Инфоурок Доп. образование Другие методич. материалыТема: Аппаратура для измерения интенсивности окраски растворов. Методы измерения окраски растворов.

Тема: Аппаратура для измерения интенсивности окраски растворов. Методы измерения окраски растворов.

Скачать материал

Тема: Аппаратура для измерения интенсивности окраски растворов. Методы измерения окраски растворов.

Важнейшие детали фотоколориметров

Фотоэлементы. В отличие от визуальных методов колориметрирования в фотоколориметрии степень поглощения света определяется не глазом, а при помощи колориметров с фотоэлементами (ФЭК). Фотоэлемент преобразует световую энергию, проходящую через исследуемый окрашенный раствор, в электрическую. Сила возникающего фототока (общая чувствительность фотоэлемента) зависит от длины волны падающего на фотоэлемент света и от температуры.

В приборах для фотометрического анализа в основном нашли применение селеновые, сурьмяно-цезиевые и кислородно-цезиевые фотоэлементы.

Селеновые фотоэлементы пригодны для измерений только в видимой части спектра. Они обладают высокой чувствительностью, и при их применении не требуется усиливать возникающий фототок, измерение которого возможно обычным стрелочным гальванометром. Селеновые фотоэлементы нельзя применять для измерения в узких участках спектра, так как используемые в этих случаях узкополосные светофильтры значительно ослабляют световые потоки.

Сурьмяно-цезиевые и кислородно-цезиевые фотоэлементы обладают небольшой чувствительностью, поэтому возникающие фототоки необходимо усиливать. Сурьмяно-цезиевые фотоэлементы применимы в ультрафиолетовой и видимой областях спектра, а кислородно-цезиевые - в видимой и ближней инфракрасной областях.

Измерять оптическую плотность раствора следует при длине волны, при которой наблюдается максимальное поглощение света.

Светофильтры. Область максимального поглощения света при фотометрическом анализе выделяют при помощи светофильтров, устанавливаемых на пути световых потоков перед поглощающими растворами.

Светофильтры - жидкие или твердые среды, обладающие избирательным пропусканием излучения в достаточно узком интервале длин волн. В качестве светофильтров используют окрашенные растворы некоторых веществ, окрашенные оптические стекла, интерференционные светофильтры и диспергирующие призмы; последние характеризуются более высокой степенью монохроматизации, чем светофильтры. Ширина пропускания определенного спектрального участка (линейная дисперсия) для светофильтров колеблется от 100 до 20-40 нм; в призменных и дифракционных приборах линейная дисперсия колеблется от 0,5 до 2 нм.

Кюветы. Они представляют собой прямоугольные или цилиндрические сосуды из стекла или кварца с определенным расстоянием между стенками (у прямоугольных кювет) - или между крышками - у цилиндрических.

Стеклянные кюветы пропускают все лучи видимого света; кварцевые - не только видимые, но и ультрафиолетовые и частично инфракрасные лучи.

Поверхность кюветы, на которую падает световой поток, и поверхность, через которую выходит непоглощенная часть светового потока, должны быть строго параллельны. В зависимости от интенсивности окраски раствора для измерения выбирают кювету с большей или меньшей толщиной слоя. Следует иметь в виду, что наименьшая ошибка измерения получается при D = 0,3-0,5. Поэтому нужно так подобрать кюветы, чтобы вести измерения в этом интервале оптической плотности.

В наборах кювет для фотометрирования имеется, как правило, по две пары кювет с одинаковой толщиной слоя жидкости.

Рабочие поверхности кювет должны быть чистыми. Перед заполнением кювет их следует тщательно промыть дистиллированной водой, затем ополоснуть исследуемой жидкостью и только после этого, непосредственно перед измерением, заполнить светопоглощающим раствором.

Лабораторные фотоколориметры

Фотоэлектрические лабораторные колориметры предназначаются для определения светопропускания или оптической плотности жидких окрашенных растворов и твердых тел, а также светопропускания взвесей, эмульсий и коллоидных растворов.

С помощью современных фотоколориметров можно измерять коэффициенты пропускания или оптическую плотность в спектральной области 300-1000 нм. Все фотоколориметры имеют обязательно следующие элементы схемы: осветитель, светофильтры, кюветы, фотоэлементы, регулируемые сопротивления и гальванометры.

 Фотоэлектрический колориметр ФЭК-М. Колориметр имеет стеклянную оптику, прозрачную только для лучей видимого участка спектра. Источником излучения служит лампа накаливания (вольфрамовая лампа), дающая излучение в видимой части спектра. Прибор снабжен четырьмя светофильтрами с полушириной пропускания 80-100 нм и поэтому пригоден только для концентрационного анализа. В основу конструкции прибора (рис. 184) положен принцип уравнивания интенсивности двух световых потоков с помощью щелевой диафрагмы.

Принципиальная схема фотоколориметра ФЭК-М

Измерение интенсивности световых потоков проводится с помощью двух селеновых фотоэлементов 9 и 9', соединенных между собой и со стрелочным гальванометром 14 по дифференциальной схеме таким образом, что при равенстве потока лучей стрелка гальванометра стоит на нуле.

Световые потоки от источника излучения 1 направляются на зеркала 3 и 3', затем проходят через светофильтры 4 и 4' в кюветы с растворами 6 и 6' и попадают на селеновые фотоэлементы 9 и 9'. Перед фотоэлементами на пути левого светового потока помещены круговые фотометрические клинья 10 и 11 для ослабления светового потока, падающего на фотоэлемент, а на пути правого потока - щелевая диафрагма 12, связанная с отсчетным барабаном 13. На отсчетных барабанах имеется две шкалы: оптических плотностей D и коэффициентов светопропускания Т.

Измерения оптической плотности растворов производят при помощи правого и левого барабанов. Шкала оптической плотности левого барабана проградуирована от 0 до 2 (Т = 100 4-0%). Шкала оптической плотности правого барабана имеет пределы измерений 0,00-0,52; точность измерений наибольшая на участке 0,15-0,52 (по шкале светопропускания 70-30%). Работа с правым барабаном имеет ряд преимуществ.

Измерение проводят 3-5 раз и находят среднее значение оптической плотности.

Для нахождения концентрации анализируемого раствора пользуются калибровочной (градуировочной) кривой. Определив значение оптической плотности анализируемого раствора, находят на оси ординат точку, соответствующую данному значению D, из которой проводят линию, параллельную оси абсцисс до пересечения ее с калибровочной кривой, а из точки пересечения опускают перпендикуляр на ось абсцисс и по точке пересечения с ней находят процентное содержание определенного вещества.

 Спектрофотометрические методы анализа

Спектрофотометрия широко применяется для установления связи между спектрами поглощения различных веществ и их химическим строением и составом, а также для количественного определения веществ.

Абсорбционная спектрометрия основана на тех же законах светопоглощения, что и фотоколориметрические методы, однако, в отличие от последних, в ней используется поглощение монохроматического света с очень узким интервалом длин волн (1-2 нм). Это значительно увеличивает чувствительность и точность количественного анализа окрашенных растворов, поглощающих свет в видимой области спектра, а также «бесцветных» для глаза растворов, которые поглощают излучение в ультрафиолетовой (200-400 нм) или ближней инфракрасной области спектра.

Спектрофотометры подразделяются на регистрирующие и нерегистрирующие. В регистрирующих приборах результаты всех измерений автоматически записываются на специальном бланке, имеющем вид сетки.

Нерегистрирующие спектрофотометры обычно включают источник излучения, монохроматор, приемник излучения и отсчетное устройство. Количественные измерения пропускания производятся сравнением сигналов приемника при попеременной установке в световой пучок образца и эталона. При измерениях поглощения светового потока жидкостями обычно пользуются двумя идентичными кюветами, одна из которых заполняется исследуемым раствором, а другая (пустая или наполненная растворителем) играет роль эталона, пропускание которого принимают за 100%, а оптическую плотность считают равной нулю.

К нерегистрирующим спектрофотометрам с кварцевой оптикой относятся модели СФ-4, СФ-4А, СФ-16, обеспечивающие возможность производить измерения, помимо видимой и ближней инфракрасной, также в ультрафиолетовой области спектра.

К нерегистрирующим спектрографам со стеклянной оптикой относится модель СФ-5, используемая для измерений только в видимой и ближней инфракрасной области спектра.

Нерегистрирующие спектрофотометры имеют одинаковую оптическую схему, но несколько различаются электрическими схемами и методикой измерений.

Оптическая схема спектрофотометра СФ-16

Принципиальная оптическая схема спектрофотометра СФ-16, с пределами измерения оптических плотностей 0-2 и пропускания 100-0, 10-0, 100-90% представлена на рис. 186. Свет от источника 1 попадает на зеркало-конденсор 2, которое направляет пучок лучей на плоское зеркало 3, поворачивающее лучи на 90° и направляющее их на входную щель монохроматора 4. Зеркальный объектив 6 направляет параллельный пучок лучей на призму 5, которая разлагает его в спектр и возвращает его обратно на объектив 6. Луч, прошедший призму под углом близким к углу наименьшего отклонения, попадает на выходную щель 7, расположенную под входной. Поворачивая призму вокруг оси, можно получить на выходе монохроматора лучи различных длин волн. Выходящий из монохроматора пучок света проходит фильтр 8, кювету с исследуемым раствором 9 и попадает на фотоэлемент 10. Фототок, возникающий в фотоэлементе, передается на усилитель постоянного тока. Усиленный ток попадает на милливольтметр.

Спектрофотометр СФ-16 относится к однолучевым приборам, поэтому в процессе измерений на пути потока излучения устанавливаются поочередно «нулевой» и испытуемый образцы. Происходящие при этом изменения интенсивности излучения, падающего на фотоэлемент, вызывают изменение напряжения в системе усилителя, которое компенсируется путем изменения напряжения на потенциометре, связанном с отсчетным устройством.

 

 

 

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Тема: Аппаратура для измерения интенсивности окраски растворов. Методы измерения окраски растворов."

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Специалист по студенческому спорту

Получите профессию

Няня

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 665 132 материала в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 31.05.2018 1207
    • DOCX 74.9 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Сагинбаева Эльвира Хатмулловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 6 лет и 1 месяц
    • Подписчики: 5
    • Всего просмотров: 847177
    • Всего материалов: 332

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Методист-разработчик онлайн-курсов

Методист-разработчик онлайн-курсов

500/1000 ч.

Подать заявку О курсе
  • Сейчас обучается 142 человека из 46 регионов

Курс повышения квалификации

Основы блогинга: специфика преподавания курса как способа развития коммуникационных навыков школьников

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 25 человек из 14 регионов
  • Этот курс уже прошли 95 человек

Курс повышения квалификации

Дополнительное образование в системе спортивного менеджмента по ФГОС

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Этот курс уже прошли 98 человек

Курс повышения квалификации

Мнемоника как способ развития эмоционального интеллекта

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 20 человек из 11 регионов
  • Этот курс уже прошли 17 человек

Мини-курс

Методология физического воспитания

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Стратегии бизнес-развития

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Wildberries: от управления заказами до продвижения товаров

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 56 человек из 26 регионов