Инфоурок Биология ПрезентацииПРЕЗЕНТАЦИЯ ПО БИОЛОГИИ НА ТЕМУ "КЛЕТКА".

ПРЕЗЕНТАЦИЯ ПО БИОЛОГИИ НА ТЕМУ "КЛЕТКА".

Скачать материал
Скачать материал "ПРЕЗЕНТАЦИЯ ПО БИОЛОГИИ НА ТЕМУ "КЛЕТКА"."

Получите профессию

Няня

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Специалист по связям с общественностью

Описание презентации по отдельным слайдам:

  • Клетка

    1 слайд

    Клетка

  • ЦитологияЦитология (греч. «цитос» - клетка, «логос» - наука) – наука о клетка...

    2 слайд

    Цитология
    Цитология (греч. «цитос» - клетка, «логос» - наука) – наука о клетках. Цитология изучает строение и химический состав клеток, функции клеток в организме животных и растений, размножение и развитие клеток, приспособление клеток к условиям окружающей среды.

    Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например, с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой.

    Цитология – одна из молодых биологических наук, её возраст около 100 лет. Возраст же термина «клетка» насчитывает около 300 лет.

    Исследуя клетку как важнейшую единицу живого, цитология занимает центральное положение в ряду биологических дисциплин. Изучение клеточного строения организмов было начато микроскопами XVII века, в XIX веке была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В ХХ веке быстрому прогрессу цитологии способствовали новые методы: электронная микроскопия, изотопные индикаторы, культивирование клеток и др.

    Название «клетка» предложил англичанин Р. Гук ещё в 1665 г., но только в XIX веке началось её систематическое изучение. Несмотря на то, что клетки могут входить в состав различных организмов и органов (бактерий, икринок, эритроцитов, нервов и т.д.) и даже существовать как самостоятельные (простейшие) организмы, в их строении и функциях обнаружено много общего. Хотя отдельная клетка представляет собой наиболее простую форму жизни, строение её достаточно сложно…

  • Строение клеткиКлетку можно разбить на 11 частей: 
  1)Мембрана 
  2)Ядро...

    3 слайд

    Строение клетки
    Клетку можно разбить на 11 частей:
    1)Мембрана
    2)Ядро
    3)Цитоплазма
    4)Клеточный центр
    5)Рибосомы
    6)ЭПС
    7)Комплекс Гольджи
    8)Лизосомы
    9)Клеточные включения
    10)Митохондрии
    11)Пластиды

  • 4 слайд

  • Клеточное ядро     Ядро (лат. nucleus) — это один из структурных компонентов...

    5 слайд

    Клеточное ядро
    Ядро (лат. nucleus) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация генетической информации с обеспечением синтеза белка. Ядро состоит из хромати́на, я́дрышка, кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК.
    Происхождение ядра не выяснено и является предметом научных споров. Выдвинуто 4 основных гипотезы происхождения клеточного ядра, но ни одна из них не получила широкой поддержки.

  • Гипотеза, известная как «синтропная модель», предполагает что ядро возникло в...

    6 слайд

    Гипотеза, известная как «синтропная модель», предполагает что ядро возникло в результате симбиотических взаимоотношений между археей и бактерией (ни археи, ни бактерии не имеют оформленных клеточных ядер). По этой гипотезе, симбиоз возник, когда древняя архея (сходная с современными метаногенными археями), проникла в бактерию (сходную с современными Миксобактериями). Впоследствии архея редуцировалась до клеточного ядра современных эукариот. Эта гипотеза аналогична практически доказанным теориям происхождения митохондрий и хлоропластов, которые возникли в результате эндосимбиоза прото-эукариот и аэробных бактерий.[2] Доказательством гипотезы является наличие одинаковых генов у эукариот и архей, в частности генов гистонов. Также миксобактерии быстро передвигаются, могут образовывать многоклеточные структуры и имеют киназы и G-белки, близкие к эукариотическим.[3]

    Согласно второй гипотезе, прото-эукариотическая клетка эволюционировала из бактерии без стадии эндосимбиоза. Доказательством модели является существование современных бактерий из отряда Planctomycetes, которые имеют ядерные структуры с примитивными порами и другие клеточные компартменты, ограниченные мембранами (ничего похожего у других прокариот не обнаружено).[4]

    Согласно гипотезе вирусного эукариогенеза (англ.)русск., окруженное мембраной ядро, как и другие эукариотические элементы, произошли вследствие инфекции прокариотической клетки вирусом. Это предположение основывается на наличии общих черт у эукариот и некоторых вирусов, а именно геноме из линейных цепей ДНК, кэпировании мРНК и тесном связывании генома с белками (гистоны эукариот принимаются аналогами вирусных ДНК-связывающих белков). По одной версии, ядро возникло при фагоцитировании (поглощении) клеткой большого ДНК-содержащего вируса.[5] По другой версии, эукариоты произошли от древних архей, инфицированных поксвирусами. Это гипотеза основана на сходстве ДНК-полимеразы современных поксвирусов и эукариот.[6][7] Также предполагается, что нерешенный вопрос о происхождении пола и полового размножения может быть связан с вирусным эукариогенезом.[8]

    Наиболее новая гипотеза, названная экзомембранной гипотезой, утверждает, что ядро произошло от одиночной клетки, которая в процессе эволюции выработала вторую внешнюю клеточную мембрану; первичная клеточная мембрана после этого превратилась в ядерную мембрану, и в ней образовалась сложная система поровых структур (ядерных пор) для транспорта клеточных компонентов, синтезированных внутри ядра.
    4 основных гипотезы происхождения клеточного ядра

  • 7 слайд

  • Клеточная мембранаКле́точная мембра́на (или цитолемма, или плазмалемма, или п...

    8 слайд

    Клеточная мембрана
    Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

  • ФункцииБарьерная — обеспечивает регулируемый, избирательный, пассивный и акти...

    9 слайд

    Функции
    Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.
    Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
    Матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
    Механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
    Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
    Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы)..
    Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
    Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

  • 10 слайд

  • Цитопла́змаЦитопла́зма — внутренняя среда живой или умершей клетки, кроме ядр...

    11 слайд

    Цитопла́зма
    Цитопла́зма — внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает в себя гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.

    В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы — вода.

    Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом. В ней протекают все процессы обмена веществ.

    Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако нормально функционирует цитоплазма только в присутствии ядра. Без него долго существовать цитоплазма не может, так же как и ядро без цитоплазмы.

    Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия.

  • Эпс       Эндоплазмати́ческий рети́кулум (ЭПР) или  эндоплазматическая сеть (...

    12 слайд

    Эпс
    Эндоплазмати́ческий рети́кулум (ЭПР) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев. Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки. Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

    Выделяют два вида ЭПР:
    гранулярный эндоплазматический ретикулум;
    агранулярный (гладкий) эндоплазматический ретикулум.

    На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.

    Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

  • 13 слайд

  • РибосомыРибосо́ма — важнейший немембранный органоид живой клетки сферической...

    14 слайд

    Рибосомы
    Рибосо́ма — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 10—20 нанометров, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

    В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.
    Схема синтеза рибосом в клетках эукариот.
    1. Синтез мРНК рибосомных белков РНК полимеразой II. 2. Экспорт мРНК из ядра. 3. Узнавание мРНК рибосомой и 4. синтез рибосомных белков. 5. Синтез предшественника рРНК (45S — предшественник) РНК полимеразой I. 6. Синтез 5S pРНК РНК полимеразой III. 7. Сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц. 8. Присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы. 9. Дозревание большой субчастицы, высвобождение ядрышковых белков и РНК. 10. Выход рибосомных субчастиц из ядра. 11. Вовлечение их в трансляцию.

    Рибосомы представляют собой нуклеопротеид, в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S, 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

  • Комплекс Гольджи      Аппара́т (ко́мплекс) Го́льджи — мембранная структура эу...

    15 слайд

    Комплекс Гольджи
    Аппара́т (ко́мплекс) Го́льджи — мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.
    В Комплексе Гольджи выделяют 3 отдела цистерн, окруженных мембранными пузырьками:
    Цис-отдел (ближний к ядру);
    Медиальный отдел;
    Транс-отдел (самый отдаленный от ядра).

    Эти отделы различаются между собой набором ферментов.

  • ФункцииСегрегация белков на 3 потока: 
лизосомальный - гликозилированные белк...

    16 слайд

    Функции
    Сегрегация белков на 3 потока:
    лизосомальный - гликозилированные белки (с маннозой) поступают в цис-отдел комплекса Гольджи, некоторые из них фосфорилируются, образуется маркёр лизосомальных ферментов - манноза-6-фосфат. В дальнейшем эти фосфорилированные белки не буду подвергаться модификации, а попадут в лизосомы.
    конститутивный экзоцитоз (конститутивная секреция). В этот поток включаются белки и липиды, которые становятся компонентами поверхностного аппарата клетки, в том числе гликокаликса, или же они могут входить в состав внеклеточного матрикса.
    Индуцируемая секреция - сюда попадают белки, которые функционируют за пределами клетки, поверхностного аппарата клетки, во внутренней среде организма. Характерен для секреторных клеток.
    Формирование слизистых секретов - гликозамингликанов (мукополисахаридов)
    Формирование углеводных компонентов гликокаликса - в основном, гликолипидов.
    Сульфатирование углеводных и белковых компонентов гликопротеидов и гликолипидов
    Частичный протеолиз белков - иногда за счет этого неактивный белок переходит в активный (проинсулин превращается в инсулин).

  • ЛизосомыЛизосо́ма - клеточный органоид размером 0,2 — 0,4 мкм, один из видов...

    17 слайд

    Лизосомы
    Лизосо́ма - клеточный органоид размером 0,2 — 0,4 мкм, один из видов везикул. Эти одномембранные органоиды — часть вакуома (эндомембранной системы клетки). Разные виды лизосом могут рассматриваться как отдельные клеточные компартменты. Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.
    Функциями лизосом являются:
    Переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)
    Аутофагия — уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки
    Автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.
    Растворение внешних структур (см, например, остеокласты)

  • 18 слайд

  • Клеточные включенияК клеточным включениям относятся некоторые пигменты, напри...

    19 слайд

    Клеточные включения
    К клеточным включениям относятся некоторые пигменты, например распространенный в тканях желтый и коричневый пигмент липофусцин , круглые гранулы которого накапливаются в процессе жизнедеятельности клеток, особенно по мере их старения. Сюда же относятся пигменты желтого и красного цвета - липохромы . Они накапливаются в виде мелких капель в клетках коркового вещества надпочечников и в некоторых клетках яичников. Пигмент ретинин входит в состав зрительного пурпура сетчатки глаза. Присутствие некоторых пигментов связано с выполнением этими клетками особых функций. Примерами могут служить красный дыхательный пигмент гемоглобин в эритроцитах крови или пигмент меланин в клетках меланофорах покровных тканей животных.

    В качестве включений во многих животных клетках присутствуют гранулы секрета.

  • Митохондрии      Митохо́ндрия — двумембранная гранулярная или нитевидная орга...

    20 слайд

    Митохондрии
    Митохо́ндрия — двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм. Характерна для большинства эукариотических клеток.
    Функции:
    1) играют роль энергетических станций клеток. в них протекают процессы окислительного фосфорилирования (ферментативного окисления различных веществ с последующим накоплением энергии в виде молекул аденозинтрифосфата - АТФ);
    2) хранят наследственный материал в виде митохондриальной ДНК. митохондрии для своей работы нуждаются в белкаx, закодированных в генах ядерной ДНК, так как собственная митохондриальная ДНК может обеспечить митохондрии лишь несколькими белками.

  • 21 слайд

  • ПластидыПласти́ды (от др.-греч. πλαστός — вылепленный) — органоиды эукариотич...

    22 слайд

    Пластиды
    Пласти́ды (от др.-греч. πλαστός — вылепленный) — органоиды эукариотических растений, прокариотов и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНК. По окраске и выполняемой функции выделяют три основных типа пластид:
    Лейкопласты — неокрашенные пластиды, как правило выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.
    Хромопласты — пластиды, окрашенные в жёлтый, красный, или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.
    Хлоропласты — пластиды, несущие фотосинтезирующие пигменты — хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей. Набор пигментов, участвующих в фотосинтезе (и, соответственно, определяющих окраску хлоропласта) различен у представителей разных таксономических отделов. Хлоропласты имеют сложную внутреннюю структуру.

  • 23 слайд

  • Функции клеток     Функции
В ядре хранится генетическая информация; деление к...

    24 слайд

    Функции клеток
    Функции
    В ядре хранится генетическая информация; деление клетки.
    Митохондрии производят энергию.
    Аппарат Гопьджи - «транспортная» система клетки.
    Лизосомы удаляют отходы и расщепляют белок.
    Десмосомы осуществляют связь с другими клетками.
    Органоиды принимают участие в обмене веществ клетки.
    Клеточная мембрана поддерживает форму клетки.
    В зависимости от выполняемой функции все клетки разделяются на определенные типы. Важнейшие клетки по своему виду и «выполняемым задачам» подразделяются на: клетки костной, хрящевой (разновидность соединительной ткани), соединительной, мышечной, нервной, покровной тканей, а также клетки желез и крови. Различные клетки даже «делят работу» между собой, и каждая отвечает за свою. Например, клетки мышечной ткани не производят глюкозу, а получают ее от других клеток, выполняющих эту функцию.

  • Жизненные свойства клетки. Основное жизненное свойство клетки - обмен веществ...

    25 слайд

    Жизненные свойства клетки. Основное жизненное свойство клетки - обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада. Вещества, поступившие в клетку, участвуют в процессах биосинтеза. Биосинтез - это образование белков, жиров, углеводов и их соединений из более простых веществ. В процессе биосинтеза образуются вещества, свойственные определенным клеткам организма. Например, в клетках мышц синтезируются белки, обеспечивающие их сокращение.
    Одновременно с биосинтезом в клетках происходит распад органических соединений. В результате распада образуются вещества более простого строения. Большая часть реакции распада идет с участием кислорода и освобождением энергии. Эта энергия расходуется на жизненные процессы, протекающие в клетке. Процессы биосинтеза и распада составляют обмен веществ, который сопровождается превращениями энергии.
    Клеткам свойственны рост и размножение. Клетки тела человека размножаются делением пополам. Каждая из образовавшихся дочерних клеток растет и достигает размеров материнской. Новые клетки выполняют функцию материнской клетки. Продолжительность жизни клеток различна: от нескольких часов до десятков лет.
    Живые клетки способны реагировать на физические и химические изменения окружающей их среды. Это свойство клеток называют возбудимостью. При этом из состояния покоя клетки переходят в рабочее состояние - возбуждение. При возбуждении в клетках меняется скорость биосинтеза и распада веществ, потребление кислорода, температура. В возбужденном состоянии разные клетки выполняют свойственные им функции. Железистые клетки образуют и выделяют вещества, мышечные - сокращаются, в нервных клетках возникает слабый электрический сигнал - нервный импульс, который может распространяться по клеточным мембранам.
    Свойства клетки

Получите профессию

Няня

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

ПРЕЗЕНТАЦИЯ ПО БИОЛОГИИ НА ТЕМУ "КЛЕТКА".

Изучить особенности строения, функции, клетки.

Дать определение что такое органоиды клетки и какие функции они выполняют.

•Исследуя клетку как важнейшую единицу живого, цитология занимает центральное положение в ряду биологических дисциплин. Изучение клеточного строения организмов было начато микроскопами XVII века, в XIX веке была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В ХХ веке быстрому прогрессу цитологии способствовали новые методы: электронная микроскопия, изотопные индикаторы, культивирование клеток и др.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 664 059 материалов в базе

Скачать материал

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 15.05.2015 10898
    • PPTX 1 мбайт
    • 212 скачиваний
    • Рейтинг: 4 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Яковлева Оксана Михайловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Яковлева Оксана Михайловна
    Яковлева Оксана Михайловна
    • На сайте: 8 лет и 11 месяцев
    • Подписчики: 1
    • Всего просмотров: 141252
    • Всего материалов: 26

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Методист-разработчик онлайн-курсов

Методист-разработчик онлайн-курсов

500/1000 ч.

Подать заявку О курсе
  • Сейчас обучается 138 человек из 46 регионов

Курс повышения квалификации

Инновационные технологии обучения биологии как основа реализации ФГОС

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 136 человек из 47 регионов
  • Этот курс уже прошли 1 517 человек

Курс профессиональной переподготовки

Педагогическая деятельность по проектированию и реализации образовательного процесса в общеобразовательных организациях (предмет "Биология")

Учитель биологии

300 ч. — 1200 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Этот курс уже прошли 20 человек

Курс профессиональной переподготовки

Анатомия и физиология: теория и методика преподавания в образовательной организации

Преподаватель анатомии и физиологии

300/600 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 35 человек из 22 регионов
  • Этот курс уже прошли 172 человека

Мини-курс

Введение в экономическую теорию и практику

3 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Развитие мотивации к обучению

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 156 человек из 49 регионов
  • Этот курс уже прошли 160 человек

Мини-курс

Основы классической механики

3 ч.

780 руб. 390 руб.
Подать заявку О курсе