Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Конспект урока геометрии №8 на тему: "ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ" (по учебнику Атанасян Л.С., 8 класс)

Конспект урока геометрии №8 на тему: "ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ" (по учебнику Атанасян Л.С., 8 класс)

В ПОМОЩЬ УЧИТЕЛЮ ОТ ПРОЕКТА "ИНФОУРОК":
СКАЧАТЬ ВСЕ ВИДЕОУРОКИ СО СКИДКОЙ 86%

Видеоуроки от проекта "Инфоурок" за Вас изложат любую тему Вашим ученикам, избавив от необходимости искать оптимальные пути для объяснения новых тем или закрепления пройденных. Видеоуроки озвучены профессиональным мужским голосом. При этом во всех видеоуроках используется принцип "без учителя в кадре", поэтому видеоуроки не будут ассоциироваться у учеников с другим учителем, и благодарить за качественную и понятную подачу нового материала они будут только Вас!

МАТЕМАТИКА — 603 видео
НАЧАЛЬНАЯ ШКОЛА — 577 видео
ОБЖ И КЛ. РУКОВОДСТВО — 172 видео
ИНФОРМАТИКА — 201 видео
РУССКИЙ ЯЗЫК И ЛИТ. — 456 видео
ФИЗИКА — 259 видео
ИСТОРИЯ — 434 видео
ХИМИЯ — 164 видео
БИОЛОГИЯ — 305 видео
ГЕОГРАФИЯ — 242 видео

Десятки тысяч учителей уже успели воспользоваться видеоуроками проекта "Инфоурок". Мы делаем все возможное, чтобы выпускать действительно лучшие видеоуроки по общеобразовательным предметам для учителей. Традиционно наши видеоуроки ценят за качество, уникальность и полезность для учителей.

Сразу все видеоуроки по Вашему предмету - СКАЧАТЬ

  • Математика

Поделитесь материалом с коллегами:

Урок 8
ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ

Цели: продолжить знакомить учащихся с задачами на построение. Научить делить отрезок на n равных частей.

Ход урока

I. Проверка домашнего задания. Трое учащихся на доске готовят решение домашних задач.

II. Решение задач.

Напомнить основные этапы решения задач на построение:

1) Анализ задачи.

2) Выполнение построения по намеченному плану.

3) Доказательство того, что построенная фигура удовлетворяет условиям задачи.

4) Исследование задачи.

393 (в) (решение в учебнике).


394. пусть А, В, С – данные точки.

Соединим попарно эти точки и через каждую вершину треугольника АВС проведем прямую, параллельную противолежащей стороне.

Четырехугольники В1ВАС, С1АСВ, В1АВС – параллелограммы по определению.

Задача имеет только эти три решения, так как не существует других прямых, проходящих через точки А, В, С и параллельных прямых ВС, АС, АВ соответственно.


395.

hello_html_4b88b861.png

hello_html_m68902e3c.png

Построить АВСD – параллелограмм.

Построение

hello_html_m2852a4b4.png

hello_html_m77fc466b.gifА = kh, АВ = Р1Q1

P2Q – расстояние между АВ и СD.

Устно провести анализ, доказательство и исследование, в тетрадях – только построение:

1) построить hello_html_m77fc466b.gifА, равный данному hello_html_m77fc466b.gifhk;

2) отложить на его стороне отрезок Р1Q = АВ и отметить точку В;

3) через точку В провести прямую, перпендикулярную прямой АВ и отложить отрезок ВK = Р2Q2;

4) через точку В провести прямую, параллельную другой стороне угла;

5) через точку K провести прямую, параллельную стороне АВ;

6) АВСD – параллелограмм по определению.


397 (а).

Дано:

hello_html_40b57507.png

Построить трапецию АВСD: АD || ВС, АВ = СD, АD = MN, АВ = М1N1, hello_html_m77fc466b.gifА = hk.

Построение

1) Строим hello_html_m11fe6177.gifАВD так, чтобы АD = МN, АВ = М1N1, hello_html_m77fc466b.gifА = hk.

2) Через точку В проведем прямую, параллельную прямой АD. Для этого проведем две окружности: окружность ω1 с центром В радиуса ВD и окружность ω2 с центром D радиуса АВ. Пусть С′ – точка пересечения этих окружностей, лежащая по ту сторону от прямой АD, что и точка В. Тогда ВС|| АD.

3) Окружность ω2 пересекает прямую ВС еще в одной точке – точке С. Соединив эту точку с точкой D, получаем искомую трапецию АВСD. Если hello_html_m77fc466b.gifhk = 90°, то задача не имеет решения.

hello_html_m372a89f7.png

III. Итоги урока.

Домашнее задание: №№ 393 (в), 396 устно, 397 (б); повторить свойства и признаки параллелограмма.




Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 13.11.2016
Раздел Математика
Подраздел Конспекты
Номер материала ДБ-347703
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх