Инфоурок Алгебра Другие методич. материалыПроект «Удивительный треугольник Паскаля»

Проект «Удивительный треугольник Паскаля»

Скачать материал

Муниципальное общеобразовательное учреждение гимназия №1

 

 

 

Проектная деятельность гимназии

 

 

 

Удивительный 
треугольник Паскаля

 

 

 

 

 

Руководитель проекта

Проект «Удивительный треугольник Паскаля»

 

 

 

 

Учебный проект познавательной направленности

 

 

 

Автор и руководитель проекта:

Выполнила проект:  

 

 

Цели проекта:

- пополнение запаса историко-научных знаний учащихся

- формирование представлений о математике как части общечеловеческой культуры

- продолжение знакомства с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку

- определение значимости открытия треугольника Паскаля для развития геометрии и других наук

 

 

Результаты проекта:

- оформление выставки

- проведение интеллектуальной игры «Кто, где, когда?»

Материал проекта может быть использован на уроках математики, информатики, истории и физики. Во внеклассной деятельности эта информация интересна и полезна при проведении различных интеллектуальных конкурсов и викторин.


ТРЕУГОЛЬНИК ПАСКАЛЯ

 

 Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В тоже время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике.

М. Гарднер

 

Всякий  вид деятельности, связанный с творчеством,  покажет незаменимость и уникальность каждого человека. А когда речь идет о гениях, то надо благодарить судьбу за возможность пользоваться плодами их деятельности, за исходящий от них свет, освещающий пути развития всего  человечества. И, естественно, одним из самых популярных ученых  считается Блез Паскаль.

Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, он вошел в историю как выдающийся математик, физик, философ и писатель.

 Его именем благодарными потомками названы единица давления (паскаль) и получивший чрезвычайно широкое распространение язык программирования. Особенно популярен был Турбо Паскаль, ныне - Борланд Паскаль  и его дальнейшее развитие в Delphi.

 Работы Паскаля охватывают самые разные области. Он является одним из создателей математического анализа, проективной геометрии, теории вероятностей, гидростатики (широко известен закон Паскаля), создателем механического счетного устройства - "паскалева колеса" - как говорили современники. Паскаль продемонстрировал, что воздух обладает упругостью, и доказал, что он имеет вес, открыл, что показания барометра зависят от влажности и температуры воздуха и потому его можно использовать для предсказания погоды.

Некоторые из практических достижений Паскаля удостоились высшего отличия - сегодня мало кто знает имя их автора. Например, сейчас очень немногие скажут, что самая обыкновенная тачка - это изобретение Блеза Паскаля. Ему же принадлежит идея омнибусов - многоместных конных экипажей с фиксированными маршрутами - первого вида регулярного общедоступного городского транспорта. Уже в шестнадцатилетнем возрасте Паскаль сформулировал теорему о шестиугольнике, вписанном в коническое сечение (теорема Паскаля). Известно, что позже он получил из своей теоремы около 400 следствий.

Блез Паскаль и другой великий француз, Пьер Ферма, стали основателями теории вероятностей, причем годом ее рождения часто называют 1654-й, когда Паскаль и Ферма независимо друг от друга дали правильное объяснение так называемого парадокса раздела ставки. И Паскаль, и Ферма рассматривали парадокс раздела ставки как задачу о вероятностях, установив, что справедливым является раздел, пропорциональный шансам первого игрока выиграть приз.

 

Но, наверное, самой известной математической работой Блеза Паскаля является «Трактат об арифметическом треугольнике», образованном биномиальными коэффициентами (треугольник Паскаля), который имеет применение в теории вероятностей и обладает удивительными и занимательными свойствами.

Рассмотрением этого волшебного треугольника  и займемся.

 

Треугольник будет выпит.

На ура его даешь!

Будь он хоть параллелепипед,

Будь он куб, ядрена вошь.

 

В.Высоцкий

 

 

 

 

В действительности, треугольник Паскаля был известен задолго до 1653 года - даты выхода "Трактата об арифметическом треугольнике". Среди предметов, положенных в пирамиду, где 35 веков тому назад был похоронен египетский фараон Тутанхамон, нашли разграфленную доску с тремя горизонталями и 10 вертикалями, что представляет собой начальные строки треугольника Паскаля. Изображен треугольник и на иллюстрации в книге  «Яшмовое зеркало четырех элементов» китай­ского математика Чжу Шицзе, выпущенной в 1303 году. Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника около 1100 года, в свою очередь, заимствовав его из более ранних китайских или индийских источников.

Треугольник Паскаля часто выписывают в виде равнобедренного треугольника, в котором на вершине и по боковым сторонам стоят единицы, каж­дое из остальных чисел равно сумме двух чисел, стоя­щих над ним слева и справа в предшествующей строке. А еще проще объясняют устройство треугольника Паскаля слова: каждое число равно сумме двух расположенных над ним чисел. Все элементарно, но, сколько в этом таится чудес.

 

 

На вершине треугольника стоит 1. Треугольник можно продолжать неограниченно. Он обладает симметрией относительно вертикальной оси, проходящей через его вершину. Вдоль диагоналей  параллельных сторонам треугольника (на рисунке отмечены зелеными линиями) выстроены треугольные числа и их обобщения на случай пространств всех размерностей.

 Треугольные числа в самом обычном и привычном нам виде показывают, сколько касающихся кружков можно расположить в виде треугольника - как классический пример начальная расстановка шаров в бильярде. К одной монетке можно прислонить еще две - итого три - к двум можно приладить еще три - итого шесть. Продолжая наращивать ряды с сохранением формы треугольника получим ряд 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66..., что и показывает вторая зеленая линия. Этот замечательный ряд, каждый член которого равен сумме натурального ряда чисел (55=1+2+3+4+5+6+7+8+9+10), содержит также множество знакомцев, хорошо известных любителям математики: 6 и 28 - совершенные числа, 36 - квадратное число, 8 и 21 - числа Фибоначчи.

 

Следующая зеленая линия покажет нам тетраэдральные числа - один шар мы можем положить на три - итого четыре, под три подложим шесть - итого десять, и так далее.

А следующая зеленая линия (1, 5, 15, 35,...) продемонстрирует попытку выкладывания гипертетраэдра в четырехмерном пространстве - один шар касается четырех, а те, в свою очередь, десяти... В нашем мире и нашем измерении  это невозможно, возможно только в четырехмерном, виртуальном. И тем более пятимерный тетраэдр, о котором свидетельствует следующая зеленая линия, он может существовать только в рассуждениях топологов.

А о чем же говорит нам самая верхняя зеленая линия, на которой расположились числа натурального ряда? Это тоже треугольные числа, но одномерные, показывающие, сколько шаров можно выложить вдоль линии - сколько есть, столько и выложите. Если уж идти до конца, то самый верхний ряд из единиц - это тоже треугольные числа в нульмерном пространстве - сколько бы шаров мы не взяли - больше одного расположить не сможем, ибо просто негде - нет ни длины, ни ширины, ни высоты.

 Даже беглого взгляда, брошенного на треугольник Паскаля, достаточно, чтобы отметить следующие любопытные факты: 10 ядер можно сложить и в виде тетраэдра и в виде плоского треугольника. А 56 гиперядер, образующих тетраэдр в пятимерном пространстве, можно уложить в обычный привычный трехмерный тетраэдр, однако, если бы мы попытались выложить из 56 ядер треугольник, то одно ядро осталось бы лишним.

 А вот еще два  интересных свойства треугольника Паскаля. Чтобы найти сумму чисел, стоящих на любой диагонали от начала до интересующего нас места, достаточно взглянуть на число, расположенное снизу и слева от последнего слагаемого (слева для правой диагонали, для левой диагонали будет справа, а вообще - ближе к середине треугольника). Пусть, например, мы хотим вычислить сумму чисел натурального ряда от 1 до 9. "Спустившись" по диагонали до числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму. Чему равна сумма первых восьми треугольных чисел? Отыскиваем восьмое число на второй диагонали и сдвигаемся вниз и влево. Ответ: 120. Но, кстати, 120 - тетраэдральное число. Следовательно, взяв все шары, из которых сложены 8 первых треугольников, мы могли бы сложить тетраэдр.

 Суммы чисел, стоящих вдоль не столь круто падающих диагоналей (на рисунке отмечены красными линиями) образуют хорошо известную последовательность Фибоначчи.

 Числа Фибоначчи часто встречаются  в комбинаторных задачах. Рассмотрим ряд из n стульев. Сколькими способами можно рассадить на них мужчин и женщин так, чтобы никакие две женщины не сидели рядом? При n=1, 2, 3, 4, ... число способов соответственно равно 2, 3, 5, 8, ..., то есть совпадает с числами Фибоначчи. Паскаль, по-видимому, не знал, что числа Фибоначчи скрыты в его треугольнике. Это обстоятельство было обнаружено только в XIX веке. Числа, стоящие на горизонтальных строках треугольника Паскаля, - это биномиальные коэффициенты, то есть коэффициенты разложения (x+y)n по степеням x и y. Например, (x+y)2=x2+2xy+y2 и (x+y)3=x3+3x2y+3xy2+y3. Коэффициенты разложения 1, 2, 2 стоят во второй строке, а 1, 3, 3, 1 - в третьей строке треугольника. Чтобы найти коэффициенты разложения (x+y)n, достаточно взглянуть на n-ую строку треугольника. Именно это фундаментальное свойство треугольника Паскаля связывает его с комбинаторикой и теорией вероятности, превращая в удобное средство проведения вычислений.

 В общем случае, число, показывающее, сколькими способами можно выбрать n элементов из множества, содержащего r различных элементов, стоит на пересечении n-ной диагонали и r-ой строки. Число возможных сочетаний из n элементов по m определяется формулой

Где n!=1*2*3*4*....*n так называемый факториал числа n. А значения биномиальных коэффициентов определяются по формуле

 причем, они же и являются, как мы выяснили, строками треугольника Паскаля, связывая непостижимым образом этот  треугольник с комбинаторикой и разложением двучлена по степеням.

 

Треугольник Паскаля позволяет объяснить принцип действия так называемой доски Гамильтона - механического устройства служащего для демонстрации приближенного гауссовского распределения.

 

 

Рис. Доска Гамильтона.

Технический музей Вены

Треугольник Паскаля двумерный, лежит в плоскости. Непроизвольно появляется мыль - а нельзя ли его закономерности распространить на трехмерный (и четырех-...) аналог? Оказывается можно! Существует трехмерный аналог треугольника - пирамида Паскаля, ее связь с триномиальными коэффициентами. Пирамиду Паскаля можно строить в форме те­траэдра, а также пирамиды с различными значениями двухгранных углов, один из которых прямой.

По трем внешним ребрам пирамиды стоят единицы. Каждая из трех боковых граней пред­ставляет собой треугольник Паскаля. Любой внутрен­ний элемент пирамиды Паскаля, стоящий в n-м сече­нии, равен сумме трех элементов, расположенных в уг­лах элементарного треугольника (n-1)-го сечения пирамиды. Сечение получается из треугольника Паскаля, основа­нием которого служит n-я строка Паскаля, умножени­ем элементов его строк почленно на элементы основа­ния, повернутого против часовой стрелки на угол p/2.

Если сечение пирамиды Паскаля является правильным треугольником, то при любом n оно имеет три оси симметрии. На рисунке  указаны оси симметрии сечения при n = 4.

 

Теперь переходим к самому интересному удивительному свойству треугольника Паскаля. Заменим каждое число в треугольнике Паскаля точкой. Причем, нечетные точки выведем контрастным цветом, а четные - прозрачным, или цветом фона. Результат окажется непредсказуемо-удивительным: треугольник Паскаля разобьется на более мелкие треугольники, образующие изящный узор. Узоры эти таят в себе много неожиданностей. По мере удаления от вершины нам будут встречаться треугольники все возрастающих размеров, не содержащие ни одной жирной точки, то есть "составленные" из одних лишь четных чисел. У вершины треугольника Паскаля "притаился" треугольник состоящий из одной - единственной точки, затем идут треугольники, содержащие 6, 28, 120, 496, ... точек. Три из названных чисел - 6, 28 и 496 - известны как совершенные, поскольку каждая из них равно сумме всех своих делителей, отличных от самого числа. Например, 6=1+2+3. Неизвестно, существует ли бесконечно много совершенных чисел, а также существует ли хоть одно нечетное совершенное число. Вместо значения числа на его месте можно нарисовать круг, заливаемый черным цветом для нечетных значений и белым для четных. Так выглядит треугольник Паскаля, изображенный точками с учетом четности.

Сразу же обращает внимание  "фрактальность" полученного объекта, а точнее, это не что иное, как "Треугольник Серпинского", аналог знаменитого "Ковра Серпинского". Особенно популярны эти модели, наряду со "Снежинкой Коха" и множествами Мандельброта и Жюли стали в последние годы ввиду  увлечения фракталами и синергетикой. 

 

 

 

Мартин Гарднер пишет в книге "Математические новеллы", что ещё в 1905 году на ежегодной математической олимпиаде в Венгрии предлагалась задача: "Квадрат разделён на 9 частей (как для игры крестики-нолики) и центральный квадрат удалён. Затем каждый из оставшихся 8 квадратов разделён на 9 частей, центральный квадрат удалён и процедура повторяется многократно. Найти предел, к которому стремится площадь полученной фигуры". Так вот - полученная фигура и есть ковёр Серпинского - квадрат настолько дырявый, что он уже ближе к линии. Аналогично можно получить и увиденный нами треугольник - первоначально у треугольника соединяются середины сторон и полученный треугольник удаляется.

Рассмотрите треугольник, построенный "относительно" числа 7, то есть, числа, не делящиеся на 7 без остатка, нарисованы черным цветом, делящиеся – белым.

 

Можно попробовать раскрасить треугольник Паскаля. Для этого надо выбрать три переменных (r,g,b), ответственных, соответственно, за красную, зеленую и синюю составляющую раскраски ячейки и привязать их значение (максимальное может быть равным 255) к проверке делимости на разные числа. Красный цвет зависит, по-прежнему, от четности числа, зеленый - от делимости его на 9, а синий - от делимости на 11.

 

 

 

И вот результат работы. Не правда ли красиво? Видны красные треугольные "зоны Серпинского", которые, накладываясь на зеленые окошки от девяток, дают желтые зоны, а с синими участками от деления на 11 дают сиреневые участки. Имеет ли эта красота прикладное значение кроме узора для обоев пока не ясно, но от треугольника Паскаля, особенно цветного, можно ожидать любых чудес, возможно, и в скором будущем.

А вот еще один вариант раскраски, выполненный  с учетом делимости чисел на 3,2 и 4.

 

Рассмотрение треугольника Паскаля  начиналось с вариантов движения, ими и закончится.

 В книге Евгения Гика "Шахматы и математика"  в главе, посвященной геометрии шахматной доски) автор приводит удивительные примеры, когда знание вариантов маршрута короля позволило мастерам спасать совершенно проигрышные позиции. (Приведен знаменитый этюд Рети, в котором король удивительным образом успевает повоевать в двух противоположных участках доски). А связь с этой темой в том, что количество вариантов маршрутов короля для достижения каждого поля подчиняется закономерности треугольника Паскаля! Смотрите диаграмму, как пишут в шахматных учебниках, и используйте это в ваших эндшпилях.

 

И самый последний вопрос, связанный одновременно с треугольником Паскаля и с шахматами. Чему равна сумма всех чисел, стоящих выше какого-либо ряда? Эти суммы дают значения 1, 3, 7, 15, 31,... Не надо обладать большой фантазией, чтобы увидеть простую закономерность: сумма всех чисел для n рядов равна 2n-1. И как эта закономерность связана с   шахматами? По общеизвестной легенде  индийский раджа обещал создателю шахмат любую награду, которую тот попросит. Когда же первый шахматист попросил положить на первый квадрат доски одно пшеничное зерно, на второй - два, на третий - четыре, и так продолжая удваивать, до 64-го квадрата, то раджа даже обиделся сначала мизерностью просимой награды. Когда же его визири прикинули просимое количество, то оказалось, что этим зерном можно было бы засыпать всю Землю по колено, это намного больше, чем было и будет собрано во всех урожаях человечества. Можно рассчитать высоту слоя зерна, например, приняв объем зернышка в 1 мм3, умножить на 264, непременно отнять 1 и разделить на площадь земной поверхности. Так вот - на каждой клетке доски лежало (бы) количество зерен, равное сумме чисел в соответствующей строке треугольника Паскаля, а сумма всех зернышек на первых n клетках равнялась (бы) сумме чисел на этих n строках этого волшебного треугольника.

Рассмотренные удивительные  свойства треугольника Паскаля подтверждают слова Мартина  Гарднера о том, что треугольник Паскаля  одна из наиболее изящных схем во всей математике.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Проект «Удивительный треугольник Паскаля»"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Специалист по учету энергопотребления

Получите профессию

Экскурсовод (гид)

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Цели проекта:

- пополнение запаса историко-научных знаний учащихся

- формирование представлений о математике как части общечеловеческой культуры

- продолжение знакомства с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку

- определение значимости открытия треугольника Паскаля для развития геометрии и других наук

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 664 734 материала в базе

Материал подходит для УМК

Скачать материал

Другие материалы

  • 05.06.2019
  • 342
  • 0
«Алгебра», Бунимович Е.А., Кузнецова Л.В., Минаева С.С. и др.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 12.07.2019 3037
    • DOCX 780 кбайт
    • 29 скачиваний
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Бондаренко Валентина Алексеевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 4 года и 9 месяцев
    • Подписчики: 1
    • Всего просмотров: 29427
    • Всего материалов: 19

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

HR-менеджер

Специалист по управлению персоналом (HR- менеджер)

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Применение математических знаний в повседневной жизни

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 28 человек из 17 регионов
  • Этот курс уже прошли 15 человек

Курс повышения квалификации

Формирование умений и навыков самостоятельной работы у обучающихся 5-9 классов на уроках математики в соответствии с требованиями ФГОС

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 95 человек из 39 регионов
  • Этот курс уже прошли 453 человека

Курс повышения квалификации

Организация учебно-исследовательской деятельности учащихся как средство развития познавательной активности при обучении математике в условиях реализации ФГОС ООО и ФГОС СОО

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 26 человек из 17 регионов
  • Этот курс уже прошли 122 человека

Мини-курс

Конкурентная разведка и маркетинговые исследования

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Волонтерство: история, типы и роль в образовании

3 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Figma: основные принципы дизайна и композиции

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 106 человек из 40 регионов
  • Этот курс уже прошли 15 человек