер, увеличенному на 2», то есть Г + В = Р + 2 .

Правильный

многогранник

ЧИСЛО

ГРАНЕЙ + ВЕРШИН

ЧИСЛО РЕБЕР

ТЕТРАЭДР

4 + 4 = 8

6

КУБ

6 + 8 = 14

12

ОКТАЭДР

8 + 6 = 14

12

ДОДЕКАЭДР

12 + 20 = 32

30

ИКОСАЭДР

20 + 12 = 32

30

Характеристики правильных многогранников

Название многогранника

Вид

Число граней

Число вершин

Число ребер

Тетраэдр

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794ar.jpg

4

4

6

Куб

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794as.jpg

6

8

12

Октаэдр

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794at.jpg

8

6

12

Икосаэдр

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794au.jpg

20

12

30

Додекаэдр

https://xn--j1ahfl.xn--p1ai/data/images/u164742/t1504185794av.jpg

12

20

30



 

 

 

Таким образом, мы открыли формулу, которая впервые была выведена Рене Декартом в 1640 году, а позднее вновь открыта Эйлером в 1752 году, имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.

 

 

 

ВЫВОД

  • Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон, и в каждой вершине многогранника сходится одно и то же число ребер.
  • Правильный тетраэдр (четырехгранник) — многогранник, составленный из четырех правильных треугольников.
  • Правильный гексаэдр (шестигранник) или куб — многогранник, составленный из шести правильных четырехугольников (квадратов).
  • Правильный октаэдр (восьмигранник) — многогранник, составленный из восьми правильных треугольников.
  • Правильный додекаэдр (двенадцатигранник) — многогранник, составленный из двенадцати правильных пятиугольников
  • Правильный икосаэдр (двадцатигранник) — многогранник, составленный из двадцати правильных треугольников.

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Методический материал по математике на тему "Правильные и полуправильные многогранники""

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Страховой брокер

Получите профессию

Интернет-маркетолог

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 670 169 материалов в базе

Материал подходит для УМК

  • «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

    «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

    Тема

    4.1. Тетраэдр

    Больше материалов по этой теме
Скачать материал

Другие материалы

Разработка урока повторения в 11 классе, геометрия "Координатно-векторный метод"
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 2.3. Вычисление углов между прямыми и плоскостями
  • 19.02.2018
  • 511
  • 5
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Презентация по геометрии на тему "Пирамида"(11класс)
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 2.1. Пирамида
  • 18.02.2018
  • 6991
  • 430
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Презентация по геометрии на тему "Цилиндр"(11класс)
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 1.1. Понятие цилиндра
Рейтинг: 5 из 5
  • 17.02.2018
  • 3850
  • 329
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Контрольная работа по геометрии "Объем многогранников"
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: § 2. Объемы прямой призмы и цилиндра
  • 17.02.2018
  • 6569
  • 24
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Самостоятельная работа по теме "Объемы шара, цилиндра, конуса" Геометрия 11 класс
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 4.1. Объем шара
  • 17.02.2018
  • 2286
  • 23
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Поурочный план урока по тема "Применение векторов к решению задач". Геометрия 10 класс
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 2.1. Сложение и вычитание векторов
  • 17.02.2018
  • 1034
  • 5
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Разработка урока по геометрии "Правильные многогранники или Платоновы тела"
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 3.2. Понятие правильного многогранника
  • 16.02.2018
  • 1004
  • 4
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
Презентация по стереометрии 10 - 11 класс по теме "Расстояние между точками, прямыми и плоскостями"
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.
  • Тема: 2.1. Расстояние от точки до плоскости
Рейтинг: 2 из 5
  • 16.02.2018
  • 5142
  • 154
«Математика: алгебра и начала математического анализа, геометрия. Геометрия (базовый и углубленный уровни)», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 19.02.2018 1682
    • DOCX 121.4 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Титова Ольга Ивановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Титова Ольга Ивановна
    Титова Ольга Ивановна
    • На сайте: 8 лет и 1 месяц
    • Подписчики: 0
    • Всего просмотров: 25565
    • Всего материалов: 4

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Няня

Няня

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 151 человек из 49 регионов
  • Этот курс уже прошли 821 человек

Курс повышения квалификации

Методика преподавания математики в среднем профессиональном образовании в условиях реализации ФГОС СПО

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 70 человек из 37 регионов
  • Этот курс уже прошли 525 человек

Курс повышения квалификации

Аспекты преподавания самостоятельного учебного курса «Вероятность и статистика» в условиях реализации ФГОС ООО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 280 человек из 65 регионов
  • Этот курс уже прошли 993 человека

Мини-курс

Технологии в онлайн-обучении

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 29 человек из 18 регионов

Мини-курс

Современные информационные технологии и информационная безопасность

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Этот курс уже прошли 26 человек

Мини-курс

Архитектура мира: от Крита до Австралии

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 42 человека из 20 регионов
  • Этот курс уже прошли 17 человек