Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Научные работы / Исследовательский проект по математике на тему: "Симметрия в пространстве"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Исследовательский проект по математике на тему: "Симметрия в пространстве"

библиотека
материалов




Муниципальное общеобразовательное учреждение «Средняя школа №8»














Симметрия в пространстве









Автор: Зирюкина Дарья

учащийся 10 класса А

муниципального бюджетного

общеобразовательного учреждения

Средняя школа № 8


Научный руководитель: Кучинская Ольга Витальевна,

учитель математики

муниципального бюджетного

общеобразовательного учреждения

Средняя школа №8»









г.Нижневартовск,2016г.





Оглавление:

1.Введение ………………………………………………………………стр.3

2. Симметрия в математике …………………………………………стр.4 - 6

3. Симметрия в зоологии …………………………………………….стр.6 -8

4.Симметрия в технике и транспорте ………………………....…..стр.8 - 10

5.Симметрия в архитектуре ……………………………………..…стр.10 -12

6.Симметрия в искусстве………………………….………………стр.12 - 16

7. Симметрия в ботанике…………………………………………..стр.16 - 17

8.Приложение……………………………………………………………стр.18

9.Список литературы ………………………………...…………………стр.19































1. Симметрия в математике.


«Стоя перед черной доской и рисуя на ней мелом разные фигуры, я вдруг был поражен мыслью: почему симметрия приятна глазу? Что такое симметрия? Это врожденное чувство, отвечал я сам себе»

Л.Н. Толстой.

Симметрия сквозь века.

По преданию термин «симметрия» придумал скульптор Пифагор Регийский, живший в городе Регул. Отклонение от симметрии он определил термином «асимметрия». О нем нам говорили как о первом скульпторе, в творчестве которого была сделана попытка соблюсти ритм и соразмерность. Кроме того, Пифагор прославился реалистическим изображением человеческих жил, вен и волос.

Древние греки полагали, что Вселенная симметрична просто потому, что она прекрасна. Считая сферу наиболее симметричной и совершенной формой, они делали вывод о сферичности Земли и её движении по сфере вокруг некоего «центрального огня», где двигались также 6 известных тогда планет вместе с Луной, Солнцем, звёздами. Древнегреческий философ и математик Пифагор Самосский (VI в. до н.э.) и пифагорейцы предпочитали вместо слова «симметрия» пользоваться словом «гармония». Последователи Пифагора Самосского пытались связать симметрию с числом. Каждой вещи, учили пифагорейцы, соответствует определённое отношение чисел, которое они называли логосом. Поэтому познание вещей заключалось для них познанием логоса. Гармония является божественной и заключается в числовых отношениях.

Широко используя идею гармонии и симметрии, учёные древности любили обращаться не только к сферическим формам, но и к правильным многогранникам, для построения которых они использовали «золотое отношение». У правильных многогранников грани – правильные многоугольники одного вида, а углы между гранями равны. Древние греки установили поразительный факт: существует всего пять правильных выпуклых многогранников, названия которых связаны с числом граней, - тетраэдр, октаэдр, икосаэдр, куб, додекаэдр.

Все правильные многогранники обладают и зеркальной, и поворотной симметрией. А идея симметрии являлась отправным пунктом для учёных прошлых веков в теориях о строении материи и Вселенной. Правильные многогранники изучал и сам Пифагор Самосский (V в. до н.э.), математик, философ, религиозный авторитет, основатель одной из первых математических школ. Но впервые их подробно описал Платон, поэтому математики стали называть эти фигуры Платоновыми телами. Платон сводил гармонию к пространственной симметрии. По Платону космос сферичен, а в центре сферы расположена Земля. И пифагорейцы, и Платон полагали, что материя состоит из четырёх основных элементов – огня, земли, воздуха и воды. Согласно их теории, атомы этих элементов имели форму Платоновых тел: атомы огня – форму тетраэдра, земли – форму куба, воздуха – форму октаэдра, а атомы воды – форму икосаэдра. Додекаэдр считался местожительством богов, неким эфиром.

«Симметрия - это некая «средняя мера», – считал Аристотель. Аристотель говорил о симметрии, как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей природы - закономерности о ее двойственности. Проходя сквозь века термин «симметрия» обрастал различными толкованиями. Римский врач Гален (II в. н. э.) из Пергама под симметрией понимал покой души и уравновешенности.

Идея симметрии увлекла немецкого астронома Иогана Кеплера. Кеплер пытался построить геометрическую модель мира. Модель Солнечной системы Кеплера была создана 400 лет назад. В сферу Сатурна он вписал куб, а в куб вписал сферу Юпитера. В сферу Юпитера он вписал тетраэдр – сферу Марса, а в сферу Марса был вписан додекаэдр, в который Кеплер вписал сферу Земли. Вычислив в соответствии со своей схемой радиусы планетных сфер, он обнаружил, что отношения этих радиусов хорошо согласуются с данными, полученными из наблюдений. Это побудило Кеплера думать, что ему удалось объяснить строение солнечной системы на основе единой геометрической схемы, использующей 6 планет и 5 Платоновых тел. Но Кеплер заблуждался: планет в Солнечной системе было не 6, а 9, отношения радиусов планетных сфер случайно совпали с отношениями в геометрической схеме. Современная наука рассматривает Вселенную с позиций единства симметрии и асимметрии.

Герман Вейль – это немецкий математик. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким образом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века. Оно достаточно сложное.

Герман Клаус Хуго Вейль родился в городе Эльмсхорне (Германия). Член Национальной Академии Наук США. Автор книги «Симметрия». Вейлю, в частности, мы обязаны тем, что отдаем себе сегодня полный отчет в значении для математики и физики общего понятия симметрии. Герман Вейль сказал: “Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство “

Обратимся к словарю: Современный энциклопедический словарь: СИММЕТРИЯ (от греческого symmetria - соразмерность), в широком смысле - инвариантность (неизменность) структуры, свойств, формы (например, в геометрии, кристаллографии) материального объекта относительно его преобразований. Симметрия лежит в основе сохранения законов.

Большой энциклопедический словарь: СИММЕТРИЯ в геометрии - свойство геометрических фигур. Две точки, лежащие на одном перпендикуляре к данной плоскости (или прямой) по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно этой плоскости (или прямой). Толковый словарь русского языка Д.Н.Ушакова: СИММЕТРИЯ, симметрии, мн. нет, ж. (греч. symmetria). Пропорциональность, соразмерность в расположении частей целого в пространстве, полное соответствие (по расположению, величине) одной половины целого другой половине.

Новый словарь русского языка под редакцией Т.Ф.Ефремовой: Симметрия ж. род. Соразмерное, пропорциональное расположение частей чего-л. по отношению к центру, середине.

Толковый словарь живого великорусского языка В.И.Даля: СИММЕТРИЯ ж. греч, соразмер, соразмерность, равно (или разно) подобие, равномерие, равнообразие, соответствие, сходность; одинаковость, либо соразмерное подобие расположенья частей целого, двух половин; сообразие, сообразность; противоравенство, противоподобие. Симметрическое расположенье дома, фасада, равнообразное на обе половины. Полная симметрия докучает, а изящное разнообразие красит и тешит вкус. Словарь синонимов русского языка: Симметрия - см. согласие, соответствие.

Приведём примеры геометрических фигур, обладающие осевой симметрией. У неразвёрнутого угла одна ось симметрии - прямая, на которой расположена биссектриса угла. Равнобедренный треугольник имеет одну ось симметрии, а равносторонний треугольник - три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами имеют по две оси симметрии, а квадрат - четыре оси симметрии. У окружности их бесконечно много - любая прямая, проходящая через её центр, является осью симметрии.

Приведём примеры фигур, обладающие центральной симметрией. Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей. О симметрии графиков функций уместно говорить, когда функция является четной или нечетной.

Зеркальная симметрия: «Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку, которую я вижу в зеркале, нельзя поставить на место настоящей руки» Иммануил Кант. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. На рисунке приведен простой пример объекта и его зеркального двойника - треугольник АВС и треугольник А1В1С1 (здесь М N - пересечение плоскости зеркала с плоскостью рисунка). Каждой точке объекта соответствует определенная точка зеркального двойника. Эти точки находятся на одном перпендикуляре к прямой MN , по разные стороны и на одинаковом расстоянии от нее (рис. 1).

Обычно считают, что наблюдаемый в зеркале двойник является точной копией самого объекта. В действительности это не совсем так. Зеркало не просто копирует объект, а меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта. В сравнении с самим объектом его зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала. Этот эффект хорошо виден на одном рисунке и фактически незаметен на другом. Эту плоскость называют плоскостью симметрии. Предположим, что одна половина объекта является зеркальным двойником по отношению к другой его половине. Такой объект называют зеркально симметричным. Он преобразуется сам в себя при отражении в соответствующей зеркальной плоскости.

Проведем эксперимент. Напишем на листе бумаги заглавными печатными буквами два слова "КОФЕ" и "ЧАЙ". Затем возьмем зеркало и поставим его вертикально так, чтобы линия пересечения плоскости зеркала с плоскостью листа делила эти слова по горизонтали. Зеркало не подействовало на слово " КОФЕ ", тогда как слово "ЧАЙ" оно изменило до неузнаваемости. Этот " фокус " имеет простое объяснение. Разумеется, зеркало одинаковым образом отражает нижнюю половину обеих слов. Однако в отличие от слова " ЧАЙ " слово " КОФЕ " обладает горизонтальной осью симметрии, именно поэтому оно не искажается при отражении в зеркале (рис. 2).

Поворотная симметрия. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 360˚/n, где n – натуральное число. Центр симметрии называют осью вращения n-го порядка.


2. Симметрия в зоологии.


Симметрия простейших организмов. Эрнст Геккель (1834 - 1919) - немецкий естествоиспытатель, основоположник филогенетического направления дарвинизма. Геккель публикует монографии по радиоляриям, глубоководным медузам, сифонофорам, глубоководным рыбам-удильщикам и другим обитателям подводного мира. Пораженный открывшейся ему красотой живых форм, он создал альбом под названием «Красота форм в природе». На рисунках можно увидеть плоскости и центры симметрии. Эти рисунки хорошо иллюстрируют многовековую идею о том, что красота и строение живых организмов непосредственно связаны с симметрией.

Представитель простейших - пресноводная гидра (рис. 3). Тело достигает 1-1, 5см. Ловчие щупальца короче тела. Биологи подтверждают, что через тело гидры можно провести несколько плоскостей симметрии. Такой тип симметрии тела животного в биологии называется лучевой. Лучевая симметрия способствует тому, что животное может ловить добычу и чувствовать приближение опасности с любой стороны. Именно поэтому животные, ведущие малоподвижный образ жизни, внешне похожи на зонтики, шары и цветки растений.

Симметрия подводного мира. Для представителей подводного мира характерна центральная (поворотная) симметрия. Медуза – обладает лучевой (центральной симметрией). Ось симметрии этих животных показывает направление силы тяжести. Морская звезда обладает поворотной симметрией пятого порядка.

Радиальная симметрия — форма симметрии, сохраняющаяся при вращении объекта вокруг определённой точки или прямой. Симметрия в животном мире диктуется условиями жизни. Это хорошо видно на примере рыбы камбалы. У камбалы, как и у других рыб, имеется вертикальная плоскость симметрии. Взрослая камбала лежит на дне. Ее глаза, рот, плавники переползают на одну сторону, и ее плоскость симметрии поворачивается на 90º. Камбала приобретает симметрию тела вращения, т.е. поворотную центральную симметрию.

Животные, которые способны передвигаться в каком-то избранном направлении, приобрели двустороннюю симметрию тела (осевую). На ее появление оказало влияние направление движения животного и направление силы тяжести. Однако большинство животных нашей планеты, например, майский жук, речной рак, слон, имеют одинаковые парные органы на левой и на правой сторонах тела. Такие животные появились значительно позже кишечнополостных в процессе исторического развития. Через их тело можно мысленно провести только одну плоскость, делящую их на две зеркально одинаковые половины. Такая симметрия тела называется двусторонней. Она характерна для всех активно передвигающихся животных. Двусторонняя (билатеральная) симметрия — симметричность относительно зеркального отражения. Билатерально симметричные организмы господствуют последние 650–800 млн. лет. Это ракообразные, рыбы, все прогрессивные формы: млекопитающие, птицы, насекомые. В этих направлениях животное устремляется за пищей или спасается от опасности. По нашим наблюдениям, осевая симметрия присуща большому количеству видов животных. Еж, Сова, Божья коровка, Бабочка, Паук и другие животные обладают осевой симметрией. Например, у бабочки симметрия проявляется с математической строгостью (рис. 4). Такая симметрия способствует поступательному движению живого организма. Почему же в природе царит симметрия? Чем обусловлена эта упорядоченность, пропорциональность?

Первые многоклеточные имели форму шара. По мере развития и усложнения организмов под действием силы тяжести они стали различать «верх» и «низ» и потеряли симметрию шара. Животные, ведущие прикреплённый образ жизни, такие, как гидра, приобрели симметрию, которая способствует ловле добычи и защиты от врагов, появляющихся с любой стороны. Ось симметрии этих животных показывает направление силы тяжести. Те животные, которые способны были передвигаться в каком- то избранном направлении, приобрели двустороннюю симметрию тела. На её появление важное влияние оказало как направление силы тяжести, так и направление движения животного. Для двустороннесимметричных видов характерно наличие двух примерно одинаковых частей тела, что помогает им сохранять равновесие, прямолинейно передвигаться, быстрее находить пищу и т. д.

Владимир Николаевич Беклемишев советский зоолог, действительный член АМН СССР выделил три типа симметрии (шаровая, радиальная, билатеральная) расположив их в эволюционный ряд. Считая полностью асимметричную амёбу более примитивным существом, чем одноклеточные организмы шаровой симметрии (радиолярии), он поместил её в начало ряда. Билатерально симметричные организмы считались “венцом” эволюции.

Выводы:

Симметрию живого существа определяет направление его движения. Для живых существ, для которых ведущим направлением является направление движения “вперед”, наиболее характерна осевая симметрия. Так как в этом направлении животные устремляются за пищей и в этом же спасаются от преследователей. А нарушение симметрии привело бы к торможению одной из сторон и превращению поступательного движения в круговое.

Центральная симметрия чаще встречается в форме животных, обитающих под водой.

Асимметрию можно наблюдать на примере простейших животных.

3. Симметрия в технике и транспорте.


В жизни такого города, как Нижневартовск транспорт играет значительную роль. И мы ежедневно сталкиваемся с различными его проявлениями. В нашем городе построен аэропорт международного значения.

В технике красота, соразмерность механизмов часто бывает связана с их надежностью, устойчивостью в работе. Симметричная форма дирижабля, самолета, подводной лодки, автомобиля и т.д. обеспечивает хорошую обтекаемость воздухом или водой, а значит, и минимальное сопротивление движению. Самолёт обладает осевой симметрией: Детали самолёта тоже симметричны.

Железнодорожный транспорт. С Москвой Нижневартовск связан железной дорогой. Время пути по железной дороге 55 часов. С развитием науки и техники стремление человека к симметричности форм сохраняется. Вид электровоза спереди указывает на симметричность данной машины.

Симметрия автомобиля. Интерьер автомобиля производит впечатление своей симметрией и объемом" Машина, как и любой вид транспорта, обладает осевой продольной симметрией. Некоторые детали машин имеют центральную симметрию: колесо автомобиля, шестеренка и др. При моделировании автомобильных дисков, для расчетов применяют поворотную симметрию. Регулировка схождения колес автомобиля производится относительно продольной оси симметрии машины. Для наземного вида транспорта в большей степени характерна осевая симметрия. Причиной этого является направление его движения.

В процессе нашей исследовательской деятельности мы пришли к выводу, что центральная симметрия не совместима с формой наземного и подземного транспорта. Причиной этого служит его направление движения. При рассмотрении вида сверху трамвая, электровоза, телеги, мы видим, что ось симметрии проходит вдоль направления движения. Таким образом, центральную симметрию следует искать в воздушном и подводном транспорте, т. е. в таких видах, где направления: вперед, назад, вправо, влево, – равноценны. Один из таких видов транспорта – это воздушный транспорт.

Выводы:

Вид сверху и вид спереди различных видов транспорта обладает либо центральной, либо осевой симметрией.

Для наземного вида транспорта в большей степени характерна осевая симметрия. Причиной этого является направление его движения.

Центральная симметрия чаще встречается в форме воздушного и подводного транспорта, для которого направления: вправо, влево, вперед, назад, – равноценны.

Модели транспорта будущего в той же степени, что и модели настоящего и прошлого обладают различными видами симметрии.


4. Симметрия в архитектуре.


Прекрасные образцы симметрии демонстрируют произведения архитектуры. Большинство зданий зеркально - симметричны. Общие планы построек, фасады, орнаменты, карнизы, колонны обнаруживают соразмерность, гармонию. Много примеров использования симметрии дает старая русская архитектура: колокольни, сторожевые башни, внутренние опорные столбы.

Архитектура бесконечно разнообразна. От композиции зданий в первую очередь зависит впечатление, которое производит архитектурное сооружение. Наиболее ясны и уравновешены здания с симметричной композицией. Такие здания были характерны для архитектуры эпохи классицизма.

Мы предлагаем Вам прогуляться по городу Нижневартовску и особенно обратить внимание на композиции зданий нашего города, на их симметричность.

Прогулка по городу Нижневартовску. Когда-то здесь были глухие места с множеством озер и болот. Сегодня это красивый современный город с оригинальными архитектурными постройками. Одно из красивейших зданий Дворец искусств, здания администрации города и Нижневартовского района. Очевидна симметричность, стройность и пропорциональность этих построек. Здание мэрии можно отнести к одному из современных сооружений, обладающих симметрией. Центральной симметрией обладает памятник нефтяникам– капля нефти.

Архитектуре классицизма в целом присуща регулярность планировки и четкость объемной формы. Основой архитектурного языка классицизма стал ордер, в пропорциях и формах близкий к античности, симметрично-осевые композиции, сдержанность декоративного убранства. Симметрично – осевые композиции при планировке города.

Церковь города Нижневартовска. Устройство церкви зиждется на принципах симметрии, которые должны тщательно соблюдаться архитектором. Они обусловлены пропорцией. Пропорция есть соответствие между частями и целым. Отсюда получаются принципы симметрии. Без симметрии и пропорции не может быть принципов устройства храма, то есть, если нет точного соотношения между его частями, каковое существует в хорошо слаженном человеке. Это симметричная постройка. Центрально – симметричные купола.

За 40 лет город вырос практически на пустом месте.

Примером удивительного сочетания симметрии и асимметрии является городской драматический театр и автовокзал. На первый взгляд эти сооружения абсолютно несимметричны. Но в них присутствуют элементы, обладающие тем или иным видом симметрии. В данное время важнейшей задачей градостроительства является строительство жилья и объектов инфраструктуры. Строится много зданий современной архитектуры.

Мы живем, находясь под воздействием с одной стороны, симметрии и необходимости, а с другой - асимметрии и случайности и используя в своей практике диалектику симметрии - асимметрии. Например, строители современных мостов, высотных зданий, башен знают, что конструкция не должна быть безупречно симметричной из-за опасности возникновения резонансных колебаний, которые могут привести к ее разрушению. Поэтому симметрию конструкций сознательно нарушают, вводя в нее отдельные асимметричные элементы, т. е. чистая симметрия, может оказаться опасной. Она неустойчива.

Выводы:

Принципы симметрии являются основополагающими для любого архитектора, но вопрос о соотношении между симметрией и асимметрией каждый архитектор решает по-разному. Асимметричное в целом сооружение может являть собой гармоническую композицию симметричных элементов.

Удачное решение определяется талантом зодчего, его художественным вкусом и его пониманием прекрасного. Прогуляйтесь по нашему городу и убедитесь, что удачных решений может быть очень много, но неизменным остается одно – стремление архитектора к гармонии, а это в той или иной степени связано с симметрией.


5. Симметрия в искусстве.


«Назначение и цель гармонии - упорядочить части, вообще говоря, различные по природе, неким совершенным соотношением так, чтобы они одна другой соответствовали, создавая красоту» Л.Б. Альберти.

У многих народов с древнейших времен симметрия воспринималась как символ стабильности и гармонии. В изобразительном искусстве симметрия (в переводе с греческого языка — соразмерность) также стала одним из основных способов композиции. Симметричная композиция легко воспринимается зрителем, сразу привлекая внимание к центру картины, в котором и находится то главное, относительно которого разворачивается действие. В древнерусской живописи сложилась образная система, иллюстрирующая религиозные сюжеты. Традиционная композиция иконы чаще всего симметрична, а главные персонажи выделены своим центральным местоположением. Зримый образ Всевышнего обычно располагался строго в центре пространства иконы как символ и смысл первоосновы мира. Симметричные, гармоничные пропорции, создающие впечатление покоя и величественности, подчеркивали несовершенство и хаотичность земного бытия.

Для анализа симметрии изображения лучше обратиться к хранящейся в Эрмитаже картине гениального итальянского художника и ученого Леонардо да Винчи «Мадонна Литта». Обратите внимание: фигуры мадонны и ребенка вписываются в правильный треугольник, который вследствие своей симметричности особенно ясно воспринимается глазом зрителя. Благодаря этому мать и ребенок сразу же оказываются в центре внимания, как бы выдвигаются на передний план. Голова мадонны совершенно точно, но в то же время естественно помещается между двумя симметричными окнами на заднем плане картины. В окнах просматриваются спокойные горизонтальные линии пологих холмов и облаков. Все это создает ощущение покоя и умиротворенности, усиливаемое за счет гармоничного сочетания голубого цвета с желтоватыми и красноватыми тонами.

Внутренняя симметрия картины хорошо ощущается.

Художники эпохи Возрождения часто использовали язык симметрии в построении своих композиций. Это следовало из их логики понимания картины как изображения идеального мироустройства, где царит разумная организованность и уравновешенность, которые человек может познать и осмыслить. В удивительной картине "Обручение девы Марии" великий Рафаэль воспроизвел такой образ мира, существующего по законам гармонии и строгой логики. Использованный принцип симметрии создает впечатление покоя и торжественности и в то же время некой отстраненности от зрителя..

Художники, хотя и часто прибегают к симметрии, используют ее очень осторожно. Поясним эту мысль аналогией с весами. Если весы находятся в равновесии, то их коромысло горизонтально, чашки весов расположены симметрично относительно опоры весов. Но стоит на одну из чашек положить дополнительный груз, как равновесие нарушится, коромысло наклонится, чашки начнут двигаться. Исчезла симметрия - нарушилось равновесие, появилась асимметрия- система пришла в движение. Таким образом, строгая симметрия воспринимается как покой, равновесие, небольшое отклонение от симметрии воспринимается как динамика, движение. Проанализируем с этих позиций картину А.Рублева "Троица". Симметричная в целом композиция этой картины (расположение трех ангелов симметрично) в деталях асимметрична, и это создает впечатление динамики действия, повышает выразительность произведения искусства. Что хотел показать художник в картине "Троица", используя симметрию? Скорее всего, уравновешенность и покой, которые несут эти три ангела.

Конечно, чаще всего в изобразительном искусстве мы говорим о неполной симметрии. Существует некоторая "обращенность" к центру, создающая композиционное равновесие. В картине "Три богатыря" русского художника В. Васнецова по небу движутся тяжелые облака, колышется спелая нива, волнуются могучие кони, с трепещущими от ветра гривами. Сами герои полны сдерживаемой силы: вся группа чуть сдвинута влево, один из богатырей выдвигает меч, другой прикрывает ладонью глаза, третий, наклонив голову, прислушивается. Из-за этих небольших отклонений от строгой симметричности возникает ощущение внутренней свободы персонажей, их готовности к движению. В главном же композиция картины, близкая к симметрии, помогает художнику воплотить образ неприступной "богатырской заставы", непоколебимых защитников русской земли, их спокойствия и уверенности.

Среди современных художников в жанре “математического искусства” наиболее успешно выступает голландский художник Мориц Эшер. «Если мы создаём мир, то пусть он будет не абстрактным и туманным. Пусть он будет представлен конкретными узнаваемыми вещами» М.К. Эшер. Голландский художник Мориц Корнилис Эшер создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей, в том числе и идей симметрии. “Я часто ощущаю большую близость к математикам, чем к коллегам-художникам”, — писал сам Эшер. Ему же приписывают слова: “Все мои произведения — это игры. Серьезные игры”. Его литографии, гравюры на дереве, мозаику можно увидеть в кабинетах математиков и других ученых во всех уголках мира (рис 7).

Отражение в воде - единственный пример горизонтальной симметрии в природе. Быть может, в этом и состоит тайна его очарования?...Мы любуемся пейзажами художников, удачными снимками. Горы красиво отражаются на поверхности озера, придавая снимку законченность. Поверхность озера играет роль зеркала и воспроизводит отражение с геометрической точностью. Поверхность воды есть плоскость симметрии... Как скучно было бы жить в мире, где нет водных зеркал!

Выводы:

Симметричная композиция легко воспринимается зрителем, сразу привлекая внимание к центру картины, репродукции, фотографии, в которой и находится то главное, относительно которого разворачивается действие.

Художники исходят из основных законов природной симметрии, вместе с тем они выявляют "чуть заметные отклонения от нее". Об этом говорил известный художник О. Ренуар: "Два глаза, даже на самом красивом лице, всегда чуть-чуть различны, нос никогда не находится в точности над серединой рта; долька апельсина, листья на деревьях, лепестки цветка никогда не бывают в точности одинаковыми".

Симметрия и асимметрия создают впечатление динамики действия, повышают выразительность произведения искусства, будут всегда, находится рядом и волновать зрителя.


6. Симметрия в ботанике.


Ботаника – наука о растениях. Наше исследование было направлено на выявление примеров симметрии в растениях, то есть мы занимались последней из этих проблем – проблемой поиска закономерностей внешнего строения растений.

В 5 веке до н. э. на явление симметрии в живой природе обратили внимание в Древней Греции пифагорейцы, в связи с развитием ими учения о гармонии. В 19 веке появлялись отдельные работы, касающиеся этой темы. А в 1961 году, как результат многовековых исследований, посвященных поиску красоты и гармонии окружающей нас природы, появилась наука биосимметрика.

У биологических объектов встречаются следующие типы симметрии:

  • сферическая симметрия — симметричность относительно вращений в трёхмерном пространстве на произвольные углы.

  • симметрия n-порядка — симметричность относительно поворотов на угол 360°/n вокруг какой-либо оси.

  • двусторонняя (билатеральная) симметрия — симметричность относительно зеркального отражения.

  • трансляционная симметрия — симметричность относительно сдвигов пространства в каком-либо направлении на некоторое расстояние.

Характерная для растений симметрия конуса хорошо видна на примере фактически любого дерева. Вертикальная ориентация оси корпуса характеризует симметрию дерева. Ярко выраженной симметрией обладают листья, цветы, ветви, плоды. Нарушение некоторых из условий определяющих симметрию дерева как симметрию конуса, приводит к искривлению стволов и однобоко развитой кроны дерева. Четко выраженной симметрией обладают листья клена, дуба и т. д. Например, лист клена обладает осевой, зеркальной симметрией (рис 8).

В природе встречается взаимное расположение лепестков разных видов:

зеркально равные, совместимо и зеркально равные, совместимо равные. Расположение лепестков относительно закономерно друг друга может быть: симметричным, хаотичным, асимметричным.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние кратное этой величине, она совмещается сама с собой. Веточка акации имеет зеркальную и переносную симметрию, а веточка боярышника обладает скользящей осью симметрии, с последующим зеркальным отражением. А цветок одуванчика обладает симметрией шара (сферической симметрией).

Центральную симметрию можно наблюдать на изображении следующих цветов: лук, цветок одуванчика, цветок кувшинки, цветок мать и мачехи. Цветок ромашки обладает центральной симметрией, только в случае четного количества лепестков. Её сердцевина представляет собой окружность, и поэтому центрально симметрична, так как мы знаем, что окружность имеет центр симметрии. В случае же нечетного количества лепестков, например анютины глазки, цветок обладает только осевой симметрией. Барвинок обладает поворотной симметрией пятого порядка и не обладает зеркальной симметрией.

Выводы:

По нашим наблюдениям, в любом растении можно найти какую-то его часть, обладающую осевой или центральной симметрией.

Это могут быть листья, цветы, стебли, стволы деревьев, плоды, и более мелкие части, такие как сердцевина цветка, пестик, тычинки и другие.

Осевая симметрия присуща различным видам растений и грибам, и их частям.

Центральная симметрия наиболее характерна для плодов растений и некоторых цветов.

Симметрия – общее свойство объектов окружающего мира, асимметрия же отражает индивидуальные свойства объектов.

Мы пришли к главному выводу, что симметрия в основе всего, она – первооснова Красоты…

Симметрия – это не только математическое понятие. Его заимствовали из природы. А так как человек – это часть природы, то человеческое творчество во всех его проявлениях тяготеет к симметрии. Симметрия в живой природе: в животном и растительном мире, – передается генетически из поколения в поколение. Можно сказать, что на симметрии держится весь мир. Когда мы видим проявления симметрии в разных областях жизни, мы невольно испытываем чувство удовлетворения тем всеобщим порядком, который царит в природе. Но симметрия – общее свойство объектов окружающего мира, асимметрия же отражает индивидуальные свойства объектов. Мир существует благодаря единству симметрии и асимметрии.







Приложение

hello_html_3a85febf.jpg hello_html_m5b308256.jpg


рис. 1 рис .2

hello_html_m6955d63d.jpg hello_html_m5f2ddb7.png


рис.3 рис.4


hello_html_m687d52de.png hello_html_97e29d8.png


рис.5 рис.6


hello_html_m2859f761.jpg hello_html_m7313f30.gif


рис.7 рис.




Список литературы:


1. Смирнова Е.С. Курс наглядной геометрии: Просвещение 2002

2. Шарыгин И. Ф. Ерганжиева Л.Н Наглядная геометрия- М: Мирос, 1992

3. Волошилов А.В. Пифагор – М: Просвещение , 1993

4. Сонин А.С Постижение совершенства – М: Здание, 1987

5. Тарасов Л.В Этот удивительный симметричный мир – М: Просвещение, 1982

6. Гончар В.В Модели многогранников. – М. АКИМ, 1998

7. Веннинджер М. Модели многогранников.- М: Мир, 1974

8. Александровская Л. Мы учимся летать. Издательство «ММедия», 2007

9. Иллюстрированный энциклопедический словарь. М.Терра, 1998.

10. Гусев А. С. МордковичА.Г. .Справочные материалы М: Просвещение 1998.

11. Атанасян Л.С. Учебник по геометрии для 7 - 9классов.

12. Выгодский. М.Я. Справочник по элементарной математике М., 1968г..


Автор
Дата добавления 13.04.2016
Раздел Математика
Подраздел Научные работы
Просмотров744
Номер материала ДБ-028569
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх