Инфоурок Химия Научные работыИНДИВИДУАЛЬНЫЙ ПРОЕКТ по теме: «История получения и производства алюминия»

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ по теме: «История получения и производства алюминия»

Скачать материал

Министерство образования Сахалинской области

Государственное бюджетное профессиональное образовательное учреждение «Сахалинский политехнический центр №3»

 

 

 

 

 

 

 

 

 

 

 

 

 

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

предмет: Химия.

по теме: «История получения и производства алюминия»

 

 

 

 

 

 

 

 

Выполнил:

обучающийся группы: «Э1720»

по профессии: «Электромонтер по ремонту и

обслуживанию электрооборудования»

Ф.И.О. обучающегося:

Филин Денис.

Руководитель проекта:

преподаватель химии

Горлач С.В

 

 

 

 

 

 

 

г. Поронайск

2018 год


 

ОГЛАВЛЕНИЕ

 

ВВЕДЕНИЕ. 3

1 АЛЮМИНИЙ.. 5

2. ИСТОРИЯ ПОЛУЧЕНИЯ И ПРОИЗВОДСТВА АЛЮМИНИЯ. 7

2.1 ИСТОРИЯ ПОЛУЧЕНИЯ АЛЮМИНИЯ. 7

2.2 ИСТОРИЯ ПРОИЗВОДСТВА.. 8

2.3 ИСТОРИЯ ПРОИЗВОДСТВА АЛЮМИНИЯ В РОССИИ.. 9

3 ПРОИЗВОДСТВО АЛЮМИНИЯ В XXI ВЕКЕ. 12

3.1 НОВЫЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА АЛЮМИНИЯ.. 12

3.2 ОСНОВНЫЕ НАПРАВЛЕНИЯ ПРИМЕНЕНИЯ АЛЮМИНИЯ. 15

ЗАКЛЮЧЕНИЕ. 19

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ: 20

 

 


 

ВВЕДЕНИЕ

 

Бывают периоды, когда экономика страны совершает весьма резкие повороты по направлению к принципиально новым технологиям, совершенно новым видам сырья и материалов и т. д. Такими поворотами были переориентация экономики с преимущественного использования твердого топлива на нефть и газ, программа ускоренной химизации народного хозяйства, широкая индустриализация промышленного и гражданского строительства на базе сборных конструкций... Явлениями того же порядка были освоение полупроводниковой техники в радиоэлектронной промышленности, глубокое проникновение электронно-вычислительных машин практически во все отрасли экономики.

Актуальность:

Алюминий является важнейшим металлом, объем его производства намного опережает выпуск всех остальных цветных металлов и уступает только производству стали. Высокие темпы прироста производства алюминия обусловлены его уникальными физико-химическими свойствами, благодаря которым он нашел широкое применение в электротехнике, авиа- и автостроении, транспорте, производстве бытовой техники, строительстве, упаковке пищевых продуктов и пр.:

Подобные, поистине революционные, события в технике, носящие межотраслевой характер и преобразующие всю экономическую систему страны, происходят, понятно, не слишком часто — раз в несколько лет, а то и десятилетий. Иные из них можно предугадать, предсказать, другие свершаются неожиданно для инженеров, ученых, экономистов. Желательно, чтобы эти качественные скачки в технике и экономике все же прогнозировались, чтобы специалисты и управленцы могли к ним подготовиться, развернуть поисковые работы, создать определенный научно-технический задел. Тем более такое прогнозирование в ряде случаев возможно, оно прямо вытекает из тенденций научно-технической революции.

Последние годы XX века – начало XXI века — являются таким качественным скачком, коренной переориентацией экономики на совершенно новые материалы. Это, в свою очередь, вызовет создание поколений совершенно новых машин и конструкций, отличающихся прежде всего гораздо более высокими технико-экономическими показателями, чем производимые и применяемые ныне.

Строго говоря, эти материалы известны. Просто сейчас они применяются в чрезвычайно скромных масштабах — в десятки, а возможно, и в тысячи раз более скромных, чем будут использоваться в XXI веке и вообще в обозримой перспективе. Именно эти металлы и, конечно, их сплавы в третьем тысячелетии постепенно вытеснят традиционные, ныне широко распространенные сталь и чугун. На чем основано по предположение? На исключительно высоких технико-эксплуатационных свойствах этих металлов. Правда, чтобы резко расширить масштабы производства и сферу применения этих материалов, предстоит решить немало технических и организационных проблем, преодолеть немало трудностей.

Цель исследования:

рассмотреть историю получения и производства алюминия.

Задачи исследования:

1.   Проанализировать литературные источники по проблеме исследования;

2.   Ознакомиться с историей производства алюминия;

3.   Ознакомиться с основными направлениями применения алюминия.

Предмет исследования: основные направления применения алюминия.

 


 

1 АЛЮМИНИЙ

 

Алюминий — химический элемент III группы периодической системы Менделеева (атомный номер 13, атомная масса 26,98154). В большинстве соединений алюминий трехвалентен, но при высоких температурах он способен проявлять и степень окисления +1. Из соединений этого металла самое важное — оксид Al2O3.[2.ст.174]

Алюминий — серебристый-белый металл, легкий (плотность 2,7 г/см3), пластичный, хороший проводник электричества и тепла, температура плавления 660oC. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой — оксидом алюминия. Оксид алюминия (Al2O3) надежно предохраняет металл от дальнейшего окисления. Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты — соли, содержащие алюминий в составе аниона:

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4]

Алюминий, лишенный защитной пленки, взаимодействуют с водой, вытесняя из нее водород:

2Al + 6H2O = 2Al(OH)3 + 3H2

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Al(OH)3 + NaOH = Na[Al(OH)4]

Суммарное уравнение растворения алюминия в водном растворе щелочи имеет следующий вид:

2Al + 2NaOH +6H2O = 2Na[Al(OH)4] + 3H2.

Алюминий активно взаимодействует и с галогенами. Гидроксид алюминия Al(OH)3 — белое, полупрозрачное, студенистое вещество.

В земной коре содержится 8,8% алюминия. Это третий по распространенности в природе элемент после кислорода и кремния и первый среди металлов. Он входит в состав глин, полевых шпатов, слюд. Известно несколько сотен минералов Al (алюмосиликаты, бокситы, алуниты и другие). Важнейший минерал алюминия — боксит содержит 28-60% глинозема — оксида алюминия Al2O3.[2. ст. 145]


 

2. ИСТОРИЯ ПОЛУЧЕНИЯ И ПРОИЗВОДСТВА АЛЮМИНИЯ

 

2.1 ИСТОРИЯ ПОЛУЧЕНИЯ АЛЮМИНИЯ

 

Античная легенда. Первое упоминание о металлическом алюминии обнаружено в трудах First Century Roman. В знаменитой энциклопедии Плиния Младшего "Historia naturalis", опубликованной в 79 г., описана следующая история. Однажды римскому ювелиру позволили показать императору Тибериусу обеденную тарелку из нового металла. Тарелка была очень светлой и блестела, как серебро. Ювелир рассказал императору, что он добыл металл из обыкновенной глины. Он заверил императора, что только он и боги знают, как получить металл из глины. Император очень заинтересовался открытием ювелира. Однако он сразу понял, что вся его казна золота и серебра обесценится, если люди начнут производить этот светлый металл из глины. Поэтому, вместо ожидаемого ювелиром вознаграждения, он был обезглавлен.

Открытие алюминия Г. Эрстедом. Неизвестно, насколько правдива эта история, но описанные события происходили за 2000 лет до открытия человечеством способа производства алюминия.  Это произошло в 1825 г., когда датский физик Г. Эрстед получил несколько миллиграммов металлического алюминия.  В 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей плёнкой оксида алюминия.[3.ст. 374]

Латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия KAl(SO4)2•(12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом.

2.2 ИСТОРИЯ ПРОИЗВОДСТВА

 

До конца XIX века алюминий в промышленных масштабах не производился.

Только в 1854 году Анри Сент-Клер Девиль (его исследования финансировал Наполеон III, рассчитывая, что алюминий пригодится его армии) изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.[2.ст. 98]

В 1885 году был построен завод по производству алюминия в немецком городе Гмелингеме, работающий по технологии, предложенной Николаем Бекетовым. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путём в период с 1854 по 1890 год.[1. ст. 168]

Метод, изобретённый почти одновременно Чарльзом Холлом в США и Полем Эру во Франции (1886 год) и основанный на получении алюминия электролизом глинозёма, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с улучшением электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозёма внесли русские учёные К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

2.3 ИСТОРИЯ ПРОИЗВОДСТВА АЛЮМИНИЯ В РОССИИ

 

Промышленное производство алюминия в России началось вначале 30х годов XX века. Для организации промышленного производства алюминия требовалось сырье и дешевая электроэнергия. В то время в России было известно лишь Тихвинское месторождение бокситов. В 1928 - 1930 годы в Санкт-Петербурге были проведены исследования по отработке технологии переработки этих бокситов на глинозем и по выбору оптимальной конструкции электролизера для первых алюминиевых заводов. Результаты этих работ были заложены в основу для проектирования Волховского алюминиевого завода.

Важнейшее значение для организации отечественного производства алюминия имело принятие и реализация плана ГОЭЛРО, что позволило обеспечить дешевой электроэнергией строящиеся заводы. В 1931г. образованы отраслевой институт алюминиевой и магниевой промышленности (ВАМИ) и в последующие годы Всероссийского института легких сплавов (ВИЛС).

Первая промышленная партия алюминия была получена на Волховском алюминиевом заводе 14 мая 1932 г. Этот день считается днем рождения алюминиевой промышленности России.

В 1933г. был пущен в эксплуатацию Днепровский алюминиевый завод на Украине.

В 1938г. на базе Тихвинского месторождения бокситов построен Бокситогорский глиноземный завод.

В 1931г. на Урале были открыты месторождения бокситов в совокупности образующих Северо-Уральский бокситовый район, который в дальнейшем стал сырьевой базой алюминиевой промышленности Урала.

В 1939г. состоялся пуск Уральского алюминиевого завода мощностью 70 тыс. т глинозема и 25 тыс. т алюминия.

В годы Великой Отечественной войны, для обеспечения возросших потребностей оборонной промышленности, было принято решение об увеличении мощностей по производству алюминия на Уральском заводе, а также о строительстве Богословского и Новокузнецкого алюминиевых заводов.

В июле 1942 г. мощности Уральского завода по производству алюминия были увеличены в два раза.

7 января 1943 г. страна получила первый сибирский алюминий на Новокузнецком алюминиевом заводе.

Первый глинозем на Богословском заводе получен 3 мая 1943г., в 1944г. начал выдавать продукцию Каменск - Уральский металлургический завод, а в день Победы - 9 мая 1945г., Богословский завод выплавил свой первый алюминий.

В послевоенный период алюминиевая промышленность России продолжала интенсивно развиваться за счет ввода новых и расширения действующих мощностей.

В пятидесятые годы введены в эксплуатацию: Кандалакшский, Надвоицкий и Волгоградский алюминиевые заводы, Белокалитвинское металлургическое производственное объединение и Самарский металлургический завод, специализирующиеся на выпуске полуфабрикатов из алюминиевых сплавов, а так же Пикалевский глиноземный завод – комплексное предприятие по переработке Кольских нефелиновых концентратов.

В шестидесятые и семидесятые годы в непосредственной близости от источников дешевой электроэнергии, крупнейших ГЭС, были построены Иркутский, Красноярский и Братский алюминиевые заводы.

В этот же период были введены в эксплуатацию Красноярский металлургический завод, Павлодарский алюминиевый завод, Ачинский глиноземный комбинат и «Дмитровский опытный завод алюминиевой консервной ленты».

В 1983г. и в 1985г. вступили в строй Николаевский глиноземный и Саянский алюминиевые заводы, оснащенные современными технологиями и оборудованием.

В 1995г. начал выдавать продукцию завод «Саянская фольга».

В настоящее время алюминиевая промышленность России является крупнейшим в мире производителем и экспортером алюминия.

В 1996г. в отрасли начались структурные преобразования по созданию интегрированных компаний.

В настоящее время в отрасли действуют три алюминиевые компании: «РУСАЛ – Управляющая компания», «СУАЛ – холдинг» и Алко Россия.


 

3 ПРОИЗВОДСТВО АЛЮМИНИЯ В XXI ВЕКЕ

3.1 НОВЫЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА АЛЮМИНИЯ

В последние годы многие аналитики сферы производства легких металлов и сплавов пророчат России звание «алюминиевой сверхдержавы» современные тенденции на мировом рынке ведут к повышенному спросу на российский металл. У отечественных предприятий действительно есть реальный шанс выйти в лидеры мировой алюминиевой промышленности — при условии, что будет решен вопрос сырья и модернизированы производственные линии.[4]

Если с первой проблемой справиться пока сложно (хотя слияние СУАЛа и РУСАЛа открывает определенные перспективы), то в отношении совершенствования производства российские предприятия идут вперед ударными темпами. Помимо исследовательских и конструкторских подразделений крупных заводов, в стране действуют целые научные центры, такие как ОАО «СибВАМИ», которые занимаются разработкой новейших методик в области производства первичного и вторичного алюминия и его сплавов.

Модернизация производственных линий и увеличение производительности многих отечественных предприятий стали возможными благодаря разработкам Сибирского научно-исследовательского, конструкторского и проектного института алюминиевой и электродной промышленности (СибВАМИ). За последние несколько лет эта организация разработала и успешно внедрила несколько уникальных технологий, способствующих повышению эффективности производства алюминия не только в России, но и за рубежом.[5]

К числу разработок СибВАМИ относятся новая технология производства анодной массы методом сухого смешивания и брикетирования, создание автоматических плавильно-литейных комплексов, а также ряд методик по переработке первичного алюминия. Некоторые инновации института стали поистине революционными для российских предприятий.

По данным аналитиков компании РУСАЛ, около 80% российского алюминия производится с помощью электролизеров Содерберга с самообжигающимися анодами. Технология Содерберга была предложена в 1920-х годах норвежскими исследователями и была принята российскими металлургами как более экономичная и эффективная методика по сравнению с используемой ранее системой Холла-Эру. Самообжигающиеся аноды позволили снизить себестоимость алюминия на 5,2% и практически исключить «человеческий фактор» в процессе электролиза. Однако растущий спрос на алюминий и необходимость увеличить объемы производства выявили недостатки самообжигающихся анодов. Расход электроэнергии и углерода в установках Содерберга довольно высок, как и уровень выделения вредных веществ при производстве. Впрочем, приверженцы данной технологии (а это довольно широкий круг отечественных и зарубежных предприятий) отмечают высокий потенциал самообжигающихся анодов при усовершенствовании отдельных ее элементов. Поэтому модернизация отечественных алюминиевых предприятий касается, в основном, снижения энерго затрат, решения экологических проблем и повышения производительности установок Содерберга.[6]

Совершенствование технологии Содерберга ведется сразу в нескольких российских компаниях. Например, лидер отечественной алюминиевой промышленности компания РУСАЛ(которая входит в так называемый «клуб Содерберга», объединяющий крупнейшие заводы мира) с 2004 года реализует программу модернизации производства за счет внедрения новых моделей электролизеров (РА-300 и РА-400). Эти агрегаты позволяют освоить технологию «сухого» анода и относятся к числу «зеленых» инноваций: их установка на заводе в Хакасии позволила на 50% уменьшить выброс вредных веществ. Новые электролизеры значительно повлияли и на продуктивность завода: в среднем линия РА-300 производит до 2412 кг алюминия в сутки(показатели РА-400 немного выше). Руководство РУСАЛ отмечает, что благодаря внедрению новых технологий в области самообжигающихся анодов производительность завода в ближайшие пять лет может заметно возрасти.

В рамках программы по модернизации в некоторых российских предприятиях широко внедряется еще одна технология — обожженные аноды — ставшая для отечественных металлургов неплохой перспективой развития производства. Концепция обожженных анодов была принята в качестве основной руководством холдинга СУАЛ: переход на новую технологию полным ходом идет на заводе «ИркАЗ», одном из самых крупных заводов компании. По мнению специалистов СУАЛ, обожженные аноды, хоть и дорогая, но более эффективная технология по сравнению с электролизерами Содерберга: при ее использовании загрязнение атмосферы сводится к минимуму, а производительность предприятия значительно повышается.[4]

Экспериментальные линии электролизеров с обожженными анодами были установлены в цехах Уральского алюминиевого завода группы СУАЛ. Первые несколько месяцев испытаний показали высокие результаты по эффективности и экологической безопасности — технология обожженных анодов легла в основу нового проекта СУАЛ по вводу в эксплуатацию новейшей модернизированной линии электролизеров «ИркАЗ-5». По расчетам аналитиков, инвестированные в этот довольно амбициозный проект 400 миллионов долларов должны окупиться в течение нескольких лет после запуска линии: ее теоретическая мощность составляет около 166,5 тысяч тонн алюминия в год — это почти две трети нынешних объемов производства.[8]

Новые технологии производства алюминия в России — это шаг в будущее, шаг к завоеванию абсолютного превосходства на мировом рынке «самолетного металла».

 

 

 

3.2 ОСНОВНЫЕ НАПРАВЛЕНИЯ ПРИМЕНЕНИЯ АЛЮМИНИЯ

 

Алюминий – один из наиболее легких конструкционных металлов. Плотность алюминия примерно в три раза меньше, чем у железа, меди или цинка. Как легкий, коррозионно-стойкий, обладающий высокой электропроводностью и легко регенерируемый металл он играет важную роль в социальном прогрессе.[6]

Сплавы, получаемые из алюминия наряду с низкой плотностью, отличаются высокой прочностью и другими важными механическими свойствами. Легкость обработки позволяет использовать их для производства различных изделий. Конструкции из алюминия требуют более низких затрат в течение длительного, практически неограниченного срока службы, сохраняют свои качества при низких температурах и обладают достаточной огнестойкостью.

Сплавы, повышающие прочность и другие свойства алюминия, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава). Сплав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.

Силумин - легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.[7]

Магналии - сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т.д. (деформируемые магналии).

Основные достоинства всех сплавов алюминия состоит в их малой плотностью (2,5-2,8 г/см3), высокая прочность (в расчете на единицу веса), удовлетворительная стойкость против атмосферной коррозии, сравнительная дешевизна и простота получения и обработка.

Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды, спорттоваров, мебели, рекламе и других отраслях промышленности.

По широте применения сплавы алюминия занимают второе место после стали и чугуна.

Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка, железа.

Алюминий применяется и для алитирования (алюминирования) - насыщения поверхности стальных или чугунных изделий алюминием с целью защиты основного материала от окисления при сильном нагревании, т.е. повышения жароупорности (до 1100oC) и сопротивления атмосферной коррозии.[5]

Сегодня он является важнейшим конструкционным материалом для изготовления и модернизации продукции современного общества.

Технический прогресс и конкурентоспособность продукции в таких отраслях, как, транспортное машиностроение, электротехника, строительство и пищевая промышленность, а также в производстве потребительских товаров длительного пользования и различного оборудования невозможен без использования алюминия.

Основным потребителем алюминия является пищевая промышленность, где он используется в виде фольги и др. материалов для упаковки продуктов питания и напитков.

Непрерывный рост использования алюминия в транспортном секторе и, прежде всего в производстве автомобилей, а также в сооружении грузовых судов, железнодорожных вагонов и скоростных поездов, снижает расход топлива и вредные выбросы в атмосферу. Алюминий продолжает оставаться важнейшим компонентом конструкции самолетов, как военного, так и коммерческого назначения.[6]

В строительном секторе, наряду с традиционными направлениями его применения в производстве окон, дверей, несущих конструкций и в наружной отделке, расширяется использование эффективных модульных компонентов, изготовленных с использованием панелей на основе алюминия.

Благодаря непрерывному техническому прогрессу в вопросах совершенствования технологий производства изделий из алюминия, созданию новых, упрочненных алюминием, композитных материалов с заранее определенными свойствами сферы использования алюминия постоянно расширяться.

Исключительно высокая регенерационная способность и уникальные качества алюминия, сохраняющиеся при его извлечении из ломов и отходов, позволяют многократно использовать его для производства различных изделий. Применение вторичного алюминия позволяет экономить до 95% энергии по сравнению с энергией необходимой для производства первичного алюминия.

Алюминиевая промышленность России, по мере подъема экономики страны будет играть важную и все более возрастающую роль в обеспечении конкурентоспособности национальной продукции на мировом рынке.

Применение алюминия весьма эффективно в тепличном хозяйстве. Оно позволяет перевести строительство теплиц на поточную основу. При этом конструкции получаются довольно легкими, что облегчает труд рабочих, позволяет увеличить пролеты между опорами. Последнее очень важно с точки зрения механизации работ в теплицах.[4]

Прочность алюминия при низких температурах делает его незаменимым в условиях Крайнего Севера, Сибири. Зимой в таких теплицах экономится более 20 процентов тепла, до 5 раз сокращается бой стекла (а это миллионы квадратных метров). Благодаря высокой отражательной способности алюминия по сравнению с оцинкованной сталью алюминиевые теплицы отличаются лучшей освещенностью. При сооружении перекрытий зданий со свободным расположением опор, например, выставочных залов свободной, «неправильной'», планировки, очень удобны пространственные решетчатые плиты из алюминиевых сплавов. Примером может служить структурная конструкция над концертным залом в городе Сочи. Она имеет вид неправильного шестиугольника площадью 4370 квадратных метров. Площадь покрытия над прилегающим к залу фойе — 1300 квадратных метров. Эти огромные сооружения не производят впечатления чего-то громоздкого и тяжелого, они создают ощущение парения над опорами. Конструкции действительно очень легки. Не случайно некоторые части покрытия выступают за опоры на расстояние до 15 метров. Высота решетчатой конструкции — 2,45 метра, основной ее элемент — трубы, соединенные сваркой в трехгранные пирамиды, которые при монтаже соединяли высокопрочными болтами.[8]


 

ЗАКЛЮЧЕНИЕ

 

Российские алюминиевые сплавы прошли блистательный путь развития. Трудно себе представить, какой из конструкционных материалов может сейчас успешно конкурировать с алюминием. Неслучайно он является основой большинства конструкций в ведущих областях техники - в авиации, ракетах, атомной промышленности. Он применяется также в строительстве, преимущественно в виде сплавов алюминия с другими металлами, электротехнике (заменитель меди при изготовлении кабелей и т.д.), пищевой промышленности (фольга), металлургии (легирующая добавка), алюмотермии и т.д.

Созданы алюминиевые сплавы с прочностью среднелегированной стали, криогенные сплавы высокой пластичности для температуры жидкого водорода, сверхлегкие алюминиевые сплавы слитием — все, что в 1950-х годах считалось невозможным, стало действительностью. Новые сплавы рождались на базе теоретических открытий и обобщений, их применение становилось возможным после преодоления сложных технологических трудностей и в жесткой борьбе с многочисленными оппонентами, призывающими использовать то, что хорошо проверено практикой, и не подвергать себя опасностям, связанным с освоением нового неизведанного материала. Накопленный опыт показывает, что только постоянный и мощный прогресс алюминиевых сплавов обеспечил важнейшим изделиям авиационной, ракетной и ядерной техники лидирующее положение в мире.

Хоть в нынешний век на смену алюминиевым изделиям приходится пластик и выявляются все новые материалы для массового производства, алюминий никогда не потеряет своей ценности во всех сферах промышленности.

 


 

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ:

 

1. Глубоков, Ю.М. Аналитическая химия: Учебник для студентов учреждений среднего профессионального образования / Ю.М. Глубоков, В.А. Головачева, Ю.А. Ефимова; Под ред. А.А. Ищенко. - М.: ИЦ Академия, 2013. - 320 c

2. Сидоров, В.И. Общая химия: Учебник . / В.И. Сидоров. - М.: АСВ, 2014. - 440 c.

3. Глинка, Н.Л. Общая химия: Учебное пособие / Н.Л. Глинка. - М.: КноРус, 2012. - 752 c

4. http://www. ronl. ru/referaty/promyshlennost-proizvodstvo/184951/

5. http://www. Bestreferat. Ru/referat-82188. html

6. https://refblok. wordpress. com/2012/07/04/история-получения-и-производства-алю-2/

7. http://xreferat. com/108/1450-1-sposoby-polucheniya-alyuminiya. html

8. http://www. litsoch. ru/referats/read/272969

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "ИНДИВИДУАЛЬНЫЙ ПРОЕКТ по теме: «История получения и производства алюминия»"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Контент-менеджер

Получите профессию

Копирайтер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 671 947 материалов в базе

Материал подходит для УМК

Скачать материал

Другие материалы

Дистанционная работа по органической химии для студентов второго курса "Галогенпроизводные"
  • Учебник: «Химия. Среднее профессиональное образование», Габриелян О.С., Остроумов И.Г.
  • Тема: Раздел 3. Органическая химия
  • 12.02.2019
  • 1634
  • 26
«Химия. Среднее профессиональное образование», Габриелян О.С., Остроумов И.Г.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 04.03.2019 6586
    • DOCX 44.3 кбайт
    • 126 скачиваний
    • Рейтинг: 3 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Горлач Светлана Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Горлач Светлана Владимировна
    Горлач Светлана Владимировна
    • На сайте: 8 лет и 10 месяцев
    • Подписчики: 1
    • Всего просмотров: 35565
    • Всего материалов: 19

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Бухгалтер

Бухгалтер

500/1000 ч.

Подать заявку О курсе
  • Сейчас обучается 29 человек из 22 регионов

Курс повышения квалификации

Особенности подготовки к сдаче ЕГЭ по химии в условиях реализации ФГОС СОО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 48 человек из 29 регионов
  • Этот курс уже прошли 353 человека

Курс повышения квалификации

Особенности подготовки к сдаче ОГЭ по химии в условиях реализации ФГОС ООО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 56 человек из 28 регионов
  • Этот курс уже прошли 660 человек

Курс повышения квалификации

Актуальные вопросы преподавания химии в школе в условиях реализации ФГОС

72 ч.

2200 руб. 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 56 человек из 39 регионов
  • Этот курс уже прошли 262 человека

Мини-курс

Художественная гимнастика: диагностика и технические аспекты

3 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Цифровые валюты и правовое регулирование

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Финансы и управление в медиакоммуникациях

3 ч.

780 руб. 390 руб.
Подать заявку О курсе