Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация к уроку геометрии 7 класс. Свойства равнобедренного треугольника
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация к уроку геометрии 7 класс. Свойства равнобедренного треугольника

библиотека
материалов
Как называется отрезок АМ на рисунке? Сформулировать определение медианы треу...
Как называется отрезок ВК на рисунке? Сформулировать определение биссектрисы...
Как называется отрезок СН на рисунке? Сформулировать определение высоты треуг...
А В С АВ, ВС - боковые стороны равнобедренного треугольника А, С – углы при о...
Назовите основание и боковые стороны данных треугольников
ТРЕУГОЛЬНИК, все стороны которого равны, называется РАВНОСТОРОННИМ
Теорема 1 В равнобедренном треугольнике углы при основании равны Дано: АВС –...
Доказательство: Проведём ВD – биссектрису АВС 2. Рассмотрим АВD и СВD АВ=В...
Теорема 2 В равнобедренном треугольнике биссектриса, проведённая к основанию,...
Доказательство: Рассмотрим АВD и СВD АВ=ВС, ВD-общая, АВD=СВD, значит АВ...
40° 70° A B C Дано: ∆MNP - равнобедренный, NК – биссектриса NК = 5 см, MP =...
40° 70° A B C Дано: ∆MNP - равнобедренный, NК – биссектриса NК = 5 см, MP =...
П. 18 теоремы, №109, №117 – из учебника Дополнительная задача: Доказать, что...
17 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1
Описание слайда:

№ слайда 2 Как называется отрезок АМ на рисунке? Сформулировать определение медианы треу
Описание слайда:

Как называется отрезок АМ на рисунке? Сформулировать определение медианы треугольника: Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны АМ – медиана ВМ = МС

№ слайда 3 Как называется отрезок ВК на рисунке? Сформулировать определение биссектрисы
Описание слайда:

Как называется отрезок ВК на рисунке? Сформулировать определение биссектрисы треугольника: Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. ВК - биссектриса АВК = СВК

№ слайда 4 Как называется отрезок СН на рисунке? Сформулировать определение высоты треуг
Описание слайда:

Как называется отрезок СН на рисунке? Сформулировать определение высоты треугольника: Высотой треугольника называется перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. СН - высота СН  АВ

№ слайда 5
Описание слайда:

№ слайда 6
Описание слайда:

№ слайда 7 А В С АВ, ВС - боковые стороны равнобедренного треугольника А, С – углы при о
Описание слайда:

А В С АВ, ВС - боковые стороны равнобедренного треугольника А, С – углы при основании равнобедренного треугольника АС - основание равнобедренного треугольника В – угол при вершине равнобедренного треугольника Треугольник называется равнобедренным, если две его стороны равны

№ слайда 8 Назовите основание и боковые стороны данных треугольников
Описание слайда:

Назовите основание и боковые стороны данных треугольников

№ слайда 9 ТРЕУГОЛЬНИК, все стороны которого равны, называется РАВНОСТОРОННИМ
Описание слайда:

ТРЕУГОЛЬНИК, все стороны которого равны, называется РАВНОСТОРОННИМ

№ слайда 10 Теорема 1 В равнобедренном треугольнике углы при основании равны Дано: АВС –
Описание слайда:

Теорема 1 В равнобедренном треугольнике углы при основании равны Дано: АВС – равнобедренный, АС – основание Доказать: А =С

№ слайда 11 Доказательство: Проведём ВD – биссектрису АВС 2. Рассмотрим АВD и СВD АВ=В
Описание слайда:

Доказательство: Проведём ВD – биссектрису АВС 2. Рассмотрим АВD и СВD АВ=ВС, ВD-общая, АВD=СВD, значит АВD= СВD (по двум сторонам и углу между ними) 3. В равных треугольниках против равных сторон лежат равные углы А=С Теорема доказана

№ слайда 12 Теорема 2 В равнобедренном треугольнике биссектриса, проведённая к основанию,
Описание слайда:

Теорема 2 В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой Дано: АВС –равнобедренный, АС – основание, ВD – биссектриса. Доказать: 1. ВD – медиана 2. ВD – высота

№ слайда 13 Доказательство: Рассмотрим АВD и СВD АВ=ВС, ВD-общая, АВD=СВD, значит АВ
Описание слайда:

Доказательство: Рассмотрим АВD и СВD АВ=ВС, ВD-общая, АВD=СВD, значит АВD= СВD (по двум сторонам и углу между ними) 2. В равных треугольниках против равных углов лежат равные стороны АD=DC, значит D – середина АС, следовательно ВD – медиана 3. В равных треугольниках против равных сторон лежат равные углы , т.е. 3=4 и 3 и 4 – смежные, значит 3 = 4 = 90°, следовательно ВDАС , т.е. ВD – высота Теорема доказана

№ слайда 14
Описание слайда:

№ слайда 15 40° 70° A B C Дано: ∆MNP - равнобедренный, NК – биссектриса NК = 5 см, MP =
Описание слайда:

40° 70° A B C Дано: ∆MNP - равнобедренный, NК – биссектриса NК = 5 см, MP = 12 см Найти: S∆MNP Дано: ∆АВС - равнобедренный, ВМ – медиана ВМ = 7 см, АС = 18 см Найти: S∆АВС М N P A B C M М N P K Дано: ∆АВС - равнобедренный, <B = 40° Найти: <A, <С Дано: ∆MNP- равнобедренный, <М= 70° Найти: <N, <P 1 вариант 2 вариант

№ слайда 16 40° 70° A B C Дано: ∆MNP - равнобедренный, NК – биссектриса NК = 5 см, MP =
Описание слайда:

40° 70° A B C Дано: ∆MNP - равнобедренный, NК – биссектриса NК = 5 см, MP = 12 см Найти: S∆MNP Дано: ∆АВС - равнобедренный, ВМ – медиана ВМ = 7 см, АС = 18 см Найти: S∆АВС М N P A B C M М N P K Дано: ∆АВС - равнобедренный, <B = 40° Найти: <A, <С Дано: ∆MNP- равнобедренный, <М= 70° Найти: <N, <P 1 вариант 2 вариант NK-высота, S = NK·MP S = 30 Решение: ВМ-высота, S = ВМ·АС S = 63 Решение: Решение Решение <А =<С =(180-40): 2 =70° <А =<С =70° <М =<Р =70° <N = 180-(70+70)=40° <P=70°, <N = 40°

№ слайда 17 П. 18 теоремы, №109, №117 – из учебника Дополнительная задача: Доказать, что
Описание слайда:

П. 18 теоремы, №109, №117 – из учебника Дополнительная задача: Доказать, что в равнобедренном треугольнике медиана, проведённая к основанию является биссектрисой и высотой.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 24.11.2016
Раздел Математика
Подраздел Презентации
Просмотров227
Номер материала ДБ-386975
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх