Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Исследовательская работа "Приемы быстрого счета"

Исследовательская работа "Приемы быстрого счета"



Осталось всего 2 дня приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Математика

Поделитесь материалом с коллегами:

14






Научно-исследовательская конференция «Шаг в будущее -2015»





Научно-исследовательская работа

«Приемы быстрого счета»





Россия, Иркутская область, село Малышевка,

Замаратский Данил Максимович,

МКОУ Малышевская СОШ, 5 класс.

Руководитель: Назарова Вера Ивановна учитель математики



























Малышевка , 2015





Содержание





























Введение

Во все времена математика была и остается одним из основных предметов в школе, потому что математические знания необходимы всем людям. Не каждый школьник, обучаясь в школе, знает, какую профессию он выберет в будущем, но каждый понимает, что математика необходима для решения многих жизненных задач: расчеты в магазине, оплата за коммунальные услуги, расчет семейного бюджета и т.д. Кроме того, всем школьникам необходимо сдавать экзамены в 9-м классе и в 11-м классе, а для этого, обучаясь с 1-го класса, необходимо качественно осваивать математику и прежде всего, нужно научиться считать.

Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому я решил показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием

Я считаю, что основные проблемы при изучении математики в школе связаны с вычислительными навыками и поэтому целью моей работы является изучить приемы быстрого счета.

Актуальность моего исследования состоит в том, что в наше время все чаще на помощь ученикам приходят калькуляторы, и все большее количество учеников не может считать устно. А ведь изучение математики развивает логическое мышление, память, гибкость ума, приучает человека к точности, к умению видеть главное, сообщает необходимые сведения для понимания сложных задач, возникающих в различных областях деятельности современного человека. Поэтому в своей работе я хочу показать, как можно считать быстро и правильно и что процесс выполнения действий может быть не только полезным, но и интересным занятием.

Гипотеза исследования: если показать, что применение приемов быстрого счета, облегчает вычисления, то можно добиться того, что повысится вычислительная культура учащихся, и  им будет легче решать практические задачи.

Я поставил перед собой следующие задачи:

1. Изучить историю возникновения вычислений

2. Рассмотреть правила вычислений, которыми пользовались в древности и которыми пользуются сейчас.

3. Освоить правила быстрого счета .

Объект исследования: приемы быстрого счета.

Предмет исследования: процесс вычислений.


Данная работа относится к прикладным исследованиям, так как в ней показывается роль применения приемов быстрого счета для практической деятельности.

При работе над докладом я пользовался следующими методами: поисковый метод с использованием научной и учебной литература, а также поиск необходимой информации в сети Интернет, практический метод выполнения вычислений с применением нестандартных алгоритмов счета, анализ полученных в ходе исследования данных.















































I. История счета

1.1. Как возникли числа

Подсчитывать предметы люди научились ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т.д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.

       И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки – по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось сделать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.

Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней. Обычно таких числительных было мало. Например, у племени реки Муррей в Австралии было два простых числительных: энэа (1) и петчевал (2). Другие числа они выражали составными числительными: 3= «петчевал–энэа», 4 «петчевал–петчевал» и т. д. Ещё одно австралийское племя – камилороев имело простые числительные мал (1), булан (2), гулиба (3) . И здесь другие числа получались сложением меньших: 4=«булан–булан», 5=«булан–гулиба», 6=«гулиба–гулиба» и т.д.

У многих народов название числа зависело от подсчитываемых предметов. Если жители островов Фиджи считали лодки, то число 10 называли «боло»; если они считали кокосовые орехи, то число 10 называли «каро». Точно так же поступали живущие на Сахалине у берегах Амура нивхи. Ещё в XIX веке одно и то же число они называли разными словами, если считали людей, рыб, лодки, сети, звёзды, палки.

Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.

С развитием производства и торгового обмена люди стали лучше понимать, что общего у трёх лодок и трёх топоров, десяти стрел и десяти орехов. Племена часто вели обмен «предмет за предмет»; к примеру, обменивали 5 съедобных кореньев на 5 рыб. Становилось ясно, что 5 одно и то же и для кореньев, и для рыб; значит, и называть его можно одним словом.

Постепенно люди начали использовать для счёта камешки, палочки, части собственного тела. Вот как известный русский учёный Н.Н. Миклуха–Маклай описывал счёт папуасов: «Папуас загибает один за другим пальцы руки, причём издаёт определённый звук, например «бе, бе, бе…». Досчитав до пяти, он говорит: «Ибон–бе» (рука). Затем он загибает пальцы другой руки, снова повторяя «бе, бе…», пока не дойдёт до «ибон–али» (две руки). Затем он идёт дальше, приговаривая «бе, бе…», пока не дойдёт до «самба–бе» (одна нога) и «самба–али» (две ноги). Если нужно считать дальше, папуас пользуется пальцами рук и ног кого – нибудь другого».

Похожие способы счёта применяли и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.

До сих пор я рассказывал об устном счёте. А как записывали числа? Поначалу, ещё до возникновения письменности, использовали зарубки на палках, насечки на костях, узелки на верёвках. Найденная волчья кость в Дольни – Вестонице (Чехословакия), имела 55 насечек, сделанных более 25 000 лет назад.

Когда появилась письменность, появились и цифры для записи чисел. Сначала цифры напоминали зарубки на палках: в Египте и Вавилоне, в Этрурии и Финики, в Индии и Китае небольшие числа записывали палочками или чёрточками. Например, число 5 записывали пятью палочками. Индейцы ацтеки и майя вместо палочек использовали точки. Затем появились специальные знаки для некоторых чисел, таких, как 5 и 10 .

В то время почти все нумерации были не позиционными, а похожими на римскую нумерацию. Лишь одна вавилонская шестидесятеричная нумерация была позиционной. Но и в ней долго не было нуля, а также запятой, отделяющей целую часть от дробной. Поэтому одна и та же цифра могла означать и 1, и 60, и 3600. Угадывать значение числа приходилось по смыслу задачи.

За несколько столетий до новой эры изобрели новый способ записи чисел, при котором цифрами служили буквы обычного алфавита. Первые 9 букв обозначали числа десятки 10, 20,…, 90, а ещё 9 букв обозначали сотни. Такой алфавитной нумерацией пользовались до 17 в. Чтобы отличить «настоящие» буквы от чисел, над буквами–числами ставили чёрточку (на Руси эта чёрточка называлась «титло»).

Во всех этих нумерациях было очень трудно выполнить арифметические действия. Поэтому изобретение в VI веке индийцами десятичной позиционной нумерации по праву считается одним из крупнейших достижений человечества. Индийская нумерация и индийские цифры стали известны в Европе от арабов, и обычно их называют арабскими.

При записи дробей ещё долгое время целую часть записывали в новой десятичной нумерации, а дробную – в шестидесятеричной. Но в начале XV в. самаркандский математик и астроном аль–Каши стал употреблять в вычислениях десятичные дроби.

Числа, с которыми мы работаем с положительными и отрицательными числами. Но, оказывается, что это не все числа, которые используют в математике и других науках. И узнать о них можно не дожидаясь старшей школы, а гораздо раньше, если изучать историю возникновения чисел в математике.

II. Старинные способы вычислений

2.1.Русский крестьянский способ умножения

В России несколько веков назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название крестьянский (существует мнение, что он берет начало от египетского).

Пример: умножим 47 на 35,

  • запишем числа на одной строчке, проведём между ними вертикальную черту;

  • левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);

  • деление заканчивается, когда слева появится единица;

  • вычёркиваем те строчки, в которых стоят слева чётные числа;

  • 35 + 70 + 140 + 280 + 1120 = 1645

  • далее оставшиеся справа числа складываем – это результат.

2.2.Метод решетки

Выдающийся арабский математик и астроном Абу Абдалах Мухаммед Бен Мусса аль – Хорезми жил и работал в Багдаде. Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.

Сведений о жизни и деятельности Мухаммеда аль – Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время.

В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «Метод решетки». Этот метод даже проще, чем применяемый сегодня.

Пример: умножим 25 и 63.

Начертим таблицу, в которой две клетки по длине и две по ширине запишем одно число по длине другое по ширине. В клетках запишем результат умножения данных цифр, на их пересечении отделим десятки и единицы диагональю. Полученные цифры сложим по диагонали, и полученный результат можно прочитать сверху (вниз и вправо).

Неудобство этого способа мне хотелось бы отметить в трудоемкости подготовки прямоугольной таблицы, хотя сам процесс вычисления интересен и заполнение таблицы напоминает игру.

2.3. Умножение на пальцах

Древние египтяне были очень религиозны и считали, что душу умершего в загробном мире подвергают экзамену по счёту на пальцах. Уже это говорит о том значении, которое придавали древние этому способу выполнения умножения натуральных чисел (он получил название пальцевого счета). Это просто. Чтобы умножить любое число от 1 до 9 на 9, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например 9×3 – загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9×3 – это 2), затем посчитайте после загнутого пальца (в нашем случае – 7). Ответ – 27.

Итак, рассмотренные старинные способы умножения показывают, что используемый в школе алгоритм умножения натуральных чисел - не единственный и известен он был не всегда.

III. Приемы быстрого счета

3.1.Различные способы сложения и вычитания

Изучив литературу по данной теме, мною был сделан отбор, из множества приемов быстрого счета, я выбрал приемы сложения и вычитания , которые просты в понимании и применении для любого ученика.

Основное правило для выполнения сложения в уме звучит так:

Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д. Например: 56+8=56+10-2=64; 65+9=65+10-1=74.

Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ. Например:56-9=56-10+1=47; 436-87=436-100+13=349.

Если при сложении двузначных чисел цифра единиц в прибавляемом числе больше5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы. Например: 34+48=34+50-2=82; 27+31=27+30+1=58.

Если вычитаемое меньше 100, а уменьшаемое больше 100, но меньше 200, есть простой способ вычислить разность в уме. 134-76=58

76 на 24меньше 100. 134 на 34 больше 100. Прибавим 24 к 34 и получим ответ: 58.

152-88=64

88 на 12 меньше 100,а 152 больше 100 на 52, значит

152-88=12+52=64



3.2. Различные способы умножения и деления

Изучив литературу по данной теме, мною был сделан отбор, из множества приемов быстрого счета, я выбрал приемы умножения и деления, которые просты в понимании и применении для любого ученика.

  1. Умножение и деление числа на 4.

Чтобы умножить число на 4, нужно его дважды умножить на 2.

Например:

26·4=(26·2)·2=52·2=104;

417·4=(417·2)·2=834·2=1668.

Чтобы разделить число на 4, нужно его дважды разделить на 2.

Например:

324:4=(324:2):2=162:2=81.

  1. Умножение и деление числа на 5.

Чтобы умножить число на 5, нужно его умножить на 10 и разделить на 2.

Например:

236·5=(236·10):2=2360:2=1180.

Чтобы разделить число на 5, нужно умножить 2 и разделить на 10, т.е. отделить запятой последнюю цифру.

Например:

236:5=(236·2):10=472:10=47,2.

  1. Умножение числа на 1,5.

Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину.

Например: 34·1,5=34+17=51;

146·1,5=146+73=219.

  1. Умножение числа на 9.

Чтобы умножить число на 9, нужно к нему приписать 0 и отнять исходное число.

Например: 72·9=720-72=648.

  1. Умножение на 25 числа, делящегося на 4.

Чтобы умножить на 25 число, делящееся на 4, нужно его разделить на 4 и получившееся число умножить на 100.

Например: 124·25=(124:4)·100=31·100=3100.

  1. Умножение двузначного числа на 11

При умножении двузначного числа на 11, нужно между цифрой единиц и цифрой десятков вписать сумму этих цифр, причем, если сумма цифр больше 10, то единицу нужно прибавить к старшему разряду (первой цифре).

Например:
23·11=253, т.к. 2+3=5, поэтому между 2 и 3 ставим цифру 5;
57·11=627, т.к. 5+7=12, цифру 2 ставим между 5 и 7, а к 5 прибавляем 1, вместо 5 пишем 6.

«Краешки сложи, в серединку положи» - эти слова помогут легко запомнить данный способ умножения на 11.

Такой способ подходит только для умножения двузначных чисел.

  1. Умножение двузначного числа на 101.

Для того, чтобы число умножить на 101, нужно приписать данное число к самому себе.

Например:34·101 = 3434.

Поясним, 34·101 = 34·100+34·1=3400+34=3434.

3.3. Игры

Отгадывание полученного числа.

  1. Задумайте какое-нибудь число. Прибавьте к нему 11; умножьте полученную сумму на 2; от этого произведения отнимите 20; умножьте полученную разность на 5 и от нового произведения отнимите число, в 10 раз больше задуманного вами числа. Я отгадываю: вы получили 10. Верно?

  2. Задумайте число. Утрой его. Вычти из полученного 1. Полученное умножьте на 5. К полученному прибавьте 20. Разделите полученное на 15. Из полученного результата вычтите задуманное. У вас получилось 1.

  3. Задумайте число. Умножьте его на 6. Вычтите 3. Умножьте на 2. Прибавьте 26. Вычтите удвоенное задуманное. Разделите на 10. Вычтите задуманное. У вас получилось 2.

  4. Задумайте число. Утройте его. Вычтите 2. Умножьте на 5. Прибавьте 5. Разделите на 5. Прибавьте 1. Разделите на задуманное. У вас получилось 3.

  5. Задумайте число, удвойте его. Прибавьте 3. Умножьте на 4. Вычтите 12. Разделите на задуманное. У вас получилось 8.

Угадывание задуманных чисел.

  • Предложите своим друзьям задумать любые числа. Пусть каждый прибавит к своему задуманному числу 5.

  • Полученную сумму пусть умножит на 3.

  • От произведения пусть отнимет 7.

  • Из полученного результата пусть вычтет ещё 8.

  • Листок с окончательным результатом пусть каждый отдаст вам. Глядя на листок, вы тут же говорите каждому, какое число он задумал.

(Чтобы угадать задуманное число, результат, написанный на бумажке или сказанный вам устно, разделить на 3).



















Заключение

Описывая старинные способы вычислений и современные приёмы быстрого счёта, я попытался показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.

Изучение старинных способов вычислений показало, что эти арифметические действия были трудными и сложными из-за многообразия способов и их громоздкости выполнения.

Современные способы вычислений просты и доступны всем.

При знакомстве с научной литературой обнаружил более быстрые и надежные способы вычислений.

Результаты своей работы я оформил в памятку (Приложение 1), которую предложу всем своим одноклассникам. Возможно, что с первого раза не у всех получится быстро, с ходу выполнять вычисления с применением этих приемов, даже если сначала не получится использовать прием, показанный в памятке, ничего страшного, просто нужна постоянная вычислительная тренировка. Она и поможет приобрести полезные навыки быстрого счета.

Выводы:

  • Знание приемов быстрого счета позволяет упрощать вычисления, экономить время, развивает логическое мышление и гибкость ума.

  • В школьных учебниках практически нет приемов быстрого счета, поэтому результат данной работы – памятка для быстрого счета будет очень полезной для учащихся 5-6 классов.









Список используемой литературы

  1. Ванцян А.Г. Математика: Учебник для 5 класса. - Самара: Издательский дом «Фёдоров», 1999г.

  2. Кордемский Б.А., Ахадов А.А. Удивительный мир чисел: Книга учащихся,- М. Просвещение, 1986г.

  3. Минских Е.М. «От игры к знаниям», М., «Просвещение», 1982г

  4. http://matsievsky.newmail.ru/sys-schi/file15.htm

  5. http://sch69.narod.ru/mod/1/6506/hystory.html


























Приложение 1.L:\img953.jpg











57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Автор
Дата добавления 17.02.2016
Раздел Математика
Подраздел Конспекты
Просмотров603
Номер материала ДВ-461276
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх