Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 7-9, Атанасян

Рабочая программа по геометрии 7-9, Атанасян


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика

Поделитесь материалом с коллегами:

Щербиновский район село Николаевка

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №8

муниципального образования Щербиновский район село Николаевка






УТВЕРЖДЕНО

решением педагогического совета

от 28 августа 2015 года протокол № 1

Председатель _________ Л.Л.Кудрявец







РАБОЧАЯ ПРОГРАММА



по геометрии_________________________________________


Уровень образования (класс) _________основное общее образование, 7- 9 классы____


Количество часов ______204_______________________



Учитель ____Олейник Анна Николаевна_____________ ______________________


Программа разработана на основе программы общеобразовательных учреждений Геометрия 7-9 классы, авторы Л. С. Атанасян и др., Москва, «Просвещение». 2009 год















СОГЛАСОВАНО СОГЛАСОВАНО

Протокол заседания

методического объединения Заместитель директора по УВР

учителей математики СОШ №8 _______________ Шапарь Э.Н.

от 25.08.2015 года № 1 27.08.2015 года

_____________ Олейник А.Н.


















































1.Пояснительная записка

Рабочая программа по алгебре для 7-9 классов составлена в соответствии с требованиями федерального компонента государственного образовательного стандарта основного общего образования по математике.  Данная рабочая программа ориентирована на учащихся 7-9 классов и реализуется на основе следующих документов:

  • Авторской программы по геометрии к учебнику для 7-9 классов общеобразовательных школ авторов Л.С. Атанасяна, В.Ф. Бутузова. и других. Москва: Просвещение, 2013 г. Составитель Бутузов В.Ф.

  • Программы общеобразовательных учреждений «Геометрия 7-9 классы», авторы Л. С. Атанасян и др., Москва, «Просвещение». 2009 год.

  • Методических рекомендаций по математике 2015-2016.


Цель программы:  


Изучение математики на ступени основного общего образования направлено на достижение следующих целей:


  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.


Цели программы для 7 класса:

-развивать пространственное мышление и математическую культуру;

-учить ясно и точно излагать свои мысли;

-формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности, доводить начатое дело до конца;

-помочь приобрести опыт исследовательской работы.


Цели программы для 8 класса:

-развивать пространственное мышление и математическую культуру;

-учить ясно и точно излагать свои мысли ;

-формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности ,доводить начатое дело до конца;

-помочь приобрести опыт исследовательской работы.


Цели программы для 9 класса:

- овладение геометрическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

- создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности;

- воспитание культуры личности, отношения к геометрии как к части
общечеловеческой культуры, играющей особую роль в общественном развитии.


В соответствии с целью формируются задачи учебного процесса: систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин (физика, черчение и т.д.) и курса стереометрии в старших классах.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приёмами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

Цели обучения математики в общеобразовательной школе определяются её ролью в развитии общества в целом и формировании личности каждого отдельного человека.

Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения – от простейших, усваиваемых в непосредственном опыте людей, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчёты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В после школьной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, всё больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия,

техника, информатика, биология, психология и многое другое). Таким образом, расширяется круг школьников, для которых математика становится профессионально значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определённых умственных навыках. В процессе математической деятельности в арсенал приёмов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирования и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения

формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач – основной учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления.

Использование в математике наряду с естественным нескольких математических языков даёт возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в её современном толковании является общее знакомство с методами познания действительности, что включает понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Изучение математики способствует эстетическому восприятию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Изучение математики развивает воображение, пространственные представления. История развития математического знания даёт возможность пополнить запас историко-научных знаний школьников, сформировать у них представление о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

2. Общая характеристика учебного предмета.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии), способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также при решении практических задач.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.


3.Описание места учебного предмета в учебном плане.

На изучение геометрии в 7 – 9 классах в соответствии с ФБУП 2004 года отводится 204 часа (в том числе в 7 классе - 68 часов из расчёта 2 часов в неделю, в 8 классе - 68 часов из расчёта 2 часов в неделю, в 9 классе - 68 часов из расчёта 2 часов в неделю).

В учебном плане основного общего образования МБОУ СОШ №8 с. Николаевка на изучение геометрии в 7-9 классах отводится по 2 часов в неделю в течение каждого года обучения, всего 204 часов (продолжительность учебного года 34 учебных недель).


4.Содержание учебного курса.


7 класс


Глава 1. Начальные геометрические сведения (10 часов)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.


Глава 2.Треугольники. (17 часов)

Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.


Глава 3. Параллельные прямые (13 часов)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.


Глава 4. Соотношения между сторонами и углами треугольника (18 часов)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.


Глава 5. Повторение (10 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков по геометрии за 7 класс.


8 класс


Глава 1. Четырехугольники (14 часов)

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.


Глава 2. Площадь (14 часов)

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.


Глава 3. Подобные треугольники (19 часов)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Цель: ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.


Глава 4. Окружность (17 часов)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.


Глава 5. Повторение. Решение задач.(4 часа)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков по геометрии за 8 класс.


9 класс


Глава 1. Вводное повторение (2 часа)

Цель: Повторение и систематизация знаний, умений и навыков по геометрии за 8 класс.


Глава 2. Векторы. Метод координат (18 часов)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам.

Координаты вектора. Простейшие задачи в координатах. Уравнение окружности и прямой. Применение векторов и координат при решении задач.


Глава 3. Соотношение между сторонами и углами треугольника. Скалярное произведение векторов (11 часов)

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.


Глава 4. Длина окружности и площадь круга (12 часов)

Правильные многоугольники. Окружность, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.


Глава 5. Движения (8 часов)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрия. Параллельный перенос. Поворот. Наложения и движения.


Глава 6. Об аксиомах геометрии (2 часа)

Беседа об аксиомах геометрии.


Глава 7. Начальные сведения из стереометрии (8 часов)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращении: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.


Глава 8. Повторение. Решение задач (7 часов)



Резерв времени в авторской программе по геометрии к учебнику для 7-9 классов общеобразовательных школ авторов Л.С. Атанасяна, В.Ф. Бутузова. и других не предусмотрен.


Перечень контрольных работ:


Класс

Тематика контрольных работ

7

Контрольная работа №1 по теме «Начальные геометрические сведения».

Контрольная работа №2 по теме «Треугольники».

Контрольная работа №3по теме «Параллельные прямые».

Контрольная работа №4 по теме «Соотношения между сторонами и углами треугольника».

Контрольная работа №5 по теме «Прямоугольные треугольники».

Итоговая контролирующая тестовая работа за год.

8

Контрольная работа №1 по теме «Четырёхугольники».

Контрольная работа №2 по теме «Площадь».

Контрольная работа №3по теме «Признаки подобия треугольников».

Контрольная работа №4 по теме «Соотношения между сторонами и углами прямо-угольного треугольника».

Контрольная работа №5 по теме «Окружность».

Итоговая контролирующая самостоятельная работа за год.

9

Контрольная работа №1 по теме «Векторы. Метод координат».

Контрольная работа №2 по теме «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов».

Контрольная работа №3по теме «Длина окружности и площадь круга».

Контрольная работа №4 по теме «Движения».

Итоговая контролирующая тестовая работа за год.


5. Тематическое планирование.


п/п

Название раздела

Кол-во часов

Темы раздела


7 класс



1

Начальные геометрические сведения.

10


2

Треугольники

17

«Признаки равенства треугольников» (10 ч).

«Задачи на построение» (7 ч).

3

Параллельные прямые

13


4

Соотношения между сторонами и углами треугольника

18

«Соотношения между сторонами и углами треугольника» (6 ч).

«Прямоугольные треугольники» (12 ч).

5

Повторение. Решение задач.

10



8 класс



6

Четырёхугольники.

14


7

Площадь.

14


8

Подобные треугольники

19

«Признаки подобия треугольников» (8 ч).

«Соотношения между сторонами и углами прямоугольного треугольника» (11 ч).

9

Окружность

17

«Касательная. Четыре замечательных точки треугольника» (10 ч).

«Вписанная и описанная окружности» (7 ч).

10

Повторение. Решение задач.

4

2 начало года+2конец года


9 класс



11

Вводное повторение.

2


12

Векторы. Метод координат

18

«Векторы» (8 ч).

«Метод координат» (10 ч).

13

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

11


14

Длина окружности и площадь круга.

12


15

Движения.

8


16

Об аксиомах геометрии.

2


17

Начальные сведения из стереометрии.

8



Повторение. Решение задач.

7




6. Описание материально-технического обеспечения образовательной деятельности:


- печатные пособия

  • Учебник «Геометрия 7-9». Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина. – М.: Просвещение, 2013 г.

  • Федеральный компонент государственного стандарта общего образования (приказ МО РФ от 05.03.2004 №1089) и Федеральный БУП для общеобразовательных учреждений РФ (приказ МО РФ от 09.03.2004 №1312);

  • Методические рекомендации по математике на 2015 -2016 учебный год.

  • «Геометрия. Дидактические материалы. 7 класс». Б. Г. Зив, М.: Просвещение, 2008 г.

  • «Геометрия. Поурочные планы. 7 класс», книга для учителя.

  • «Геометрия. Дидактические материалы. 8 класс». Б. Г. Зив, М.: Просвещение, 2008 г.

  • «Геометрия. Поурочные планы. 8 класс», книга для учителя.

  • «Геометрия. Дидактические материалы. 9 класс». Б. Г. Зив, М.: Просвещение, 2008 г.

  • «Геометрия. Поурочные планы. 9 класс», книга для учителя.


- технические средства обучения

  • интерактивная доска;

  • мультимедиапроектор;

  • персональный компьютер;

  • документ камера;

  • комплект инструментов классных: линейка, транспортир, угольник(300,600), угольник(450,450), циркуль.


-цифровые и электронные образовательные ресурсы:

-сайты интернет

http://school-collection.edu.ru/. - единая коллекция цифровых образовательных ресурсов

http://www.prosv.ru - издательства «Просвещение» (рубрика «Математика»)

http:/www.mnemozina.ru - сайт издательства Мнемозина (рубрика «Математика»)

http:/www.drofa.ru - сайт издательства Дрофа (рубрика «Математика»)

http://www.edu.ru - Центральный образовательный портал, содержит нормативные документы Министерства, стандарты, информацию о проведение эксперимента.

http://www.ege.edu.ru сервер информационной поддержки Единого государственного экзамена.

http://www.internet-scool.ru - сайт Интернет – школы издательства Просвещение. Учебный план разработан на основе федерального базисного учебного плана для общеобразовательных учреждений РФ и представляет область знаний «Математика». На сайте представлены Интернет-уроки по алгебре и началам анализа и геометрии, с включают подготовку сдачи ЕГЭ.

http://mathege.ru:8080/or/ege/Main - подготовка к ЕГЭ учащихся 11 классов создан открытый банк заданий

http://www.math.ru , http://www.ege.edu.ru/, http://фипи/ - сведения и рекомендации, касающиеся государственной (итоговой) аттестации выпускников можно найти на сайтах.

http://allbest.ru/mat.htm - Электронные бесплатные библиотеки

http://en.edu.ru/db/sect/3217/3284 - Естественно-научный образовательный портал (учебники, тесты, олимпиады, контрольные)

http://mathem.by.ru/index.html - Математика online

http://archive.1september.ru/mat/

http://www.poisknews.ru/

http://www.ug.ru/

http://www.informika.ru/text/magaz/pedagog/title.html

http://www.aboutstudy.ru/magazine2.shtml


  1. Планируемые результаты изучения учебного предмета, курса.

В результате изучения курса геометрии 7 класса обучающиеся должны:

знать / понимать

  • существо понятия математического доказательства; приводить примеры доказательств;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики.

Уметь

  • пользоваться математическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов);

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

В ходе преподавания геометрии в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела,

  • простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир)


В результате изучения курса геометрии 9 класса обучающиеся должны:

знать / понимать

  • существо понятия геометрического доказательства; приводить примеры доказательств;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики.

Уметь

  • пользоваться математическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов);

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами.

Нормы оценок

1. Оценка письменных контрольных работ обучающихся по математике. 

Ответ оценивается отметкой «5», если:

  1. работа выполнена полностью;

  2. в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  3. в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  1. работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  2. допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  1. допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  1. допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.


Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  1. полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  2. изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  3. правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  4. показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  5. продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  6. отвечал самостоятельно, без наводящих вопросов учителя;

  7. возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  1. в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  2. допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  3. допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  1. неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

  2. имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  3. ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  4. при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  1. не раскрыто основное содержание учебного материала;

  2. обнаружено незнание учеником большей или наиболее важной части учебного материала;

  3. допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

3. Общая классификация ошибок.

При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  1. незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  2. незнание наименований единиц измерения;

  3. неумение выделить в ответе главное;

  4. неумение применять знания, алгоритмы для решения задач;

  5. неумение делать выводы и обобщения;

  6. неумение читать и строить графики;

  7. неумение пользоваться первоисточниками, учебником и справочниками;

  8. потеря корня или сохранение постороннего корня;

  9. отбрасывание без объяснений одного из них;

  10. равнозначные им ошибки;

  11. вычислительные ошибки, если они не являются опиской;

  12. логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  1. неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  2. неточность графика;

  3. нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  4. нерациональные методы работы со справочной и другой литературой;

  5. неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  1. нерациональные приемы вычислений и преобразований;

  2. небрежное выполнение записей, чертежей, схем, графиков.



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 28.10.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров193
Номер материала ДВ-103349
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх