Инфоурок Алгебра Другие методич. материалыА.А.Колмогоров .Лицо математики XX века.

А.А.Колмогоров .Лицо математики XX века.

Скачать материал

А. Н. Колмогоров. Лицо математики XX века

Лучше больше да лучше

"Колмогоров - Пуанкаре - Гаусс - Эйлер - Ньютон: всего пять таких жизней отделяют нас от истоков нашей науки". Эти великолепные слова принадлежат одному из учеников Андрея Николаевича Колмогорова - академику В. И. Арнольду. Они выражают общепризнанное мнение о том, что А. Н. Колмогоров относится к числу исключительных фигур в истории математики.

Что же это значит? Какими делами, какими свойствами личности определяется столь высокий авторитет в науке?

Начнем с того, что бросается в глаза сразу, хотя бы при знакомстве со списком трудов А. Н. Колмогорова. Подобно великим, имена которых стоят рядом с его именем в приведенной цитате, Андрей Николаевич был универсалом в математике. Там он умел все. А надо сказать, что математику ХХ века обладать этим качеством очень непросто. Уже в начале прошлого века, из-за обилия богатых "провинций", на которые разделилась огромная математическая империя, типичной для математиков стала специализация исследований в определенной области. Стало возможным создать себе крупнейшее научное имя, почти не выходя за ее пределы. Так выросли геометр Н. И. Лобачевский, алгебраист А. Кели, создатель теории множеств Г. Кантор и многие другие. В наше время эта тенденция усилилась. Сейчас даже стало хорошим тоном говорить, что представители различных ветвей математики зачастую просто не понимают друг друга. И тем не менее: "Необыкновенная широта творческих интересов А. Н. Колмогорова, огромный диапазон и разнообразие тех областей математики, в которых он работал в различные периоды своей жизни, выделяют Андрея Николаевича среди математиков не только нашей страны, но и всего мира, и можно прямо сказать, что в отношении этого свойства своего дарования он не имеет себе равных среди математиков своего времени" (академик П. С. Александров).

Попробуем просто перечислить те области математики, в которых работал А. Н. Колмогоров. Тригонометрические и ортогональные ряды, теория меры и интеграла, математическая логика, теория приближений, геометрия, топология, функциональный анализ, дифференциальные уравнения и динамические системы. Теория вероятностей, математическая статистика, теория информации, история математики. Если же говорить о прикладных исследованиях, то надо добавить к этому списку работы по механике, биологии, геологии, теории стрельбы, теории стихосложения, кристаллизации металлов, теории автоматов.

И это еще не все. А. Н. Колмогоров широко известен как выдающийся педагог, воспитавший блестящую плеяду советских математиков нескольких поколений. Среди них только академики составляют импозантную компанию более, чем из десяти человек. Много сил отдал Андрей Николаевич делу развития математического образования в школе, написанию учебников, воспитанию юных математических дарований.

Такой диапазон интересов, конечно, впечатляет. Но невольно возникает мысль: можно ли заниматься всем этим одинаково серьезно и глубоко, не противоречит ли такое разнообразие некоему закону сохранения, выраженному пословицей "лучше меньше, да лучше"? Но А. Н. Колмогоров словно специально избран судьбой, чтобы опровергнуть этот закон и работать по принципу "лучше больше да лучше". О качестве его работ можно сказать коротко: все его научные результаты первоклассны, большинство из них открывают новые направления и создают фундаментальные обобщающие теории. В приветствии А. Н. Колмогорову в связи с его 75-летием Отделение математики АН СССР, Московское математическое общество и журнал "Успехи математических наук" выразились еще короче и определеннее: "Ваши фундаментальные исследования определили лицо многих областей математики ХХ века".

Конечно, работать на таком высочайшем уровне под силу только человеку, в котором сочетаются математическое дарование огромной силы, недюжинное здоровье, фантастическое трудолюбие и целеустремленность.

В свое время, в брошюре для школьников "О профессии математика" А. Н. Колмогоров анализировал понятие математической одаренности. К элементам таковой он относил алгоритмические способности (нахождение удачных, нестандартных путей преобразования сложных выражений, решения уравнений), геометрическую интуицию, а также искусство "последовательного логического рассуждения", особенно умение логически мыслить в задачах с новой, нестандартной постановкой. Для развлечения читателя приведем по одной задаче А. Н. Колмогорова на каждый из трех отмеченных элементов.

1.     Разложить на множители выражение x10 + x5 + 1.

2.     Представить себе без чертежа, какой вид имеет пересечение поверхности куба с плоскостью, проходящей через центр куба и перпендикулярной одной из его диагоналей.

3.     Сколько раз в сутки стрелки часов перпендикулярны друг другу?

Конечно, с возрастом, при постоянной математической тренировке ума, накапливаются знания, приходит математическая интуиция, шлифуется техника. Но суть дела остается прежней. Надо думать, что упомянутые признаки математического таланта сыграли определяющую роль и при доказательстве А. Н. Колмогоровым замечательного результата, полученного им в возрасте более 50 лет: произвольную непрерывную функцию, определенную на n-мерном кубе, можно представить в виде конечной суммы суперпозиций непрерывных функций от одной переменной. Сам Андрей Николаевич считал это доказательство технически самым трудным из всех полученных им математических результатов.

Вообще, его очень привлекло спортивное начало в математике: находить и решать задачи, которые поставлены давно, но еще никем не решены. Может быть, это определяется особенностью его характера, о которой рассказал А. М. Абрамов:"Однажды Андрей Николаевич заметил, что, по его мнению, каждый человек, начиная с определенного момента, продолжает оставаться в том возрасте, для которого наиболее характерно свойственное этому человеку мироощущение. На прямой вопрос: "А вам сколько лет, Андрей Николаевич?" он ответил: "Четырнадцать".

Математика и музыка

Но, конечно, математический талант А. Н. Колмогорова не измерить обычными мерками, не разложить на составляющие, даже пользуясь его собственной классификацией. Тут нужен некий "трансфинитный" подход, выход в новое измерение, ибо требуется оценить явление далеко не обычного масштаба. Нам трудно дать подобную оценку. Но знакомство с работами А. Н. Колмогорова, воспоминаниями его учеников, статьями и речами о нем, немногие личные впечатления об этом человеке позволяют нам отметить две особенности его творческой натуры.

Андрей Николаевич - один из людей, остро воспринимающих целостность мира, взаимодействие всех его материальных и духовных проявлений, которое и следует понять или, хотя бы почувствовать. В этом он, наверное сродни Альберту Эйнштейну. Не зря же оба они так любили музыку, лучше других искусств выражающую мечту о красоте как гармонии частей целого. Нюанс, может быть, состоит в следующем. Эйнштейн, помогая обуревающим его мыслям своей скрипкой, искал в теории относительности главную мелодию, к которой сводятся все тайны мироздания. Колмогорова же больше привлекала полифоничность мира, значительность каждого его проявления - научного, технического, спортивного - в общем ансамбле логики и эстетики бытия. Если вспомнить еще раз фразу Гильберта: "математика есть единая симфония бесконечного" то эйнштейновское начало в ней, пожалуй, выражено словом "единая", а колмогоровское - словом "симфония". Казалось бы, постоянные размышления над многообразными математическими проблемами должны были полностью занимать все время и всю мощность колмогоровского интеллекта. Но нет - его внутренний мир был огромным оркестром, возможностей и инструментов которого хватало и на многие вещи, далекие от науки.

Профессор В. М. Тихомиров свидетельствует:

"Однажды А. Н. сказал мне: "Вы не должны иметь обо мне представление как о человеке, который знает только математику; я принадлежу к тем людям, кто имеет собственное мнение более или менее по любому вопросу". Я знал всегда, что А. Н. - математик исключительной широты, но не мог и подозревать, в какой мере безграничным является его кругозор в философии, экономике, политике, географии, в вопросах, связанных с искусством и литературой. Он был при этом очень самобытен: почти всегда непредсказуем. В частности, в своих пристрастиях. Как-то зашла речь о крупнейших писателях ХХ века. Я задумался и стал перебирать наиболее "престижные" тогда (в середине пятидесятых) имена - Горький, Шолохов, Фолкнер, Роллан, Хемингуэй, Ремарк... Андрей Николаевич без колебаний вершинами мировой литературы нашего века назвал творчество А. Франса и Т. Манна. А когда речь зашла о поэзии, А. Н. также непредсказуемо для меня выделил 24-летнего тогда Евтушенко".

И второе. Безграничной была вера Андрея Николаевича в разум и творческие возможности человека. К каждому, с кем ему приходилось встречаться, он a priori относился с теми же высокими моральными и интеллектуальными требованиями, что и к самому себе. Точнее, он ничего не требовал, а просто общался с человеком как с равным. Конечно, во многих случаях это не соответствовало фактическому положению дел. И Андрей Николаевич не мог этого не видеть. Поэтому трудно согласиться с высказываемым иногда мнением, что он переоценивал своих собеседников. Это было бы явным упрощением. Скорее, он считал, что следует не опускать мысль до уровня разжеванной и легко усваиваемой "духовной пищи", а заставить человека проделать серьезную умственную работу и подняться до уровня мысли. Воспользуемся снова музыкальной аналогией: трудно воспитывать глубокие чувства, исполняя произведения Моцарта, Шумана, Баха, Бетховена (это любимые композиторы А. Н. Колмогорова) лишь в переработке для джаза или рок-ансамбля. Хотя это часто делается в наши дни.

Работа по осваиванию колмогоровской мысли была действительно очень непростой и доступной не всем. Если мы говорим о вере Андрея Николаевича в творческие возможности человека, то это не значит, что речь идет о каждом конкретном человеке, речь идет о талантливых представителях рода homo sapiens. Именно на них ориентировался А. Н. Колмогоров, подбирая себе сотрудников, которые могли бы развивать его многочисленные идеи. Ставя задачи своим ученикам, он часто "создавал такие ситуации, которые были сопряжены с потрясениями". (А. Н. Ширяев). Нечаянно или нарочно - в педагогических целях - он совершенно не интересовался, насколько ученик усвоил суть сказанного ему, хватит ли у него трудоспособности и практических возможностей выполнить заданное в назначенный срок.

Он как бы прикидывал задачу "на себя". Такой метод оказался довольно эффективным. Действительно талантливый, честолюбивый и трудолюбивый человек начинал верить в свои силы (раз в них верит Андрей Николаевич), работал как одержимый, чувствовал, что его "потолок" значительно выше, чем он мог предположить, и делался известным математиком. Тот, кому нехватало этих качеств, отходил в сторону. А. Н. Колмогоров как-то сказал, шутя, будущему профессору В. А. Успенскому: "В крайнем случае, если из вас ничего не выйдет, будете делать нам грамотные рефераты".

Педагогический метод А. Н. Колмогорова, как и всякий педагогический метод, заслуживающий этого названия, держится на старой истине: основой обучения и развития творческих способностей является интенсивная самостоятельная работа ученика; роль учителя при этом - помочь ему, предложить такую систему, такую организацию совместной работы ученика и учителя, которая оптимальна для достижения результата. В каком смысле оптимальна - это зависит и от ученика, и от учителя. Случай, когда первый талантлив, честолюбив и работящ, а второй - гениален, это и есть случай применимости метода А. Н. Колмогорова. Конечно, он неприменим, если ученик не обладает хотя бы одним из перечисленных качеств. Может быть, именно это и привело к неудаче педагогической реформы преподавания математики в средней школе, предпринятой под руководством А. Н. Колмогорова в 70-е годы. Средний учитель и средний ученик средней школы (а именно их должна была обучить новая программа) отнюдь не рвались к постижению основ современной математики и не обладали математической одаренностью. Не говоря уже об излишней любви к самостоятельной работе. А все это подразумевалось в предложенной программе. К сожалению, чудесные статьи и лекции Андрея Николаевича, обращенные к школьникам и учителям, нашли отклик только у той части, которая действительно была одержима математикой.

Стоило А. Н. Колмогорову организовать собственную физико-математическую школу-интернат для одаренных детей, как все стало на свои места. Сейчас насчитывается несколько сотен кандидатов и докторов наук из числа ее выпускников.

Не следует порицать общество в целом за то, что оно не любит классическую музыку - уж так оно создано. Но несомненно и то, что восприятие серьезной музыки и напряженная мыслительная работа математика - чем-то близкие вещи. А. Н. Колмогоров говорил: "По-видимому, между математическим творчеством и настоящим интересом к музыке имеются какие-то глубокие связи. Но выяснить и объяснить эти связи мне представляется довольно трудным. Замечу, впрочем, что мой друг Павел Сергеевич Александров рассказывал, что у него каждое направление математической мысли, тема для творческих размышлений, связывались с тем или иным конкретным музыкальным произведением".

Лузитания

Андрей Николаевич Колмогоров родился 25 апреля 1903 года. Отец его, Николай Матвеевич Катаев был агрономом, сыном священника. Мать, Мария Яковлевна Колмогорова - дочка угличского уездного предводителя дворянства, умерла при рождении сына. Воспитанием мальчика занялась ее сестра Вера Яковлевна. Она заменила Андрею Николаевичу мать, и он относился к ней, как к матери, до самой смерти Веры Яковлевны в 1950 году в возрасте 87 лет. Эта женщина сумела передать племяннику свои высокие гражданские идеалы, воспитала в нем ответственность и самостоятельность, нетерпимость к безделью и плохо выполненной работе. Раннее детство А. Н. Колмогорова прошло в селе Туношне под Ярославлем в усадьбе родителей матери.

Был ли он вундеркиндом? Да, как это следует из воспоминаний самого Андрея Николаевича: "Радость математического открытия я познал рано, подметив в возрасте пяти-шести лет закономерность 
1 = 12
1 + 3 = 22
1 + 3 + 5 = 32
1 + 3 + 5 + 7 = 42 и так далее.

В нашем доме под Ярославлем мои тетушки устроили маленькую школу, в которой занимались с десятком детей раннего возраста по новейшим рецептам педагогики того времени. В школе издавался журнал "Весенние ласточки". В нем мое открытие было опубликовано. Там же я публиковал придуманные мною арифметические задачи".

После переезда в Москву в возрасте 7 лет, А. Н. Колмогоров поступает в частную гимназию. Андрей Николаевич говорил, что учиться в этом заведении было интересно. В нем господствовали либеральные взгляды, велось совместное обучение мальчиков и девочек по программе мужских гимназий, поэтому гимназия постоянно находилась под угрозой закрытия. Легко понять, почему отличные успехи на экзаменах рассматривались учениками как дело чести.

Чем ближе к окончанию школы, тем труднее становилась жизнь в Москве. Надо было зарабатывать. Сочетать работу с учебой могли лишь самые настойчивые. В 1919-1920 годах Андрей Николаевич работает на постройке железной дороги Казань-Екатеринбург и одновременно занимается самостоятельно, готовясь сдать экзамен за среднюю школу экстерном. Это ему удается - в 1920 году он получает аттестат об окончании школы.

Встал вопрос о выборе жизненного пути. Увлечение математикой соперничает с другими интересами А. Н. Колмогорова. В то время на него производила большое впечатление своей научной значимостью известная книга К. А. Тимирязева "Жизнь растений". Чуть позже он настолько сильно увлекся историей и социологией, что"первым научным докладом, который я сделал в семнадцатилетнем возрасте в Московском университете, был доклад в семинаре профессора С. В. Бахрушина о новгородском землевладении. В докладе этом, впрочем, использовались (при анализе писцовых книг XV-XVI веков) некоторые приемы математической теории". Кроме того, "техника тогда воспринималась как что-то более серьезное и необходимое, чем чистая наука". Интересно, какой смысл вкладывает Андрей Николаевич в слово "тогда"? Надо ли думать, что теперь это не так? А если не так, то потому, что значение фундаментальной науки теперь всем ясно, или потому, что техника скомпрометировала себя некоторыми антигуманистическими достижениями? К сожалению, мы не можем ответить на этот вопрос.

В результате, он поступил одновременно и на физико-математическое отделение Московского университета, и на металлургический факультет Менделеевского института. "Но скоро интерес к математике перевесил сомнения в актуальности профессии математика. К тому же, сдав в первые же месяцы экзамены за первый курс, я, как студент второго курса, получил право на 16 килограммов хлеба и 1 килограмм масла в месяц, что, по представлениям того времени, обозначало уже полное материальное благополучие. Одежда у меня была, а туфли на деревянной подошве я изготовил себе сам".

На первом курсе университета А. Н. Колмогоров слушает лекции Н. Н. Лузина по теории функций комплексного переменного и А. К. Власова по проективной геометрии. Николай Николаевич Лузин был виднейшим представителем московской математической школы того времени, известным и своими первоклассными работами в области теории функций и теории множеств, и новым подходом к работе с научной молодежью. А. Н. Колмогоров так характеризует стиль его работы:

"Существенным в этом подходе было вполне индивидуальное личное руководство, а также умение придавать избранной тематике особую значимость. Н. Н. Лузин настойчиво внедрял следующий метод работы (он сам работал таким образом и приучал к этому своих учеников): берясь за какую-либо проблему, надлежит смотреть на нее с различных точек зрения. Надо пытаться доказывать проблему и одновременно опровергать ее. Если доказательство не выходит, надо переходить к опровержению гипотезы, к построению противоречащего примера. Если не получается построение, надо снова вернуться к доказательству. И пока не получится результат, нельзя покидать данную область. В теории функций действительного переменного такая установка двойного видения (поиск доказательства — поиск опровержения), такой подход к делу, естественно, привел к культивированию чрезвычайно высокой техники построения примеров (или, как теперь принято говорить, контрпримеров). В этом направлении школа Н. Н. Лузина двадцатых годов была им поставлена на уровень, превосходящий все другие научные центры мира".

Говорят, в те годы один представитель ленинградской школы, тяготевшей к прикладным аспектам математики, на своих лекциях выражался примерно так: "Эта теорема справедлива во всех случаях жизни, если не считать примеров, специально придуманных московской математической школой".

Однажды студенту Колмогорову удалось показать, что некоторое утверждение, на котором Н. Н. Лузин решил построить свое доказательство интегральной теоремы Коши на лекции, ошибочно. Было решено, что Колмогоров доложит опровергающий пример на студенческом математическом кружке. Четкое изложение конструкции примера требовало достаточно серьезной математической техники. Консультировать докладчика стал Павел Самуилович Урысон.

Первокурсник Колмогоров сделался известным в Лузитании - так называли себя математики, работавшие под руководством Н. Н. Лузина. В следующем учебном году Андрей Николаевич посещал лекции Н. Н. Лузина и П. С. Александрова уже на правах "своего", получив №16 в иерархии "лузитанцев".

А. Н. Колмогоров очень тепло отзывается в своих воспоминаниях о П. С. Урысоне, одно время непосредственно руководившем его научной работой: "Московская математика того времени была богата яркими и талантливыми индивидуальностями. Но Павел Самуилович и на этом фоне выделялся универсальностью интересов в соединении с целеустремленностью в выборе предмета собственных занятий, отчетливостью постановки задач..., ясной оценкой своих и чужих достижений в соединении с доброжелательством в применении к достижениям самым маленьким". Обратим внимание на то, какие качества А. Н. Колмогоров считает ценными для ученого.

В 1921 году Андрей Николаевич начинает заниматься в семинаре Н. Н. Лузина по тригонометрическим рядам, в группе, которой руководил В. В. Степанов. Кратко поясним суть проблем, изучавшихся на нем. С одной стороны, речь идет о практически важной и понятной задаче разложения произвольной периодической функции на простые гармонические колебания, т. е. в ряд Фурье. Такой ряд очень легко написать для любой функции из очень широкого класса (требуется только интегрируемость по Лебегу на интервале длиной в период). Надо лишь вычислить интегралы - коэффициенты Фурье разлагаемой функции. Но затем возникает целый клубок проблем: оказывается, ряд Фурье может находиться в очень сложных отношениях с функцией, для которой он написан. Какова природа множества, на котором ряд сходится, сходится ли он к "своей" функции или к чему-либо еще, что можно сказать о скорости сходимости? Для функций простой природы, которыми может ограничиться обычная инженерная практика, эти вопросы были давно решены. Но математиков интересует исчерпывающий анализ, ибо их эстетика, их психологический комфорт - это полная ясность. В теории тригонометрических рядов имелись трудные и давно стоящие задачи, без решения которых математики не могли спать спокойно.

Первый сильный результат А. Н. Колмогорова — решение поставленной Н. Н. Лузиным задачи о выяснении того, насколько медленно могут убывать коэффициенты ряда Фурье. Решение оказалось таким: как угодно медленно. После этого Н. Н. Лузин торжественно присвоил А. Н. Колмогорову звание своего ученика и начал заниматься с ним индивидуально. Вскоре, летом того же 1922 года, А. Н. Колмогоров выполнил работу, которая сделала его всемирно известным математиком в 19 лет. Он построил пример интегрируемой по Лебегу функции, ряд Фурье которой расходился почти всюду. Впечатление, произведенное этой работой на математиков, хорошо иллюстрируется воспоминанием В. И. Арнольда, которому выдающийся французский математик М. Фреше говорил в 1965 году: "О, Колмогоров! Это тот замечательный молодой человек, который построил почти всюду расходящийся ряд Фурье!". Этот знаменитый пример заложил основы нового большого направления в теории тригонометрических рядов. Всего же А.Н. Колмогоровым опубликовано около десяти работ по тригонометрическим и ортогональным рядам, каждая из них оказалась началом больших исследований, продолжающихся и ныне другими математиками. Сам Андрей Николаевич так говорил о своих работах по этой тематике:

"Все направление моей работы по тригонометрическим и ортогональным рядам выросло из занятий в семинаре В. В. Степанова. С точки зрения преодоления трудностей, по-видимому, первое место принадлежит работе, где построен всюду расходяшийся ряд Фурье-Лебега. Довольно долго я работал надвое, стараясь поочередно то построить пример, то доказать его невозможность. Последним этапом была неделя непрерывных размышлений, закончившаяся возникшей внезапно конструкцией. Немного позднее без больших усилий возник аналитический вариант первоначальной чисто геометрической идеи, что позволило усилить первоначальный результат и построить ряд, расходящийся всюду".

Лекции П. С. Александрова привлекли внимание А. Н. Колмогорова к проблемам так называемой дескриптивной теории множеств. И все в том же 1922 году он проводит большое исследование по теории операций над множествами. Эта теория возникла вначале во Франции в трудах Э. Бореля, Р. Бэра, А. Лебега и других исследователей. В общих чертах она ставила перед собой задачу описания сложных множеств точек числовой прямой как результатов операций над множествами более простой структуры. И здесь работа А. Н. Колмогорова характеризуется трудностью задачи, наличием нового подхода, возможностями дальнейшего развития основной идеи. Исследование это стало исходным пунктом общей теории операций над множествами, которой занимались впоследствии многие ученые, в том числе Л. В. Канторович и А. А. Ляпунов.

И снова проза жизни. Стипендии не хватало. Параллельно с учебой в университете Андрей Николаевич в течение трех лет работал учителем математики и физики в средней школе. Этому делу он отдавался с энтузиазмом, одновременно с преподаванием выполнял функции секретаря школьного совета, воспитателя в интернате, вел биологический кружок. Видимо, возбужденный Тимирязевым интерес к биологии не угас. В университете ходил только на специальные курсы и семинары.

Фрагмент автобиографии А.Н. Колмогорова

Все это никак не означало уменьшения интенсивности его математических раздумий. Разнообразие и зрелость, даже не зрелость, а фундаментальность работ Колмогорова-студента поражают. В 1925 году, в котором он закончил университет, вышли его первые публикации по теории меры и интеграла, математической логике, получившие широкую известность в математическом мире.

Непосредственно после окончания Московского университета, с которым он уже не расстанется до конца жизни, А. Н. Колмогоров становится аспирантом Н. Н. Лузина. В этом же 1925 году происходит знаменательное событие - Андрей Николаевич начинает серьезно заниматься теорией вероятностей, которую он сам считал своей основной научной специальностью.

Наука "на костях"

В теории вероятностей А. Н. Колмогоров сделал исключительно много, получив важные результаты в различных областях этой обширной в наше время науки. Но для каждого, кто хоть немного с ней знаком, имя Колмогорова связывается прежде всего с созданием аксиоматики теории вероятностей. Только после выхода в свет его монографии "Основные понятия теории вероятностей" (1933 г. — на немецком языке, 1936 г. — на русском) стало возможно говорить о теории вероятностей как о математической науке в современном смысле слова, основанной на системе аксиом.

"Конечная цель, - считал К. Вейерштрасс, - которую нужно всегда иметь в виду, состоит в том, чтобы достичь правильной точки зрения на фундамент науки...". В теории вероятностей это удалось А. Н. Колмогорову. Успех аксиоматики А. Н. Колмогорова, пишет известный математик Б. В. Гнеденко, "объясняется рядом обстоятельств, среди которых упомянем лишь следующие: она соответствовала общему духу математики того времени, тесно связала теорию вероятностей с метрической теорией функций и тем самым открыла перед ней богатейший арсенал хорошо разработанных методов исследования, позволила охватить единой простой схемой не только классические главы теории вероятностей, но и вновь возникшие ее понятия и проблемы".

История, точнее предыстория, теории вероятностей как математической науки длинна и богата идеями, личностями и событиями.

Сама исходная идея о решающей роли случая в системе природы, о случайности как "технологии" создания мира принадлежит, конечно, античным мыслителям-материалистам. Вот, например, стихи Лукреция:

Ибо начала вещей во множестве многоразлично
От бесконечных времен постоянным толчкам подвергаясь,
Тяжестью также своей гнетомые, носятся вечно,
Всячески между собой сочетаясь и все испытуя,
Что только могут они породить из своих столкновений.
И удивляться нельзя, что они в положенья такие
Между собою пришли и в такое движение, которым
Держится нынешний мир в постоянном своем обновленье.

Но от этой философской идеи до попыток представить свойства случайности в форме, позволяющей изучать ее математически, - "дистанция огромного размера". Вполне естественно для природы человека, что продвижение на этом пути было стимулировано не только любознательностью, но и стремлением к обогащению. Азартные игры в кости, в карты и т. д. - вот основной источник задач, которые привели к первым вариантам определения вероятности, к разработке методов вычисления вероятностей. Это произошло на рубеже Средневековья и Ренессанса. Лука Пачиоли (1445-1514) уже решал вероятностную задачу, правда ошибался. Но Д. Кардано и Г. Галилей, которые тоже занимались некоторыми специальными вероятностными задачами, уже делали это лучше.

Но все сегодня согласны, что развитие теории вероятностей как самостоятельной науки начинается в 1654 году знаменитой перепиской Б. Паскаля и П. Ферма. Поводом для нее послужили два вопроса, заданных Паскалю его другом - кавалером де Мере. Имя этого аристократа навечно вошло в историю науки, что также подтверждает тезис о роли случайности в развитии. Первый вопрос, который решил, впрочем, и сам кавалер: сколько раз надо бросать две игральные кости, чтобы вероятность хотя бы однажды выбросить две шестерки была больше половины. Второй вопрос оказался выше возможностей кавалера. Суть его такова. Два игрока играют в азартную игру, состоящую из последовательно разыгрываемых партий. Шансы на выигрыш в каждой партии одинаковы. В начале игры партнеры делают одинаковые взносы. Ставку выигрывает тот, кто первым наберет n выигрышных партий (n фиксировано заранее). Как разделить ставку по справедливости, если игра прервана в момент, когда один игрок выиграл a, а другой b партий.

Паскаль и Ферма нашли ответы на вопросы, но дело, конечно, не в этом. А в том, что по ходу переписки вырабатывалась математическая концепция вероятности. И хотя само слово "вероятность" при этом даже не употреблялось, но фактически использовалось то определение вероятности, которое ныне называется классическим.

Напомним (или поясним) читателю сущность проблемы определения вероятности. Речь идет о том, чтобы приписать каждому событию, которое может произойти или не произойти в результате некоторого испытания, число - его вероятность. Это число должно характеризовать шансы события реализоваться при проведении испытания. Например, в связи с первым вопросом де Мере, рассмотрим испытание - бросание двух игральных костей. Одно из случайных событий, которые могут произойти в результате этого испытания - выпадение двух шестерок. Обозначим это событие буквой A. Как оценить шансы наступления этого события числом? Подход, использованный Паскалем и Ферма, основан на двух обстоятельствах. Во-первых, все возможные результаты испытания можно разбить на так называемые элементарные исходы, т. е. такие события, что при каждой реализации испытания происходит одно и только одно из них. Во-вторых, шансы появления каждого элементарного исхода одинаковы. В самом деле, одна из двух бросаемых костей (назовем ее первой) с равными основаниями может дать любое количество очков от единицы до шестерки. Мы говорим "с равными основаниями", полагая что это "честная" кость - абсолютно правильный геометрически и однородный по плотности куб. То же самое можно повторить и по поводу второй бросаемой кости. Важно, что число очков, выпавшее на каждой кости, никак не зависит от числа очков, выпавшего на другой. Таким образом, в качестве элементарного исхода можно рассматривать пару чисел (, ) где  - число очков, выпавшее на 1-й кости,  - на 2-й кости. При этом 1    6, 1    6. Ясно, что в результате каждого бросания двух костей реализуется одна и только одна из таких пар, и что у каждой пары имеются одинаковые шансы реализоваться (элементарные исходы равновероятны). Всего имеется 36 таких исходов. Скольким из них соответствует наступление интересующего нас события A - выпадения двух шестерок? Очевидно, одному-единственному: (6, 6). Вот и будем называть вероятностью Aотношение числа "благоприятных" для него исходов k к общему числу m элементарных исходов

P(A) = k / m = 1 / 36.

Рассмотрим при том же испытании другое случайное событие B - сумма очков, выпавших при бросании двух костей четна. Действуя по тому же принципу, считаем благоприятные для события В исходы: (1, 1), (1, 3), (1, 5), ... , (6, 2), (6, 4), (6, 6) - всего, как легко видеть, 18 исходов. Итак: k = 18 и

P(B) = 18 / 36 = 1 / 2.

Пусть теперь C - выпадение числа очков, меньшего 13. Очевидно, для C все исходы благоприятны - это достоверное событие. Имеем

P(C) = 36 / 36 = 1.

Наконец, пусть событие D заключается в том, что брошенные кости не упали на игорный стол, а повисли в воздухе. Ясно, что при этом k = 0 (D - невозможное событие), и

P(D) = 0 / 36 = 0.

Точно так же, невозможным событием является, например, выпадение отрицательной суммы очков.

Определение вероятности события как отношения числа благоприятных элементарных исходов к числу всех элементарных исходов - это и есть классическое определение вероятности. Оно оказалось вполне удовлетворительным во всех тех случаях, где можно было говорить о конечном наборе элементарных исходов и быть уверенным в их равновероятности. Развиваемая на основе этого определения теория достигла значительного прогресса. Х. Гюйгенс - "О расчетах в азартных играх" (1658 г.); А. де Муавр - "Об измеренении случайности, или о вероятности результатов в азартных играх" (1711 г.); Я. Бернулли - "Искусство догадок" (1713 г.), и, наконец, П. С. Лаплас - "Аналитическая теория вероятностей" (1812 г.) - вот основные его этапы. Именно в работе Я. Бернулли впервые было сформулировано классическое определение вероятности.

Однако, классическое определение вероятности было очень узким для науки о законах случая. Слишком обременительными оказались ограничения, при которых оно имело смысл. Какова вероятность, что "нечестная" кость (например, сделанная в виде неправильного шестигранника) даст при бросании шесть очков? Или, что, человек, родившийся в Европе в ХХ веке, проживет до 70 лет? Или что пароход, вышедший из Лондона в Нью-Йорк, благополучно доберется до цели? В первом случае элементарные исходы не равновероятны. В остальных даже непонятно, как представить себе систему элементарных исходов.

Одним из главных путей выхода из подобных затруднений явился так называемый статистический подход к пониманию вероятности. Он радикально отличается от классического и исходит из предположения, что испытание, в котором может появиться случайное событие A , можно идентично воспроизвести любое число раз (хотя бы в принципе). Если имеется серия из m таких идентичных испытаний, и событие происходит в k испытаниях серии, то число k / m называется относительной частотой события A в этой серии. Огромный опыт наблюдения массовых случайных явлений (обработка статистических данных) показал, что справедлив закон устойчивости относительных частот: при больших m частота k / m события A очень слабо зависит от конкретной серии, и тем слабее, чем больше m. Отсюда совсем недалеко до гипотезы о том, что существует число P(A), к которому приближаются относительные частоты события A и тем теснее, чем длиннее серии испытаний. Это число и называется вероятностью A. Разумеется, точно определить это число невозможно (в отличие от классической вероятности), всегда можно сказать лишь, чтоP(A)  k / m. Ведь нельзя же реализовать серию испытаний бесконечной длины. Но это уже другой вопрос. Главное - уверенность в том, что P(A) существует.

В тех случаях, когда вероятность можно определить и классическим путем, оказалось, что классическое и статистическое определения согласуются с высокой степенью точности.

Принципиально важным было еще одно обстоятельство. И классическое, и статистическое определения вероятности позволяют легко установить две важные теоремы.

Теорема сложения вероятностей: P(A + B) = P(A) = P(B) - вероятность наступления в результате испытания хотя бы одного из двух несовместных событий равна сумме вероятностей этих событий (несовместные события - это те, которые не могут произойти одновременно).

Теорема умножения вероятностей: P(AB) = P(A)P(B) - вероятность одновременного наступления двух независимых событий есть произведение вероятностей этих событий (события независимы, если реализация одного из них не оказывает никакого влияния на вероятность реализации другого).

Эти теоремы, вместе с вытекающими из обоих определений неравенством 0  P(A)  1 для любого случайного события A, составили основу математического аппарата, с помощью которого можно вычислять вероятности одних событий, зная вероятности других, но не зная точно, что такое вероятность. А. Реньи пишет о математиках XVII-XVIII в.в. - создателях теории вероятностей: "В значительной мере они не ощущали потребности в формальном определении вероятности, поскольку считали вероятность основным понятием, значение которого очевидно и не требует определения. Настоящую задачу они усматривали в том, чтобы в конкретных вопросах вычислить вероятности событий, которые представляют для них интерес. Принимая во внимание уровень развития математики того времени, этому не приходится удивляться: ведь и понятия числа, функции, предела равным образом не были выяснены, в современном смысле этого слова, но тогда в этом и не ощущали потребности".

Читатель, возможно, помнит из нашей первой беседы, что развитие математической теории на интуитивном уровне, без аккуратной аксиоматизации, чревато парадоксами. Да, парадоксы не обошли и теорию вероятностей. И, как обычно при их появлении в дело вмешалась бесконечность. А именно, речь идет о задачах, где число всех элементарных исходов бесконечно, и даже "очень бесконечно": если изображать исходы точками плоскости (прямой, пространства), они заполнят сплошным образом некоторую область D. Попытки обобщить классическое определение вероятности на подобные случаи привели к так называемому геометрическому определению вероятности: считая все исходы равновероятными (вероятности ноль, разумеется), "естественно" приписать событию A в качестве вероятности отношение:

P(A) = S(A/ S(D)

площади, занятой благоприятными для A исходами, к площади всей области D (в случае прямой или пространства вместо площади надо рассматривать длину или объем соответственно).

Казалось бы, все хорошо, и даже красиво. Но дело в том, что сам процесс сопоставления точек плоскости элементарным исходам испытания неоднозначен: в качестве координат точки можно рассматривать различные числовые характеристики исхода, да и трактовать их можно как декартовы, полярные или другие координаты точки. Поэтому в некоторых задачах возникали разные значения вероятности одного и того же события. Снятие этих противоречий требовало глубокого проникновения в суть задачи, четкой формулировки условий испытания и анализа смысла равновероятности. Большим мастером конструирования подобных парадоксов геометрической вероятности был Ж. Бертран. Читатель найдет его задачи в любом достаточно подробном учебнике по теории вероятностей.

С середины XIX века развитие теории вероятностей связано в значительной мере с именами русских ученых - П. Л. Чебышева и его учеников А. А. Маркова и А. М. Ляпунова. Во все современные курсы теории вероятностей входят закон больших чисел Чебышева, цепи Маркова, предельная теорема Ляпунова.

Теория вероятностей необычайно долго, вплоть до 30-х годов ХХ века, оставалась в стороне от общего процесса перевода математических наук на рельсы аксиоматической формализации. Парадоксы геометрических вероятностей, явная интуитивность статистического определения вероятности, споры о логическом несовершенстве классического определения (понятие вероятности определяется через понятие равновероятности - не порочный ли это круг), споры о субъективности философского толкования вероятности как меры уверенности исследователя - все это продолжалось. Поэтому еще в начале нашего века многие считали теорию вероятности "не совсем математикой", а чем-то, расположенным ближе к физике или философии. Да, в общем-то, если подходить с современными мерками, так оно и было. Тот факт, что в XIX веке К. Гаусс, П. С. Лаплас, С. Д. Пуассон, П. Л. Чебышев, А. А. Марков, А. Пуанкаре и другие смогли много сделать в теории вероятностей, открыв в ней целый ряд новых направлений, предполагает высокую естественно-научную эрудицию этих исследователей, их способность проникать в физическую суть рассматриваемых явлений.

Фанатик и идеолог аксиоматического метода Д. Гильберт отмечал необходимость формализации теории вероятностей. В своем знаменитом докладе на Международном конгрессе математиков в Париже (1900 г.), где были сформулированы важнейшие проблемы математики, оставленные XIX веком в наследство XX-му, он даже отнес теорию вероятностей к физическим наукам: "С исследованиями по основаниям геометрии близко связана задача об аксиоматическом построении по этому же образцу тех физических дисциплин, в которых уже теперь математика играет выдающуюся роль: это в первую очередь - теория вероятностей и механика".

 

 

 

Одушевленная математика

Маша Гессен

http://www.vokrugsveta.ru/img/cmn/2011/03/22/016.jpg

Согласно плану, который составил для себя 40-летний Колмогоров, к 60 годам он должен был прекратить занятия наукой и посвятить оставшуюся жизнь преподаванию в средней школе. Фото:  ИТАР-ТАСС

Биография математика Григория Перельмана — это еще и своеобразная «биография» математической науки в СССР. В предлагаемом читателю отрывке рассказывается об истории создания математических спецшкол

Ум Григория Перельмана — ум прирожденного математика, который не оперирует только образами или только цифрами, а мыслит системно и вырабатывает определения. Он был создан для топологии. Начиная с восьмого класса (Перельману тогда было 13 лет) приглашенные лекторы иногда рассказывали в математическом кружке о топологии. Она манила Перельмана издалека, из-за пределов школьного курса геометрии, так же как огни Бродвея влекут какую-нибудь юную актрису, которая заставляет зрителей пускать слезу на школьной постановке «Сиротки Энни».

Григорий Перельман был рожден, чтобы жить в топологической Вселенной. Он должен был усвоить все ее законы и дефиниции, чтобы стать арбитром в этом геометрическом трибунале и наконец объяснить аргументированно, четко и ясно, почему всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере.

Рукшину же выпало стать проводником Перельмана, посланником из математического будущего, который должен был сделать ленинградскую жизнь Гриши Перельмана такой же безопасной и упорядоченной, как и в его воображаемом мире. Для этого Перельману нужно было попасть в ленинградскую физико-математическую школу № 239.

В то лето, когда Перельману исполнилось четырнадцать, он каждое утро отправлялся на электричке из Купчина в Пушин, чтобы провести день с Рукшиным за изучением английского языка. План был таков: Перельман должен был за три месяца пройти четырехлетний курс английского языка, чтобы осенью поступить в 239-ю математическую спецшколу. Это был кратчайший путь к полному погружению в математику.

История математических школ начинается с Андрея Николаевича Колмогорова. Математик, оказавший неоценимую услугу государству во время Великой Отечественной, стал единственным из ведущих советских ученых, которого после войны не привлекли к работе в оборонке. Ученики до сих пор удивляются этому. Я вижу объяснение в гомосексуальности Колмогорова.

Человеком, с которым Андрей Колмогоров делил кров с 1929 года и до конца жизни, был тополог Павел Александров. Спустя пять лет после того, как они стали жить вместе, мужской гомосексуализм в СССР был объявлен вне закона. Колмогоров и Александров, называвшие себя друзьями, практически не делали секрета из своих отношений и тем не менее не имели проблем с законом.

Научный мир воспринимал Колмогорова и Александрова как пару. Они стремились вместе работать, вместе отдыхали в санаториях Академии наук и вместе слали продуктовые посылки в осажденный Ленинград. <...>  Так или иначе невовлеченность Колмогорова в военные приготовления Советов позволила ученому направить свою немалую энергию на создание математического мира, который он рисовал в воображении еще в молодости. Колмогоров и Александров — оба происходили из Лузитании, волшебной математической страны Николая Лузина, которую они хотели воссоздать на своей даче в подмосковной Комаровке. Туда они приглашали своих учеников для пеших и лыжных прогулок, прослушивания музыки и математических бесед. <...> Колмогоров считал, что математик, стремящийся стать великим, должен понимать толк в музыке, живописи и поэзии. Не менее важным было физическое здоровье. Другой ученик Колмогорова вспоминал, как тот похвалил его за победу в соревновании по классической борьбе.

Разнородные идеи, оказавшие влияние на представление Андрея Колмогорова о том, как должна быть устроена хорошая математическая школа, показались бы необычными везде, а в СССР середины XX века это было что-то совсем невероятное. <...>

В 1922 году девятнадцатилетний Колмогоров — студент Московского университета, талантливый начинающий математик — начал работать в Потылихской опытно-показательной школе Наркомпроса в Москве. Любопытно, что эта экспериментальная школа была устроена отчасти по образцу знаменитой нью-йоркской Дальтонской школы (ее обессмертил режиссер Вуди Аллен в фильме «Манхэттен»).

Дальтон-план, принятый в школе, где Колмогоров преподавал физику и математику, предусматривал индивидуальный план работы ученика. Ребенок самостоятельно составлял месячную программу занятий. «Каждый школьник большую часть школьного времени проводил за своим столиком, шел в... библиотечки вынуть нужную книжку, что-нибудь писал, — вспоминал Колмогоров в своем последнем интервью. — А преподаватель сидел в уголке, читал, и школьники подходили по очереди, показывали, что они сделали». Эту картину — учитель, молча сидящий в углу, — десятилетия спустя можно будет увидеть на занятиях математических кружков. <...>

Классическая музыка и мужская дружба, математика и спорт, поэзия и обмен идеями сложились в образ идеального человека и идеальной школы по Колмогорову. В возрасте примерно сорока лет он составил «Конкретный план того, как сделаться великим человеком, если на то хватит охоты и усердия». Согласно этому плану Колмогоров должен был к шестидесяти годам прекратить занятия наукой и посвятить оставшуюся жизнь преподаванию в средней школе. Он действовал в соответствии с планом. В 1950-х Колмогоров испытал новый творческий подъем и публиковался почти так же активно, как тогда, когда был тридцатилетним (это очень необычно для математика), а после остановился и обратил все свое внимание на школьное образование.

Весной 1935 года Колмогоров и Александров организовали в Москве первую математическую олимпиаду для детей. Это помогло заложить фундамент международных математических олимпиад. Четверть века спустя Колмогоров объединил усилия с Исааком Кикоиным, неофициальным лидером советской ядерной физики, с подачи которого в СССР начали проводить школьные олимпиады по физике. Поскольку единственной ценностью, которую государство  видело в математике и физике, было их военное применение, Колмогоров и Кикоин решили убедить советских лидеров в том, что элитарные физико-математические спецшколы обеспечат страну мозгами, необходимыми для победы в гонке вооружений.

Проект поддержал член ЦК КПСС Леонид Ильич Брежнев, который спустя пять лет станет главой государства. В августе 1963 года Совет министров СССР издал постановление об учреждении математических школ-интернатов, и в декабре они открылись в Москве, Киеве, Ленинграде и Новосибирске. Большинством их руководили ученики Колмогорова, который лично наблюдал за составлением учебных планов.

http://www.vokrugsveta.ru/img/cmn/2011/06/24/002.jpg

Долгие годы Андрей Колмогоров читал лекции по математике в спецшколе при МГУ. Фото: CORBIS/FOTO S.A.

В августе Колмогоров организовал в подмосковном поселке Красновидово летнюю математическую школу. Были отобраны 46 победителей и призеров Всероссийской математической олимпиады. Колмогоров и его аспиранты вели занятия, читали лекции по математике и водили учеников в походы по окрестным лесам. Наконец, 19 юношей были отобраны для учебы в новой физико-математической школе-интернате при МГУ.

Они оказались в новом, странном мире. Колмогоров, который сорок лет вынашивал проект новой школы, разработал не только методику индивидуального обучения, основанную на дальтон-плане, но и полностью новую школьную программу. Лекции по математике, которые читал в том числе сам Колмогоров, имели целью ввести детей в мир большой науки. Принимались в расчет способности учеников: Колмогоров охотнее выбирал детей, в которых обнаруживал присутствие «божьей искры», чем тех, кто досконально знал школьный курс математики. В колмогоровской школе — возможно, единственной в СССР — преподавали вузовский курс истории древнего мира. Учебная программа включала большее количество уроков физического воспитания, чем их было в обычных школах. Наконец, Колмогоров лично просвещал учащихся, рассказывая о музыке, изобразительном искусстве и древнерусской архитектуре, и устраивал походы — пешие, лыжные или лодочные. <...>

Колмогоров стремился не только создать обойму элитарных математических школ. Он хотел обучить настоящей математике всех детей, которые могут учиться. Он подготовил проект модернизации учебной программы, с тем чтобы школьники учились не сложению и вычитанию, а математическому мышлению. Он курировал реформу, которая ввела в учебные планы изучение простых алгебраических уравнений с переменными и использование в обучении компьютеров — чем раньше, тем лучше. Кроме того, Колмогоров стремился преобразовать школьный курс геометрии, чтобы открыть дорогу неевклидовой геометрии. <...>

Удивительно, но введение термина «конгруэнтность» в школьные учебники впервые привело Колмогорова к серьезной конфронтации с советской системой, чего он десятилетиями — благодаря собственным стараниям и везению — избегал. В декабре 1978 года 75-летнего Колмогорова подвергли жестокому разносу на общем собрании Отделения математики Академии наук, реформу и ее авторов обвинили в непатриотичности. «Это не вызывает ничего, кроме отвращения, — провозглашал один из ведущих советских математиков, Лев Понтрягин. — Это разгром среднего математического образования. Это политическое явление». Газеты даже выдвинули обвинение в том, что математики, ответственные за реформу школьного образования, «подпали под чуждое нашему обществу влияние буржуазной идеологии».

В этом советская пресса оказалась права. Реформа образования, которая в то время шла в Соединенных Штатах, была аналогична устремлениям Колмогорова. Движение «За новую математику» (New Math movement) вовлекло практикующих математиков в процесс школьного образования. Теорию множеств начали преподавать в первых классах школы, что помогало сформировать базис для глубокого изучения математики. Гарвардский психолог Джером Брюнер писал в то время, что «это дает учащимся существенно новые возможности познания».

Математика уровня третьего класса оказалась наконец доступной пониманию советских газет. Пресса заклеймила Колмогорова как «агента западного культурного влияния», которым он фактически и был. Постаревший Колмогоров не смог оправиться от удара. Его здоровье было подорвано. У него развилась болезнь Паркинсона, Колмогоров лишился зрения и речи. Некоторые из учеников предполагают, что болезнь была вызвана травлей, а также тяжелой травмой головы, которая вполне могла быть результатом покушения. Весной 1979 года входивший в свой подъезд Колмогоров получил удар сзади в голову — якобы бронзовой дверной ручкой, —  отчего даже ненадолго потерял сознание. Ему показалось, однако, что кто-то шел за ним следом. Настолько долго, насколько Колмогоров мог — даже чуть дольше, — он читал лекции в математической школе-интернате. Он умер в октябре 1987 года в возрасте восьмидесяти четырех лет, ослепший, потерявший речь и обездвиженный, но окруженный своими учениками, которые в последние годы его жизни круглосуточно ухаживали за ним и его домом.

Идеологический конфликт, который сделал невозможными реформы Колмогорова, был очевиден. План Колмогорова предусматривал разделение старшеклассников на группы в зависимости от их интересов и способностей к математике. Это позволяло наиболее талантливым и целеустремленным ученикам беспрепятственно двигаться вперед. <...> Отчасти потому, что математических школ было так мало, они были очень похожи одна на другую — все были выстроены по колмогоровской модели (не в последнюю очередь из-за прямого влияния его учеников), в которой соединились не только изучение физики и математики, но и музыка, поэзия и пешие прогулки. Давление на эти школы росло: колмогоровскую школу-интернат часто навещали с инспекцией идеологические работники, которые после провала его реформы математического образования стали особенно бдительными. В этой обстановке руководству школы часто приходилось искать у своих влиятельных сторонников защиты от властей, настаивавших на том, что элитарного образования в советском обществе быть не должно. <...>

Преподавательский состав матшкол мог соперничать с лучшими вузами СССР. На самом деле по большей части это были одни и те же люди. Ученики Колмогорова преподавали в его школе и в свою очередь рекрутировали собственных лучших учеников. Некоторые учителя приходили в школу потому, что у них там учились дети. Другие по этой же причине были особенно требовательны.

Выпускники московской школы № 2 вспоминали, что представители московской интеллектуальной элиты наводняли школу. Для приема в школу детей, чьи родители преподавали в вузах, было установлено правило: родители должны были предложить школе какой-нибудь факультативный курс. Школьная доска объявлений пестрела объявлениями о факультативах — их было более тридцати — под руководством лучших педагогов. Если бы таких школ было больше, то концентрация выдающихся преподавателей не была бы настолько высокой. Ограничивая количество колмогоровских школ, власти сами создавали «рассадники гнилой интеллигенции ».

«Нашу школу отличало то, что учеников ценили за талант и интеллектуальные достижения», — вспоминает бостонский ученый-компьютерщик, окончивший математическую школу в Ленинграде в 1972 году. За стенами матшколы ценились спортивные достижения учеников, а истеблишмент поощрял их за пролетарское происхождение или комсомольский задор. В математических школах идеологическим воспитанием пренебрегали. В некоторых даже позволяли ученикам не носить школьную форму, но при этом пиджак, галстук и аккуратная прическа были обязательными. Некоторые учителя читали детям на уроках запрещенную литературу (не называя, правда, имена авторов этих книг). <...>

Хотя матшколы оставались советскими учебными заведениями, сохранявшими все их атрибуты (комсомол, доносы, уроки начальной военной подготовки), в сравнении с жизнью страны пределы дозволенного были так расширены, что их, казалось, не существовало вовсе. <...>

Школы не только учили детей думать — они внушали, что умение думать вознаграждается по справедливости. Иными словами, они вскармливали людей, плохо приспособленных для жизни в СССР и, может быть, вообще для жизни. Эти школы воспитывали свободомыслящих снобов.  Один из воспитанников математической школы-интерната вспоминает пребывание там Юлия Кима, одного из самых известных в СССР бардов и диссидентов, который в 1963–1968 годах преподавал в школе Колмогорова историю, обществоведение и литературу, пока не был уволен по настоянию КГБ. «Благодаря ему мы жили как боги, в свое удовольствие. У нас даже был собственный Орфей, который пел нам дифирамбы».

Советская система, чуткая ко всякому отклонению от нормы, отталкивала этих детей и чинила им всевозможные препятствия после окончания матшколы. В тот год, когда я заканчивала такую школу в Москве (и окончила бы, если бы моя семья не эмигрировала в США), учителя предупредили, что ни одному из нас не удастся поступить на мехмат МГУ.

Большинство выпускников Ленинградской школы № 239 считали — и не без оснований, — что могли бы спокойно проспать весь первый курс любого университета и блестяще сдать экзамены, тем не менее очень редко попадали в ЛГУ. Эта несправедливость укрепляла связи школы с вузами второго эшелона, которые принимали ее сверхобразованных, чересчур уверенных в себе воспитанников такими, как есть. Эти дети могли считать себя богами, но, покинув стены школы, они оказывались за бортом хорошо организованного и защищенного от посторонних советского математического мейнстрима. Не все они — даже не большинство — стали математиками. Но те, кто все-таки ушел в математику, попали в странный мир альтернативной математической субкультуры.

Сам Колмогоров принадлежал к советскому математическому истеблишменту. Его обитателям он казался эксцентриком, защищенным в основном своей всемирной славой, рано заработанной и без видимых усилий поддерживаемой в течение десятилетий. И все же Колмогорову приходилось порой годами выторговывать учебные часы, прибавку к жалованью и квартиры для некоторых ученых. Колмогоров был чрезвычайно осторожен в делах и речах — он не скрывал, что боится органов госбезопасности (и намекал на сотрудничество с ними), — но в 1957 году был смещен с поста декана физико-математического факультета МГУ из-за диссидентских настроений своих студентов.

Невзирая на особые требования к тем, кто был частью истеблишмента, Колмогоров был верен своим идеалам, которые передавал ученикам. Легкость, с которой он делился своими идеями, стала легендой. Проработав над какой-нибудь проблемой пару недель, он мог передать ее одному из учеников, и тому хватало работы на целые месяцы, а то и на всю жизнь.

Колмогорова не интересовали споры об авторстве: многие великие задачи математики не были еще решены. Другими словами, Колмогоров, признаваемый истеблишментом как крупнейший математик своего времени, жил идеалами математической контркультуры. Многочисленные ученики Колмогорова были ее лидерами. Представления Колмогорова были непререкаемой истиной для его учеников, учеников его учеников и, в свою очередь, их собственных учеников. Колмогоров мечтал о мире без нечестности и подлости, без женщин и других недостойных отвлекающих факторов — о мире, где есть только математика, прекрасная музыка и справедливое воздаяние за труды.

Несколько поколений юных российских математиков жили этой мечтой. Михаил Берг вспоминал: «Многие... выпускники хотели бы унести школу с собой, как панцирь черепахи, потому что комфортно чувствовали себя только внутри ее точных и логически понятных законов».

Эту модель существования — жизнь по точным и логически понятным законам — предлагал Перельману Сергей Рукшин в обмен на героически потраченное на изучение английского языка лето. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Андрей Николаевич Колмогоров - биография

Андрей Николаевич Колмогоров

Андрей Николаевич Колмогоров - (1903-87), российский математик, основатель научных школ по теории вероятностей и теории функций, академик АН СССР (1939), Герой Социалистического Труда (1963).

Фундаментальные труды Андрея Колмогорова по теории функций, математической логике, топологии, дифференциальным уравнениям, функциональному анализу и особенно по теории вероятностей (аксиоматическое обоснование, теория случайных процессов) и теории информации. Ленинская премия (1965), Государственная премия СССР (1941).

Андрей Николаевич Колмогоров родился 25 апреля 1903 года в Тамбове.

Мать Колмогорова — Мария Яковлевна Колмогорова (1871—1903) умерла при родах. Отец — Николай Матвеевич Катаев, по образованию агроном (окончил Петровскую (Тимирязевскую) академию), погиб в 1919 году во время деникинского наступления. Мальчик был усыновлён и воспитывался сестрой матери, Верой Яковлевной Колмогоровой.

Тетушки Андрея в своем доме организовали школу для детей разного возраста, которые жили поблизости, занимались с ними - десятком ребятишек - по рецептам новейшей педагогики. Для ребят издавался рукописный журнал «Весенние ласточки». В нем публиковались творческие работы учеников - рисунки, стихи, рассказы. В нем же появлялись и «научные работы» Андрея - придуманные им арифметические задачи. Здесь же мальчик опубликовал в пять лет свою первую научную работу по математике. Правда, это была всего-навсего известная алгебраическая закономерность, но ведь мальчик сам ее подметил без посторонней помощи!

Самин Д. К. 100 великих ученых. - М.: Вече, 2000, с. 556.

Когда в 1920 г. Андрей Колмогоров стал думать о поступлении в институт, перед ним возник вечный вопрос: чему себя посвятить, какому делу? Влечет его на математическое отделение университета, но есть и сомнение: здесь чистая наука, а техника — дело, пожалуй, более серьёзное. Вот, допустим, металлургический факультет Менделеевского института! Настоящее мужское дело, кроме того, перспективное. Андрей решает поступать и туда и сюда. Но вскоре ему становится ясно, что чистая наука тоже очень актуальна, и он делает выбор в её пользу.

В 1920 г. Андрей поступил на математическое отделение Московского университета. «Задумав заниматься серьёзной наукой, я, конечно, стремился учиться у лучших математиков, — вспоминал позднее учёный. — Мне посчастливилось заниматься у П. С. Урысона, П. С. Александрова, В. В. Степанова и Н. Н. Лузина, которого, по-видимому, следует считать по преимуществу моим учителем в математике. Но они "находили" меня лишь в том смысле, что оценивали приносимые мною работы. "Цель жизни" подросток или юноша должен, мне кажется, найти себе сам. Старшие могут этому лишь помочь.

В первые же месяцы Андрей Колмогоров сдал экзамены за курс. А как студент второго курса он получает право на «стипендию»: «…я получил право на 16 килограммов хлеба и 1 килограмм масла в месяц, что, по представлениям того времени, обозначало уже полное материальное благополучие.» Теперь есть и свободное время. Оно отдаётся попыткам решить уже поставленные математические задачи. Лекции профессора Московского университета Николая Николаевича Лузина, по свидетельству современников, были выдающимся явлением. У Лузина никогда не было заранее предписанной формы изложения. И его лекции ни в коем случае не могли служить образцом для подражания. У него было редкое чувство аудитории. Он, как настоящий актёр, выступающий на театральной сцене и прекрасно чувствующий реакцию зрительного зала, имел постоянный контакт со студентами.

Профессор умел приводить студентов в соприкосновение с собственной математической мыслью, открывая таинства своей научной лаборатории. Приглашал к совместной духовной деятельности, к сотворчеству. А какой это был праздник, когда Лузин приглашал учеников к себе домой на знаменитые «среды»! Беседы за чашкой чая о научных проблемах… Впрочем, почему обязательно о научных? Тем для разговора было предостаточно. Он умел зажечь молодёжь желанием научного подвига, привить веру в собственные силы, и через это чувство приходило другое — понимание необходимости полной отдачи любимому делу. Колмогоров впервые обратил на себя внимание профессора на одной лекции. Лузин, как всегда, вёл занятия, постоянно обращаясь к слушателям с вопросами, заданиями. И когда он сказал: «Давайте строить доказательство теоремы, исходя из следующего предположения…» — в аудитории поднялась рука Андрея Колмогорова: «Профессор, оно ошибочно…» За вопросом «почему» последовал краткий ответ первокурсника. Довольный Лузин кивнул: «Что ж, приходите на кружок, доложите нам свои соображения более развернуто». "Хотя моё достижение было довольно детским, оно сделало меня известным в «Лузитании», — вспоминал Андрей Николаевич.

Но через год серьёзные результаты, полученные восемнадцатилетним второкурсником Андреем Колмогоровым, обратили на себя настоящее внимание «патриарха». С некоторой торжественностью Николай Николаевич предлагает Колмогорову приходить в определённый день и час недели, предназначенный для учеников его курса. Подобное приглашение, по понятиям «Лузитании», следовало расценивать как присвоение почётного звания ученика. Как признание способностей. Со временем отношение Колмогорова к Лузину поменялось. Под влиянием Павла Сергеевича Александрова, также бывшего ученика Лузина, он принял участие в политическом преследовании их общего учителя, так называемом деле Лузина, которое едва не закончилось репрессиями против Лузина. С самим Александровым Колмогоров был связан дружескими узами до конца жизни.

Еще:

Андрей Колмогоров – величайший русский математик ХХ столетия, создатель современной теории вероятностей, автор классических результатов в теории функций, в математической логике, топологии, теории дифференциальных уравнений, функциональном анализе, в теории турбулентности, теории гамильтоновых систем.

Созданные Колмогоровым школы в теории вероятностей, теории функций, функциональном анализе и теории гамильтоновых систем определили развитие этих направлений математики в ХХ столетии. В истории российской науки его имя стоит рядом с именами Михаила ЛомоносоваД. И. Менделеева - ученых, всей своей жизнью прославивших Россию.

Андрей Николаевич родился 25 апреля 1903 в Тамбове. C 1920г. по 1925 г. он учится в Московском университете. Еще будучи студентом, в 1922 г. он построил ряд Фурье, расходящийся почти всюду, что приносит ему мировую известность.

В 1931 г. Андрей Колмогоров становится профессором МГУ. В 1933 г. он назначается директором Института математики и механики при МГУ. В 1935 г. на механико-математическом факультете МГУ он основал кафедру теории вероятностей (которой заведовал до 1966 г.).

В 1939 г. А.Н. Колмогоров избирается действительным членом Академии наук СССР и он становится (по 1942 г.) академиком-секретарем Отделения физико-математических наук. В конце 30-х и начале 40-х годов Андрей Колмогоров начинает интересоваться проблемами турбулентности и в 1946 г. организует лабораторию атмосферной турбулентности Института теоретической геофизики АН СССР. С 1936 г. Андрей Николаевич много сил отдает работе по созданию Большой и Малой Советских Энциклопедий. Он возглавляет математический отдел и сам пишет для энциклопедий много статей.

В 1960 г. Колмогоров создает межфакультетскую лабораторию вероятностных и статистических методов (которой заведовал с 1966 г. по 1976 г.), одной из основных задач которой было широкое использование современных методов теории вероятностей и математической статистики в естественно-научных и гуманитарных исследованиях. Решение о создании данной лаборатории А.Н. Колмогоров принял после своего возвращения из Индии, где он был поражен размахом работ в области прикладной статистики в разнообразных отраслях знания. В то время в Индии, в институте, руководимом Махаланобисом, работало около 2000 человек! Ничего подобного не было в то время (да и сейчас тоже!) в нашей стране. Первоначально в лаборатории работало около 20 сотрудников, а к моменту ее закрытия после смерти ректора МГУ И.Г. Петровского, было уже более 130 человек.

Весьма интересно об этом периоде жизни А. Колмогорова пишет в книге "Канатоходец" В.В. Налимов, долгие годы работавший его заместителем в данной лаборатории. Приведем одну цитату из этой книги. "Поставленный выше вопрос можно было бы переформулировать так: какова должна быть математическая подготовленность нематематика, желающего использовать в своей работе вероятностно-статистические методы? Этот вопрос приобретает особую остроту в связи с тем, что широкое развитие вычислительной техники позволяет обращаться к программам и совсем не подготовленным пользователям. Опасность такого рода деятельности состоит в том, что прикладная математика все же всегда остается дедуктивной наукой. Модель нельзя получить непосредственно из экспериментальных данных, не опираясь на предпосылки, привносимые исследователем. Скажем, нужно отчетливо понимать, что результаты кластер-анализа всегда несут в себе некоторую неопределенность - они зависят от метрики пространства, сконструированного исследователем (т. е. от выбора шкал, в которых представляются измерения).

Или другой пример: нужно четко осознавать, что оценки коэффициентов регрессии в реальных задачах так называемого пассивного (т. е. непланируемого) эксперимента всегда все же оказываются смещенными в силу того обстоятельства, что никогда нельзя включить в рассмотрение все независимые переменные, ответственные за изучаемое явление. Можно поставить задачу и шире: всегда ли адекватны изучаемой ситуации исходные положения фишеровской концепции математической статистики? Эту тему я многократно обсуждал с Андреем Николаевичем (дискуссии по этой теме время от времени вспыхивают в научных журналах). Рассматривая эту тему, я предложил ввести новую междисциплинарную специализацию. Речь здесь шла о подготовке в Университете выпускников смешанного профиля - скажем, математически ориентированных биологов, психологов и пр. Соотношение изучаемых дисциплин - математических и предметных могло бы быть 1:1. Специалист такого профиля мог бы выступать в роли консультанта, поддерживающего на должном уровне процесс математизации таких научных дисциплин, которые традиционно развивались, не опираясь на математические знания. Во многих зарубежных странах такой процесс давно начался. Там обрела право на существование такая специальность, как биометрика (В 1985 г. в Венгрии состоялась первая Европейская конференция по биометрике, организованная Международным биометрическим обществом.

В это Общество входит более 6500 членов из 70 стран. Наша страна до сих пор не входит в него ( ничего не изменилось и по состоянию на 2003 г. - В.Л.). На упомянутой выше конференции от нас было два представителя, а от ГДР - около тридцати). Специалисты этого профиля выступают не только в роли консультантов, но и в роли организаторов больших межклинических и межлабораторных исследований. Несколько лет назад подготовка специалистов по биометрике началась в бывшей ГДР (Ростокский университет, руководитель программы - профессор Д. Раш). В те годы Андрей Николаевич поддержал мое предложение. Сохранилось его письмо, содержащее детальное обсуждение математической составляющей такой программы. Но реализовать этот замысел все же не удалось. Не поддержал его ректор - И. Г. Петровский. Резко отрицательно к нему отнеслись в тогдашнем Минвузе. Одна из руководящих сотрудниц этого Министерства раздраженно заметила: «А что же мы тогда напишем в дипломе?» Жесткая регламентация довлела надо всем, и в том числе над структурой университетского образования. Теперь стало ясно, что подготовка специалистов междисциплинарного профиля может быть обоснована и с других, пожалуй, более, серьезных позиций. Опыт показывает, что приложение математики в таких науках, как биология, психология, языкознание и социология, не должно ограничиваться решением только внешних задач операторного характера (обработка данных, планирование эксперимента). Здесь назревает задача создания своего собственного математизированного языка для построения аксиоматизированных теорий по аналогии с тем, как это произошло в физике.

Существенно математизированным, как это мне представляется, должен стать язык для создания теории смыслов, так же как, скажем, язык, на котором могла бы быть построена теория проявления живого. Понимая роль полевых представлений в современной физике, хочется думать о возможности введения аксиоматизированных представлений о биологических (морфофизиологических) и семантических полях. Но трудно заранее представить себе, на какие разделы математики будут опираться эти представления. Можно сказать только одно - здесь нужны мыслители, знающие как предметную область, так и математику в широком раскрытии. Но работать в междисциплинарной области опасно - всегда можно попасть под удар со стороны представителей монодисциплинарного знания: их локальная эрудиция будет выше эрудиции полидисциплинарного исследователя. Опыт моей более чем 40-летней работы в прикладной вероятностно ориентированной математике показал мне, что как математики, так и представители конкретных наук стараются не уходить далеко за пределы их исходного образования.

Мысленно обращаясь к прошлым беседам с Андреем Колмогоровым, он включился бы в поиски путей подготовки ученых широкого я думаю, что в наши дни - дни становления нового – он включился бы в поиски путей подготовки ученых широкого профиля. Сам А. Н. не раз говорил, что он не только математик, но и естествоиспытатель. В 1976 г. в МГУ была открыта кафедра математической статистики, которой А.Н. Колмогоров заведовал до 1979 г. С 1980 г. и до конца своей жизни Андрей Николаевич заведовал кафедрой математической логики.

В 1953 г. Андрей Колмогоров был избран почетным членом Московского математического общества, а в период с 1964 по 1966 и с 1973 по 1985 г. он являлся его Президентом.

В разные годы Андрей Колмогоров был членом редколлегий журналов "Матемагический сборник", "Доклады АН СССР", "Успехи математических наук". С 1946 по 1954 г. и с 1983 г. по день кончины Андрей Николаевич был главным редактором "Успехов математических наук".

В 1956 г. Колмогоров основывает журнал "Теория вероятностей и ее применения" и, с первого выпуска 1956 г. являлся главным редактором этого журнала, будучи инициатором создания физико-математического журнала для юношества "Квант", он с момента его возникновения (1970 г.) и до конца своих дней являлся первым заместителем главного редактора и руководил математическим разделом этого журнала.

Андрей Колмогоров был основателем и первым главой редакции математики и механики в Издательстве иностранной литературы (ныне - издательство "Мир"). В 1931 г. выходит в свет его фундаментальная статья "Об аналитических методах в теории вероятностей", а в 1933 г.- монография "Основные понятия теории вероятностей". Здесь завершается задача построения теории вероятностей как целостной математической теории. А.Н.Колмогоров внес существенный вклад в разработку алгебраической топологии (здесь ему принадлежит введение одного из центральных понятий этой теории - понятия когомологии), теории динамических систем (где им введен новый инвариант "энтропия"), теории сложности конструктивных объектов, где предложенные им идеи измерения сложности объекта нашли многообразные применения в теории информации, теории вероятностей и теории алгоритмов.

Андрей Колмогоров был одним из самых выдающихся представителей современной математики в самом широком смысле этого слова, включающем и прикладную математику. Его имя стоит рядом с именами Пуанкаре и Гильберта. Это положение Андрея Николаевича в науке пользуется бесспорным признанием в международном научном мире, и оно находит свое внешнее выражение, в частности, в том, что А.Н. Колмогорову принадлежит первое место среди всех советских математиков по числу иностранных академий и научных сообществ, избравших его своим сочленом, а также университетов, сделавших его своим почетным доктором.

Андрей Колмогоров был членом практически всех наиболее авторитетных научных сообществ мира:

- почетный доктор Парижского университета (1955) 
- иностранный член Польской академии наук (1956) 
- почетный член Королевского статистического общества (
Великобритания, 1956) 
- член Международного статистического института (1957) 
- почетный член Американской академии искусств и наук в Бостоне (1959) 
- член Германской академии естествоиспытателей "Леопольдина" (1959) 
- почетный доктор Стокгольмского университета (1960) 
- иностранный член Американского философского общества в Филадельфии (1961) 
- почетный член Индийского статистического общества в Калькутте (1962) 
- почетный член Американского метеорологического общества (1962) 
- почетный член Индийского математического общества (1962) 
- иностранный член Нидерландской королевской академии наук (1963) 
- иностранный член Лондонского королевского общества (1964) 
- почетный член Румынской академии (1965) 
- почетный член Венгерской академии наук (1965) 
- иностранный член Национальной академии наук США (1967) 
- иностранный член Парижской академии наук (1968) 
- почетный член Международной академии истории науки (1977) 
- иностранный член Академии наук ГДР (1977) 
- иностранный член Общества ордена "Пур ля Мерит" ФРГ (1977) 
- член Академии наук Финляндии (1985).

В мировой науке, чтобы отметить достижения в тех областях, которые не охватываются Нобелевскими премиями, были учреждены Бальцановские премии. В 1963 г. состоялось первое присуждение Бальцановской премии по математике, и ее лауреатом стал А. Н. Колмогоров. Это была высшая оценка вклада А. Н. Колмогорова в мировую науку.

Международная премия имени Н.И.Лобачевского Академии наук СССР присуждена в 1986 году. Андрей Колмогоров был лауреатом Ленинской премии (1965 г., за работы по классической механике), Государственной (Сталинской) премии (1941 г., за работы по теории случайных процессов), премии им. Чебышева АН СССР (1949г.). Ему было присвоено звание Героя Социалистического Труда (1963 г.), он был награжден семью орденами Ленина, другими орденами и медалями СССР, а также венгерским орденом Знамени, медалью им.Гельмгольца Академии наук ГДР, золотой медалью Американского метеорологического общества.

Многие ученики Андрея Колмогорова стали крупными учеными в разных областях науки, среди них — В. И. Арнольд, И. М. Гельфанд, М. Д. Миллионщиков, Ю. В. Прохоров, А. М. Обухов, А. С. Монин, А. Н. Ширяев. Сам А. Колмогоров говорил: «Мне повезло на талантливых учеников. Многие из них, начав работу вместе со мной в какой-нибудь области, потом переходили на новую тематику и уже совершенно независимо от меня получали замечательные результаты. Скажу в виде шутки, что в настоящее время один из моих учеников управляет земной атмосферой (А. М. Обухов), а другой — океанами (А. С. Монин)».

Андрей Николаевич Колмогоров умер 20 октября 1987 года в Москве.



Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "А.А.Колмогоров .Лицо математики XX века."

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Управляющий рестораном

Получите профессию

Секретарь-администратор

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 668 187 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 30.03.2017 2898
    • DOCX 286.3 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Логинова Вера Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Логинова Вера Николаевна
    Логинова Вера Николаевна
    • На сайте: 7 лет и 1 месяц
    • Подписчики: 0
    • Всего просмотров: 7610
    • Всего материалов: 5

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Методист-разработчик онлайн-курсов

Методист-разработчик онлайн-курсов

500/1000 ч.

Подать заявку О курсе
  • Сейчас обучается 175 человек из 48 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 432 человека из 72 регионов
  • Этот курс уже прошли 5 555 человек

Курс профессиональной переподготовки

Математика: теория и методика преподавания с применением дистанционных технологий

Учитель математики

300 ч. — 1200 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 34 человека из 16 регионов
  • Этот курс уже прошли 42 человека

Курс профессиональной переподготовки

Математика и информатика: теория и методика преподавания в профессиональном образовании

Преподаватель математики и информатики

500/1000 ч.

от 8900 руб. от 4150 руб.
Подать заявку О курсе
  • Сейчас обучается 41 человек из 23 регионов
  • Этот курс уже прошли 53 человека

Мини-курс

Интерактивные методы обучения русскому языку

3 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Эволюция и современное состояние искусства

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Эффективное продвижение и организация проектов в сфере искусства

3 ч.

780 руб. 390 руб.
Подать заявку О курсе