Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Реферат по математике "Симметрия"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Реферат по математике "Симметрия"

библиотека
материалов


Оглавление


Введение ....................................................................3

Глава 1. Человек — существо симметричное…….5

Глава 2. Безукоризненная симметрия скучна ........6

Глава 3. Что такое подобие? ………………………7

Глава 4. Загляните в словарь …………………….. 9

Глава 5. Точки и линии ……………………………10

Глава 6. Наш мир в зеркале ……………………….12

Глава 7. Как отражает зеркало? …………………..14

Глава 8. От трельяжа до радара…………………...16

Глава 9. Легенды рудокопов………………………19

Глава 10. Асимметрия внутри симметрии…..........21

Глава 11.Асимметрия любой ценой………………24

Заключение…………………………………………28

Литература………………………………………….29

Приложение………………………………………...30

ВВЕДЕНИЕ

Данный реферат посвящён такому понятию современного естествознания как СИММЕТРИЯ.

Лейтмотивом всего реферата является понятие симметрии, играющей (есть мнение) ведущую, хотя и не всегда осознанную, роль в современной науке, искусстве, технике и окружающей нас жизни. Симметрия пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты. Здесь уместно привести высказывание Дж. Ньюмена, который особенно удачно подчеркнул всеохватывающие и вездесущие проявления симметрии: «Симметрия устанавливает забавное и удивительное сродство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, скарабеями, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...».

Цель моей работы:

Воспользовавшись различной литературой по геометрии, различными справочными материалами для подробного изучения темы «Симметрия», дать наиболее полное представление по данной теме.

Задачи:

  1. Рассмотреть зеркальную симметрию;

  2. Рассмотреть человека, как существо симметричное.

Достаточно взглянуть на окружающий нас реальный мир, чтобы убедиться в первостепенном значении именно зеркальной симметрии с соответствующим симметричным элементом — плоскостью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле нее — шагают, плывут, летят, катятся, — обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Все то, что развивается или движется лишь в вертикальном направлении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом. Главенствующую роль в теории играет плоскость симметрии. Недаром знаменитый русский кристаллограф Г. В. Вульф (1863—1925) писал (1896) о плоскости симметрии как об «основном элементе симметрии». Комбинируя зеркальные отражения, можно вывести все возможные симметричные операции. Исходя из этих комбинаций, можно полностью вывести все элементы классической симметрии — простые, сложные и винтовые оси, плоскости простого и скользящего отражения, трансляции. Совокупности таких элементов образуют виды симметрии (например, 32 класса для кристаллических многогранников, 230 пространственных групп для кристаллических структур). Как видим, именно плоскость симметрии лежит в основании всего здания симметричной теории.

ЧЕЛОВЕК — СУЩЕСТВО СИММЕТРИЧНОЕ

Не станем пока разбираться, существует ли на самом деле абсолютно

симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае у большинства людей. И все же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! НО! Здесь стоит остановиться. Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их.

Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Именно вопросам симметрии и зеркального отражения здесь и уделяется внимание. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе. Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи.

Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя).

В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлиненным черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлиненной формы. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы в общем похожи друг на друга.

Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчеркивают эту симметрию (рис.1).

БЕЗУКОРИЗНЕННАЯ СИММЕТРИЯ СКУЧНА

И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, права штанина — левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния.

Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например расчесывая волосы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой).

Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от нее и придают характерные, индивидуальные черты. И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым.

В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.


ЧТО ТАКОЕ ПОДОБИЕ?

Нередко мы говорим, что какие-то два человека похожи друг на друга.

Дети обычно похожи на своих родителей(во всяком случае, по мнению их бабушек). Похожи, но не одинаковы! Попробуем разобраться, что понимается под сходством или подобием в математике. У подобных фигур соответствующие отрезки пропорциональны друг другу. В нашем случае мы можем сформулировать это положение так: подобные носы имеют одинаковую форму, но могут отличаться размером. При этом каждому отдельному участку носа (например, переносице) должны быть пропорциональны все остальные.

Этот закон подобия иногда таит в себе подвох. Например, в задаче

такого рода: Высота башни А 10 м. На некотором расстоянии Х от нее находится шестиметровая башня В. Если провести прямые от подножия и от вершины башни А через вершину башни В, то они встретятся соответственно с подножием и вершиной башни С, имеющей высоту 15 м. Каково расстояние от башни А до башни Д?

Казалось бы, для решения достаточно взять в руки циркуль и линейку. Но тут же выяснится, что ответов будет бесконечное множество. Иными словами, на вопрос о значении Х не может быть однозначного ответа. Такого рода задачи, даже если они и не имеют решения, как, например, предложенная выше, касаются какой-либо проблемы, лежащей у пределов нашего знания. Большей частью это те самые пределы, перед которыми пасует знаменитый «здравый смысл», и лишь строго математическое логическое мышление вкупе с естественнонаучным познанием способно привести к правильному решению.

Обратимся снова к человеку: при сравнении живых существ сходство ощущается явно, если совпадают их пропорции. Поэтому могу быть похожи дети и взрослые. Хотя масса и размеры любой из частей тела, будь то нос или рот, различны, но пропорции похожих индивидов совпадают.

Поразительный пример подобия — глазомерная оценка расстояния с помощью большого пальца. Таким способом военные и моряки прикидывают расстояние между двумя пунктами на местности или в море, сопоставляя их с шириной пальца или кулака. В самом простом случае закрывают один глаз и смотрят открытым глазом на палец вытянутой руки, используя его как визир. Если раскрыть прежде закрытый глаз (а второй зажмурить), палец на видимое расстояние переместится в сторону. В градусном выражении это расстояние составляет 6°. И притом величина этого «прыжка» (в пределах допустимой ошибки) одинакова у всех людей! Так, правофланговый роты, парень двухметрового роста, и самый маленький — левофланговый, ростом всего лишь метр шестьдесят, сравнив эти «прыжки» пальца, получат одну и ту же величину.

Причина этого явления в конечном счете кроется в подобии людей и, конечно, в законах оптики, которым подчиняется наше зрение. Известно и «правило кулака» — в самом прямом смысле этого слова — для грубой прикидки величины угла. Если мы посмотрим одним глазом на кулак вытянутой руки (на сей раз одним и тем же глазом), то ширина кулака составит 10°, а расстояние между двумя косточками фаланг 3°. Кулак и оттопыренный в сторону большой палец составят 15°. Комбинируя эти мерки, можно приблизительно измерить все углы на местности. И наконец, еще одна угловая мера нашего тела, которая может пригодиться при домашних работах. Угол между большим пальцем и мизинцем растопыренной ладони составляет 90°.



ЗАГЛЯНИТЕ В СЛОВАРЬ!

В начале реферата человек назвался существом симметричным. В дальнейшем же термин «симметрия» больше не употреблялся. Однако во всех случаях, когда отрезки прямой, плоские фигуры или пространственные тела были подобными, но без дополнительных действий совместить их было нельзя, «практически» нельзя, мы встречались с явлением симметрии. Эти элементы соответствовали друг другу, как картина и ее зеркальное отражение. Как левая и правая рука. Если мы возьмем на себя труд заглянуть в «Современный словарь иностранных слов», то обнаружим, что под симметрией понимается «соразмерность, полное соответствие в расположении частей целого относительно средней линии, центра... такое расположение точек относительно точки (центра симметрии), прямой (оси симметрии) или плоскости (плоскости симметрии), при котором каждые две соответствующие точки, лежащие на одной прямой, проходящей через центр симметрии, на одном перпендикуляре к оси или плоскости симметрии, находятся от них на одинаковом расстоянии...»1 И это еще не все, как часто бывает с иностранными словами, значений у слова «симметрия» существует множество. В том-то и состоит преимущество подобных выражений, что их можно использовать в случае, когда не хотят дать однозначное определение или просто не знают четкого различия между двумя предметами.

Термин «соразмерный» мы применяем по отношению к человеку, картине или какому-либо предмету, когда мелкие несоответствия не позволяют употребить слово «симметричный». Давайте также заглянем в Энциклопедический словарь2 . Мы обнаружим здесь шесть статей, начинающихся со слова «симметрия». Кроме того, это слово встречается во множестве других статей. В математике слово «симметрия» имеет не меньше семи значений (среди них симметричные полиномы, симметрические матрицы). В логике существуют симметричные отношения. Важную роль играет симметрия в кристаллографии. Интересно интерпретируется понятие симметрии в биологии. Там описывается шесть различных видов симметрии. Мы узнаем, например, что гребневики ди-симметричны, а цветки львиного зева отличаются билатеральной симметрией. Мы обнаружим, что симметрия существует в музыке и хореографии (в танце). Она зависит здесь от чередования тактов. Оказывается, многие народные песни и танцы построены симметрично.

Основной интерес для нас будет представлять зеркальная симметрия — симметрия левого и правого. Можно увидеть, что это кажущееся ограничение уведет нас далеко в мир науки и техники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на симметрию).


ТОЧКИ И ЛИНИИ

Порассуждаем о зеркальной симметрии. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична. Сначала представляется, что параллельно одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.

В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо. Но то, что здесь выглядит шуткой, в практической жизни доставляет массу сложностей не только детям, но и взрослым. Нередко дети пишут некоторые буквы «навыворот». Латинское N выглядит у них как И, а S и Z получаются наоборот. Если мы внимательно посмотрим на буквы латинского алфавита (а это ведь тоже, в сущности, плоские фигуры!), то увидим среди них симметричные и несимметричные. У таких букв, как N,S , Z, нет ни одной оси симметрии (равно как и у F, G, J, L, Р, О и R). Но N,S и Z особенно легко пишутся «наоборот», так-так имеют центр симметрии. У остальных прописных букв есть как минимум по одной оси симметрии. Буквы А, М, Т, U, V, W и Y можно разделить пополам продольной осью симметрии. Буквы В, С, D, Е, I, К — поперечной осью симметрии. У букв Н, О и Х имеется по две взаимно перпендикулярные оси симметрии. (тот же эксперимент можно провести с любым алфавитом европейской группы). Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсутствует вовсе, становятся «нечитабельными».

Встречаются дети, которые пишут левой рукой, и все буквы получаются у них в зеркальном, отраженном, виде. «Зеркальным шрифтом» написаны дневники

Леонардо да Винчи. Вероятно, не существует веского основания, заставляющего нас писать буквы именно так, как это делаем мы. Вряд ли зеркальным шрифтом труднее овладеть, чем обычным. Правописание от этого не стало бы проще, а некоторые слова, как, например, ОТТО, вообще не изменились бы. Существуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности иероглиф означает именно истинную середину.

В архитектуре оси симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля.


НАШ МИР В ЗЕРКАЛЕ

В трехмерном мире пространственных тел, где мы с вами живем, существуют плоскости симметрии. «Зеркало» всегда имеет на одно измерение меньше, чем мир, который оно отражает. При взгляде на круглые тела сразу видно, что они имеют плоскости симметрии, но вот сколько именно — решить не всегда просто. Поставим перед зеркалом шар и начнем его медленно вращать: изображение в зеркале никак не будет отличаться от оригинала, конечно в том случае, если шар не имеет каких-либо отличительных признаков на своей поверхности. Шарик для пинг-понга обнаруживает бессчетное множество плоскостей симметрии. Возьмем нож, отрежем половину шара и поместим ее перед зеркалом. Зеркальное отражение вновь дополнит эту половинку до целого шарика.

Но если мы возьмем глобус и рассмотрим его симметрию, учитывая нанесенные на нем географические контуры, то мы не отыщем ни одной плоскости симметрии.

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. Поэтому нас не должно удивлять, что в. пространстве аналогичные свойства присущи шару. Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым или полусферическим основанием, шар или сегмент шара. Или возьмем примеры из жизни: сигарета, сигара, стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба. Если мы повнимательней присмотримся к этим телам, то заметим, что все они так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии.

Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна ось симметрии. Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса- фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру. В целом эти представления вполне приемлемы и по сей день. Далее греческие философы делали вывод о том, что Вселенная, несомненно, должна быть построена по образцу математического идеала. Ясно, что у древних греков еще не было фунтиков с мороженым! Иначе бы такой прозаический предмет, имеющий бесчисленное множество плоскостей симметрии, мог бы нарушить их стройную систему.

Если для сравнения мы рассмотрим куб, то увидим, что он имеет девять плоскостей симметрии. Три из них делят его грани пополам, а шесть проходят через вершины. По сравнению с шаром это, конечно, маловато.

А имеются ли тела, занимающие по числу плоскостей промежуточное положение между шаром и кубом? Без сомнения — да. Стоит только вспомнить, что круг, в сущности, как бы состоит из многоугольников. Мы проходили это в школе при вычислении числа (. Если над каждым n - угольником мы воздвигнем n - угольную пирамиду, то сможем провести через нее n плоскостей симметрии.

Можно было бы придумать 32-гранную сигару, которая имела бы соответствующую симметрию! Но если мы тем не менее воспринимаем куб как более симметричный предмет, чем пресловутый фунтик с мороженым, то это связано со строением поверхности. У шара поверхность всего одна. У куба их шесть — по числу граней, и каждая грань представлена квадратом. Фунтик с мороженым состоит из двух поверхностей: круга и конусообразной оболочки. Более двух тысячелетий (вероятно, благодаря непосредственному восприятию) традиционно отдается предпочтение «соразмерным» геометрическим телам. Греческий философ Платон (427—347 до н. э.) открыл, что из правильных конгруэнтных плоских фигур можно построить только пять объемных тел.

Из четырех правильных (равносторонних) треугольников получается тетраэдр (четырехгранник). Из восьми правильных треугольников можно построить октаэдр (восьмигранник) и, наконец, из двадцати правильных треугольников — икосаэдр. И только из четырех, восьми или двадцати одинаковых треугольников можно получить объемное геометрическое тело. Из квадратов можно составить только одну объемную фигуру — гексаэдр (шестигранник), а из равносторонних пятиугольников — додекаэдр (двенадцатигранник). А что в нашем трехмерном мире полностью лишено зеркальной симметрии? Если на плоскости это была плоская спираль, то в нашем мире таковыми, безусловно, будут винтовая лестница или спиральный бур. Кроме того, существуют еще тысячи асимметричных вещей и предметов в окружающей нас жизни и технике. Как правило, винт имеет правую резьбу. Но иногда встречается и левая. Так, для большей безопасности баллоны с пропаном снабжены левой резьбой, чтобы к ним нельзя было привинтить вентиль- редуктор, предназначенный, например, для баллона с другим газом. Между шаром и кубом, с одной стороны, и винтовой лестницей, с другой, существует еще масса степеней симметрии. От куба можно постепенно отнимать плоскости симметрии, оси и центр, пока мы не придем к состоянию полной асимметрии. Почти у конца этого ряда симметрии стоим, мы, люди, с всего единственной плоскостью симметрии, разделяющей наше тело на левую и правую половины. Степень симметрии у нас такая же, как, например, у обычного полевого шпата (минерала, образующего вместе со слюдой и кварцем гнейс или гранит).


КАК ОТРАЖАЕТ ЗЕРКАЛО

Конечно, все мы знаем, как отражает зеркало, но, если только потребуется описать это точно, несомненно возникнут трудности. Как правило, мы довольны собой, если что-то представляем себе хотя бы «в принципе». А подробности, которые преподаватели физики объясняли нам на доске с помощью мела и линейки, всякий нормальный школьник и студент стараются забыть, и, чем скорее, тем лучше.

Каждый ребенок, исполненный удивления перед окружающим миром, непременно заинтересуется, каким образом зеркало отражает его. Но взрослые обычно отвечают в подобных случаях: «Не задавай глупых вопросов!» Человек сникает, начинает стесняться, удивление его постепенно затухает, и он старается больше не проявлять его до конца жизни (а жаль!).

Но вспомним о словах Бертольда Бреста: «Глупых вопросов не бывает, бывают только глупые ответы». Конечно, людей можно разделить на дураков и умных, на больших и маленьких, они разнятся по языку, вероисповеданию, мировоззрению. Можно представить себе и такой способ подразделения:

1) люди, которые никогда не удивляются;

2) люди, которые удивляются, но не задумываются над удивившим их явлением;

3) люди, которые, удивившись, спрашивают «а почему?»;

4) люди, которые, удивившись, обращаются к числу и мере.

В зависимости от условий жизни, традиций, степени образованности

встречаются и все возможные «промежуточные» ступени. Мыслители античности и средневековья изумлялись миру и думали о его тайнах. Но им лишь изредка выпадал случай измерить какое-либо явление.

Только в эпоху Возрождения, то есть в XVI в., люди пришли к убеждению, что измерение лучше слепой веры или схоластических рассуждений. Этому способствовали экономические интересы, удовлетворить которые можно было только путем развития естественных наук, путем количественных измерений. (Мы видим, что, по существу, меновая стоимость «измерялась» с помощью денег.) Для XVI в. оптика была ультрасовременной наукой. Из стеклянного шара, наполненного водой, которым пользовались как фокусирующей линзой, возникло увеличительное стекло, а из него микроскоп и подзорная труба. Крупнейшей в те времена морской державе Нидерландам требовались для флота хорошие подзорные трубы, чтобы загодя рассмотреть опасный берег или вовремя уйти от врага. Оптика обеспечивала успех и надежность навигации. Поэтому именно в Нидерландах многие ученые занимались ею. Голландец Виллеброрд, Снелль Ван Ройен, именовавший себя Снеллиусом (1580 - 1626), наблюдал (что, впрочем, видели и многие до него), как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения. Теперь, задним числом, этот закон кажется нам чем-то само собой разумеющимся. Но в те времена он имел огромное, можно сказать, мировоззренческое значение, которое будило философскую мысль вплоть до XIX века.

Закон отражения Снеллиуса объясняет явление зеркального отражения. Каждой точке предмета соответствует её отражение в зеркале, и потому в нём наш правый глаз перемещается на левую сторону. Вследствие этого переноса точек предметы, расположенные дальше, в зеркале тоже кажутся уменьшенными в соответствии с законами перспективы. Технически мы можем реконструировать зеркальное изображение так, словно оно расположено за поверхностью стекла. Но это только кажущееся восприятие. Не случайно животные и маленькие дети часто заглядывают за зеркало; они верят, что изображение таится сзади, словно картина, видимая за окном. Факт перестановки левого и правого правильно осознается только взрослыми.

ОТ ТРЕЛЬЯЖА ДО РАДАРА

Должны ли мы считать, что самих себя видим только в «зеркальном отражении» и в лучшем случае лишь на фото и кинопленке можем узнать, как выглядим «на самом деле»?

Конечно нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. Нередко в домах трельяжи имеют одно большое главное зеркало в центре и два меньших зеркала по сторонам. Если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во втором зеркале повторит ваше движение левым глазом. Перед трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении. Угловое зеркало с прямым углом между составляющими его зеркалами отличается еще некоторыми интересными свойствами. Если смастерить его из двух маленьких зеркал, то можно убедиться в том, что в таком зеркале с прямоугольным раствором (а сейчас речь только о нем) отраженный луч света всегда параллелен падающему лучу. Это очень важное свойство. Но не единственное! При повороте углового зеркала вокруг оси, соединяющей зеркала (в определенных пределах), отраженный луч не изменит своего направления.

В технике обычно не составляют зеркала, а используют прямоугольную призму, у которой соответствующие грани обеспечивают зеркальный ход лучей.

Прямоугольные призмы, как бы «складывающие» ход луча «гармошкой», сохраняя его необходимую длину, заданную фокусным расстоянием линзы, позволяют уменьшать габариты оптических приборов. В призматических биноклях лучи света при помощи таких приборов обращаются на 180°. На старинных картинах можно видеть капитанов и полководцев с непомерно длинными подзорными трубами. Благодаря угловым зеркалам старинные подзорные трубы превратились в современные бинокли.

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала»— это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от нее, движется обратно параллельно направлению первого удара. Свойство отраженного луча сохранять направление при повороте углового зеркала вокруг оси находит широкое применение в технике. Так, в трехгранном зеркальном уголковом отражателе луч сохраняет постоянное направление, несмотря на весьма сильные качания зеркала. По форме такое зеркало представляет собой кубик с отрезанным уголком. И в этом случае на практике используют не три зеркала, а соответствующую стеклянную призму с зеркальными гранями.

Важной областью применения трехгранного зеркала служит уголковый отражатель (кошачий глаз, катофот) на велосипедах, мотоциклах, сигнальных предохранительных щитах, ограничителях проезжей части улицы. С какой бы стороны ни упал свет на такой отражатель, световой рефлекс всегда сохраняет направление источника света.

Большую роль трехгранные зеркальные уголковые отражатели играют в радиолокационной технике. Самолеты и крупные стальные корабли отражают луч радара. Несмотря на значительное рассеяние его, той небольшой доли отраженных радиоволн, которая возвращается к радару, обычно достаточно для распознания объекта.

Хуже обстоит дело с маленькими суденышками, сигнальными поплавками и пластиковыми парусными яхтами. У небольших предметов отражение слишком слабое. Пластиковые яхты так же «прозрачны» для радиоволн, на которых работает радарная техника, как оконные стекла для солнечного света. Поэтому парусные яхты и сигнальные буйки оснащают металлическими уголковыми отражателями. Длина граней у такого «зеркала» всего около 30 см, но этого довольно, чтобы возвращать достаточно мощное эхо.

Вернемся еще раз к угловому зеркалу из двух соединенных зеркал. Качнем его ось вправо или влево — наше изображение тоже наклонится в сторону. Мы можем даже положить его, если поместим ось зеркала горизонтально. Но, наклонив зеркало еще дальше, мы заметим, что изображение «выпрямляется».

Угловое зеркало имеет плоскость симметрии, которая делит пополам пространство между обоими зеркалами. При соответствующей форме оно может иметь еще одну плоскость, перпендикулярную зеркалам, но она здесь не рассматривается. Нас интересует только плоскость симметрии, проходящая между зеркалами, в которой, так сказать, взаимно отражаются оба зеркала.

Каждая плоскость симметрии меняет, как нам уже известно, правое на левое (и наоборот). Но это несколько упрощенное восприятие. Если бы плоскость симметрии умела говорить, она бы заявила: «Я не меняю ни правое на левое, ни верх на низ. Я вообще не знаю, что это такое. Я лишь точка за точкой отображаю все, что находится по одну или другую сторону от меня.

Если человек своей продольной осью встанет параллельно моей оси, я поменяю ему правую и левую стороны, но если тот же человек своей продольной осью расположится перпендикулярно моей оси (ибо я всегда остаюсь неизменной), то я поменяю то, что люди называют верхом и низом». Как видим, все зависит от точки зрения. Но в конечном итоге истинно то, что можно измерить и сосчитать.

Сегодня мы не видим особого достижения в том, что Снеллиус измерил углы падения и отражения луча. Но мы не должны забывать, что ученые XVI в. Подобными открытиями ломали более чем двадцативековую традицию. Среди секретов телевидения известен трюк с уменьшением исполнителя, который на фоне всей окружающей обстановки «в натуральную величину» выглядит маленькой куколкой. Иногда зритель может видеть актера одновременно в двух масштабах: на переднем плане в обычную величину, а на заднем в уменьшенном. Тому, кто искушен в фотографии, понятно, как достигается подобный эффект. Сначала снимается уменьшенный вариант, а потом актер играет перед экраном, на который проецируется его уменьшенное изображение.

Известный «чародей» Иохен Цмек в своей увлекательной книге «Волшебный мир магии» описывает, как подобные чудеса можно делать без фотографии.

Когда уменьшенный предмет должен сам собой появиться в пространстве,., с помощью вогнутого зеркала его изображение проецируется таким образом, чтобы он казался стоящим на подставке.

Иллюзионист Александр Фюрст строил этот трюк следующим образом. Зритель видел маленькую сцену с сильно уменьшенными артистами. Чтобы спроецировать их в таком виде на экран, Фюрст использовал в своем сооружении угловое зеркало. Именно перед ним двигались артисты. Но зеркало переворачивало их на 180° и ставило тем самым «на голову», и уже это изображение вогнутое зеркало, еще раз перевернув, отбрасывало на маленькую сцену. Непременным условием эффекта была безупречная чистота всех зеркал.


ЛЕГЕНДЫ РУДОКОПОВ

В старину рудокопы были людьми сугубо практическими. Они не забивали себе голову названиями всевозможных горных пород, которые встречали штольне, а просто делили эти породы и минералы на полезные и бесполезные, ненужные. Нужные они извлекали из недр, из них плавили медь, свинец, серебро и другие металлы, а ненужные сваливали в отвалы. Для полезных (на их взгляд) минералов они подыскивали наглядные и запоминающиеся имена. Можно никогда не видеть копьевидного колчедана, но без особого труда представить его себе по названию. Не сложнее по названию отличить красный железняк от бурого железняка.

Для бесполезных камней (как уже было сказано — на их взгляд) горняки нередко находили названия в преданиях и легендах. Так, например, произошло название руды кобальтовый блеск. Кобальтовые руды похожи на серебряные и при добыче иногда принимались за них. Когда из такой руды не удавалось выплавить серебро, считалось, что она заколдована горными духами — кобольдами.

Когда же минералогия превратилась в науку, было открыто великое множество пород и минералов. И при этом все чаще возникали трудности с изобретением для них наименований. Новые минералы часто называли по месту находки (ильменит — в Ильменских горах) или в честь знаменитого человека (гетит — в честь Гете) или же давали ему греческое или латинское название.

Музеи пополнялись грандиозными коллекциями камней, которые становились уже необозримыми. Не слишком помогали и химические анализы, потому что многие вещества одного и того же состава образуют подчас кристаллы совершенно различного облика. Достаточно вспомнить хотя бы снежинки.

В 1850 г. французский физик Опост Брава (1811—1863) выдвинул геометрический принцип классификации кристаллов, основанный на их внутреннем строении. По мнению Браве, мельчайший, бесконечно повторяющийся мотив узора и есть определяющий, решающий признак для классификации кристаллических веществ. Браве представлял себе в основе кристаллического вещества крошечную элементарную частицу кристалла. Сегодня со школьной скамьи мы знаем, что мир состоит из мельчайших частиц — атомов и молекул.

Но Браве оперировал в своих представлениях крошечным «кирпичиком» кристалла и исследовал, каковы могли быть у него углы между ребрами и в каких соотношениях его стороны могли находиться между собой. В кубе три ребра расположены всегда под углом 90° друг к Другу. Все стороны имеют равную длину. У кирпича углы тоже составляют 90°. Но его стороны различной длины. У снежинок, наоборот, мы не найдем угла 90°, а только 60 или 120°.

Браве установил, что существуют 7 комбинаций ячеек с одинаковыми или разными сторонами (осями) и углами. Для углов он принял только два варианта: равный 90° и не равный 90°. Только один угол во всей его системе в порядке исключения имеет 120°.

В самом скверном случае все три оси и все углы ячейки различны по величине, при этом в ней нет углов ни в 90, ни в 120°. Все в ней косо и криво, и, можно подумать, в мире кристаллов таким не должно быть места. Между тем к ним относится, например, сульфат меди (медный купорос), голубые кристаллы которого обычно всем так нравятся.

В некоторых из этих 7 пространственных решеток элементарные «кирпичики» можно упаковать по-разному. Для нас, знающих сегодня о строении атома, это нетрудно представить и продемонстрировать с помощью шариков для пинг-понга. Но 125 лет назад гениальная идея Браве была новаторской и открывала новые пути в науке. Весьма вероятно, что и Браве исходил из узоров кафеля или мотивов шахматной доски. Если мы разделим квадратные поля диагоналями, то возникает новый рисунок из квадратов, стоящих на углах. В трехмерном пространстве это соответствует кубу, разложенному на шесть пирамид. Каждая такая пирамида составляет половину октаэдра. Те, кто когда-нибудь выращивал кристаллы поваренной соли, знают, что соль может кристаллизоваться в кубах, а может — в октаэдрах. Иными словами, экспериментальные наблюдения совпадают с теоретическими соображениями. Испробовав возможные варианты упаковки для всех семи осевых систем, Браве вывел 14 решеток.

Рассматривая решетки Браве внимательней и пробуя мысленно построить из них кристаллы, мы, вероятно, увидим, как можно провести в них плоскости и оси симметрии. Эти возможности сразу расширятся, если мы в одной из элементарных ячеек образуем новые грани. Возьмем куб, поставим его на угол и обрежем (все так же мысленно) все углы, тогда у него образуются совершенно новые треугольные грани. А из квадратных граней возникнут восьмиугольники: тем самым появятся новые мотивы симметрии.

Анализ элементов симметрии в каждой из осевых систем кристаллических решеток приводит к возникновению 32 классов симметрии. Все многообразие минералов в природе подразделяется на основе 32 классов симметрии. Вооруженные этими знаниями, задумаемся о классификации пяти тел Платона. То, что куб, с его тремя равными осями и тремя прямыми углами, относится к кубической осевой системе (сингонии), не нуждается в доказательстве. В рамках более детального подразделения он принадлежит пентагон - тетраэдрическому классу симметрии1 . Не стану здесь приводить названий других классов из-за их сложности. Однако стоит обратить внимание на термин «тетраэдрический», так как тетраэдр — одно из Платоновых тел.

Тетраэдр можно образовать из куба. Остальные Платоновы тела также относятся к кубической системе. Древние греки, надо думать, ужасно расстроились бы, знай они, что такой прозаический минерал, как серный колчедан, имеет ту же симметрию, что и их «совершенные» тела.

ОБ АССИМЕТРИИ

АССИМЕТРИЯ ВНУТРИ СИММЕТРИИ

Собственно говоря, симметрия и асимметрия должны бы взаимно исключать одна другую — как черное и белое или как день и ночь. Так оно и происходит на самом деле, пока симметрия или ее антипод рассматриваются по отношению к одному и тому же телу.

Тот факт, что растворы оптически активных веществ вращают плоскость поляризации в точности так же, как кристаллы, однозначно доказывает, что само кристаллическое состояние не может служить причиной этого явления.

Ведь в растворе кристаллов нет. Но как в оптически активном кристалле, так и в растворах, обладающих этим свойством, присутствуют молекулы. Кристаллы, построенные — подобно металлам — из одних только атомов, оптически неактивны (кроме того, они непрозрачны!) Высокоупорядоченный кристалл, состоящий из ионов Na+CI- ,тоже не действует на проходящий свет. Однако кварц имеет более сложное строение, чем хлорид натрия. Кварц — это диоксид кремния, химическая формула которого Si02. Кремний, как и углерод, находится в четвертой группе периодической системы. А углерод постоянно изображают со связями: =С= Кремний, принадлежащий к той же группе, что и углерод, также четырехвалентен. Химия кремния, подобно химии углерода, весьма сложна.

Кристаллическая структура кварца представляет собой трехмерный каркас из длинных цепей, построенных в форме винтовых лестниц. Разумеется, винтовые лестницы полностью асимметричны. Однако они бывают лево- и правосторонними, как изображение и его зеркальное отражение. Связанные между собой асимметричные цепи образуют либо левый, либо правый кристалл. Соответственно они оказывают оптическое влияние на свет.

У водо-растворимых кристаллов органических соединений зеркальная симметрия молекул прослеживается как в твердом, так и в растворенном состоянии. Известный пример — винная кислота. Она встречается в виде левых и правых кристаллов. Соответственно ведет себя и ее раствор. Под правым направлением здесь всегда понимается направление по часовой стрелке. Таким образом, левая винная кислота вращает плоскость поляризации против часовой стрелки. Нидерландский физикохимик Якоб Хендрик Вант-Гофф (1852—1911) объяснил такое поведение винной кислоты, исходя из строения ее молекулы. При одном и том же химическом составе можно написать три разные структурные формулы винной кислоты. Каждый из двух центральных атомов углерода в любом случае связан с группой СООН. В органической химии эта группа — отличительный признак кислоты. Проглотив таблетку аспирина или попробовав на язык уксус, вы ощущаете кисловатый вкус, он обусловлен именно присутствием группы СООН. Для нас, однако, важнее правая и левая связи атомов углерода. Они связывают либо атом водорода, либо группу ОН. Именно здесь кроется возможность возникновения двух зеркально-симметричных вариантов их взаимного расположения и, помимо того, третьего варианта, который симметричен сам по себе.

В книгах по химии часто можно встретить обозначения L- и D-винная кислота, производные от латинских слов laevus — левый и dexter — правый.

Теперь нам уже нетрудно сообразить, что вещество, носящее название «декстро- энерген», должно быть оптически активным и притом правовращающим. В молекуле виноградного сахара (торговое наименование которого и есть «декстро-энерген») присутствует цепочка из атомов углерода, «подвески» которой могут быть синтезированы право- или лево- сторонними. Вант-Гофф, впрочем, не пользовался такой простой плоскостной моделью, как мы. Он сразу рисовал ее в объемном изображении, что больше отвечает действительности. Каждый из 4-ёх углеродных атомов винной кислоты расположен в вершине тетраэдра. К этим угловым атомам углерода и привязаны прочие атомы, кислородные и водородные. Вследствие этого из одного совершенного Платонова тела (каким является тетраэдр) возникают две различные, зеркально-симметричные формы.

Однако здесь, как и в любой области естествознания, мы не должны воспринимать такие описания буквально. Речь идет всего лишь о картинках и моделях, назначение которых — помочь нам разобраться в тех или иных явлениях. Чтобы легче представить, как из асимметричных молекул вдруг возникает симметричный кристалл, рассмотрим несколько примеров на плоскости.

Раньше под рубриками вроде «В часы досуга» порой встречались задачи, где предлагается разложить одну плоскую фигуру, скажем шестиугольник и образовать из нее другую плоскую фигуру, например квадрат. В данном случае две высокосимметричные плоские фигуры составляются из одинаковых асимметричных элементов. В свое время ведущим умельцем в такого рода разложениях и сложениях слыл австралиец Гарри Линдгрен. Чтобы еще больше затруднить решение подобных задач, ставится дополнительное условие: обойтись возможно меньшим числом составных элементов. Линдгрен и другие любители, увлекавшиеся разложением фигур, отваживались разлагать даже узоры кафеля. В качестве иллюстрации позаимствуем разложение узора из восьмиугольников с маленькими квадратами в мотив из квадратов той же площади, что и восьмиугольники, причем малые квадраты в новом узоре сохраняются, но в несколько смещенном положении.

Когда Вант-Гофф опубликовал свою теорию о правых и левых молекулах, она была встречена в штыки. Многие из его современников никак не хотели согласиться с тем, что атомы в молекуле должны располагаться именно так,

как их поместил Вант-Гофф. Однако теория нидерландского профессора давала единственно удовлетворительное объяснение вращению поляризованного света, поэтому она все же получила признание. Тем временем химики разработали методы прямого определения формы молекул. И мы теперь знаем, что Вант-Гофф был прав.




АСИММЕТРИЯ ЛЮБОЙ ЦЕНОЙ

Природа всегда отбирает среди множества вариантов те, которые проще и надежнее всего обеспечивают жизнь и ее продолжение. Естественно, ее действия отличны от действий человека, отыскивающего нужное слово в словаре или решение задачи в учебнике. Она просто вслепую воспроизводит все решения, как верные, так и ложные, полагаясь на то, что наилучшее из них пробьет себе дорогу, выживет в процессе эволюции, на протяжении сотен тысяч или миллионов лет. Подобно тому как это происходит и в технике (здесь уж, конечно, не без помощи человека), в живой природе побеждает то, что наиболее просто и надежно.

Одна из важнейших предпосылок жизни — наследственность. Потомками лошадей снова и снова должны быть лошади. И в своих основных чертах они должны походить на родителей.

Австрийский естествоиспытатель Грегор И. Мендель (1822— 1884) в 1860г. на основании своих знаменитых опытов по гибридизации сортов гороха (!) пришел к выводу, что дети половину наследственных факторов получают от одного из родителей, а половину — от другого. Благодаря успехам современной микробиологии мы довольно отчетливо представляем себе, как это осуществляется с помощью носителей наследственности — генов.

Мы вернулись к модели генной спирали, построенной Уотсоном и Криком. При оплодотворении женского яйца наследственность может передаваться только в материальной форме. При этом однозначно должно указываться, какие именно признаки наследуются. Здесь сразу же намечаются два возможных пути осуществления этой задачи.

Первый путь — это образование определенных химических соединений, каждое из которых соответствует наследуемому свойству. Однако он содержит много недостатков. И прежде всего он сопряжен с использованием огромного количества различных соединений для передачи всего набора наследуемых свойств. Вполне вероятно, что для передачи свойства «длинные ноги» лошади потребуется совсем иное химическое соединение, чем для передачи того же свойства блохе или слону. Кроме того, некоторые соединения неоднозначны: достаточно вспомнить о левой и правой винной кислоте. Более простым является другой путь кодирования информации, основанный на том же принципе, что и работа телеграфного аппарата системы Морзе или телетайпа. Телеграф «знает» и использует только три «структурных элемента»: тире, точку и пробел. Но информация, записанная с помощью азбуки Морзе, может содержать ошибки (а при передаче наследственности это недопустимо). Так, увидев на телеграфной ленте бессмысленное слово «зергало», телеграфист, надо думать, поймет из контекста, что имеется в виду зеркало. В случае особых сомнений он может запросить передающую станцию. Однако во избежание подобных недоразумений, чтобы исключить искажения, лучше подстраховаться. Наиболее простой способ — при передаче каждая буква дублируется: «зеркалоо».

Вероятность дважды заменить букву гораздо меньше, чем совершить ошибку один раз. К тому же при таком способе кодирования всегда известно, где начало, а где конец сообщения. Если мы прочитали на ней «топор», то однозначно заключаем, что это никак на «ропот». В силу всех этих преимуществ в природе в ходе естественного отбора для передачи наследственной информации победил принцип «азбуки Морзе». Лента, несущая эту информацию, состоит из молекул сахара и фосфата, построенных в два ряда. В каждом ряду они чередуются через одну: сахар — фосфат — сахар — фосфат. В пределах обоих рядов напротив каждой молекулы сахара располагается тоже молекула сахара, а против каждой молекулы фосфата — молекула фосфата. Промежутки между парами сахар — сахар (но не фосфат — фосфат) заполнены еще четырьмя видами химических соединений, которые получили следующие названия: аденит (А), цитозин (Z), гуанин (G) и тимин (Т). Запомним лишь обозначающие их буквы A, Z ,G и Т. А всегда связано с Т, a Z—с G. Одна из этих групп всякий раз связывает пары сахар— сахар обоих рядов. В наглядном изображении получается полоса, напоминающая лестницу, поручни которой состоят из сахара и фосфата, перекладины (ступеньки) — из групп А—Т или Z—G. Для ступенек возможны комбинации Т—А и А—Т наряду c Z—G и G—Z. Кроме того, последовательность перекладин может быть произвольной: скажем, комбинации Z — G могут следовать подряд несколько раз. Но пока такая лестница, подобно лестнице, которой пользуется электрик, остается прямой, она все еще сохраняет возможность оказаться симметричной. Последствия этого могли бы стать катастрофическими для любого живого существа. Но, к счастью, концы «лестницы» спирально закручены. Такая абсолютная асимметрия исключает всякую генетическую ошибку. Построив свою модель, Уотсон и Крик получили первое доказательство ее правильности. Размеры отдельных молекул были им известны. Действительности могла соответствовать лишь такая модель, к которой свободно подходили бы все структурные элементы. И только двойная спираль удовлетворяла этому требованию. Те кто ближе знакомые с этим предметом, знают, что речь все время идет о дезоксирибонуклеиновой кислоте. Ввиду громоздкости этого слова чаще принято обозначать ее сокращенно — ДНК. Молекула ДНК, помимо способности к безошибочному обозначению наследуемых свойств, имеет и еще одно преимущество: она одинаково пригодна как для блох, так и для слонов и, конечно, для людей тоже. Комбинацией из четырех букв А, Z, Т, G все свойства обозначаются точно так же, как это делается посредством трех знаков при использовании азбуки Морзе. Конечно, «телеграфная лента» в этом случае должна быть достаточно длинной; чтобы на ней могли уместиться все команды будущему живому организму. Мы знаем из биологии, что у человека носителями наследственности служат 46 похожих на палочки хромосом. Если растянуть их двойные спирали, то получится лента длиной около метра. А так как атомы и молекулы очень малы (на одном сантиметре их помещается 100 млн.), то на протяжении одного метра оказывается возможным записать всю необходимую информацию. Хотя спирали и асимметричны, можно представить себе их зеркальные отражения. Так существует ли вероятность того, что в некой семье появятся двое детей, из которых один ребенок окажется зеркальным отражением другого (будет «закручен в другую сторону»), ибо его генные спирали, пусть одинаковые со спиралями генов второго ребенка, зеркально симметричны по отношению к ним? Нет! Все витки ДНК всегда направлены в одну сторону — вправо, как у обычного штопора. Поэтому в природе не существует зеркальных отражений с генными спиралями, закрученными в обратную сторону. Благодаря абсолютной асимметрии и недопущению зеркального отражения вся заключенная в генах информация не может быть перепутана.

Вирусы — белковые соединения, стоящие на пороге живого, — тоже имеют правое направление вращения. Некоторые исключения обнаружены лишь у антибиотиков. Они «закручены» влево; на этом, очевидно, и основано их действие. Вероятно, таков вообще признак жизни — ее стремление образовывать из симметричных молекул асимметричные и затем делать выбор в пользу одного из возможных видов асимметрии. Эта мысль, по-видимому, ведет свое начало от французского химика, биолога и медика Луи Пастера (1822—1895). Уже из одного перечня его профессий видно, что он был человеком поистине универсальных знаний. Человечество обязано ему предохранительными прививками против бешенства и других заболеваний. Ему принадлежит открытие, что кипячение убивает микробов. К Пастеру восходят дезинфекция и методы стерилизации. Он первым привел также весьма важное для философии и естествознания доказательство того, что живое возникает только из живого.

В молодости Пастер занимался винной кислотой — той самой, о которой мы уже рассказывали. Ему было известно, что наряду с винной кислотой существует химически тождественная ей виноградная кислота. Но обе эти кислоты различаются по их оптическим свойствам. Раствор винной кислоты оптически активен, он вращает поляризованный свет. Раствор виноградной кислоты, напротив, совсем не отклоняет света. Рассматривая кристаллы обеих кислот под микроскопом, Пастер обнаружил, что у винной кислоты они являются либо правыми, либо левыми, а у оптически нейтральной виноградной кислоты половина кристаллов — левые и половина — правые. Тогда он проделал весьма трудоемкую работу по сортировке кристаллов виноградной кислоты и перевел в раствор отдельно правые и левые кристаллы. Оба раствора, как и ожидалось, оказались оптически активными. Часть виноградной кислоты вращала световой луч влево, а часть — вправо.

Эти явления лишь 50 лет спустя объяснил Вант-Гофф. Однако и Пастер был уже весьма близок к их объяснению. Он продолжил свои эксперименты, помещая микробов в растворы виноградной кислоты. Выяснилось, что микробы способны различать левые и правые молекулы. Они избирательно поедали лишь

один их вид. Измерить это оказалось очень просто: в ходе опыта по воздействию микробов на растворы нейтральная виноградная кислота становилась оптически активной. Пастер пришел к заключению, что живые существа, предпочитающие асимметричные молекулы, тоже должны быть асимметричными. Теперь мы знаем, что он был прав. Не только в спирали ДНК, но и всюду, где присутствуют белковые молекулы (а микробы — это высокомолекулярные органические белки), мы встречаемся со спиральным строением.







ЗАКЛЮЧЕНИЕ

Несмотря на кажущуюся простоту формулировки в сочетании с современными теориями физики, химии и других естественных наук, а также новыми открытиями (например нейтрино) в этих областях симметрия пространства (о времени я здесь не говорил) становится всё более запутанной. Но несомненно одно: Мир симметричен! В нём найдены в принципе зеркальное соответствие каждому изображению.


ЛИТЕРАТУРА

1. Гиль-де В. Зеркальный мир. — М.: Мир, 1982г.

2. Современный словарь иностранных слов. — М.: Русский язык, 1993г.

3. Советский энциклопедический словарь — М.: Советская энциклопедия, 1980г.

4. Урманцев Ю.А. Симметрия природы и природа симметрии — М.: Мысль, 1974г.

5. Современный словарь иностранных слов:. — М.; Русский язык 1993, с. 557

6. Советский энциклопедический словарь — М.: Советская энциклопедия, 1980. с. 1219—1220.




























Приложение

Симметрия.

Рисунок 1.

hello_html_m3aa16a75.jpg










Рисунок 2.


hello_html_74e9278b.jpg













Рисунок 3.

hello_html_m3e03a627.png










Рисунок 4.


hello_html_m5c0969c4.jpg


















Рисунок 5.



hello_html_2786173a.png





Рисунок 6.



hello_html_90436ef.png














Рисунок 7.




hello_html_7792f026.jpg























Рисунок 8.

hello_html_b2fde2f.jpg


Рисунок 9.




hello_html_38e2e39e.jpg






















Рисунок 10.



hello_html_m4d93c64d.jpg

Рисунок 11.






hello_html_m7caa0782.jpg



















Рисунок 12.hello_html_m5267f53f.jpg

Рисунок 13.





hello_html_m55afb38a.png


Автор
Дата добавления 11.01.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров279
Номер материала ДВ-327507
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх