1155329
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

Манифест «Инфоурок»
ИнфоурокАлгебраКонспектыРазработка урока алгебры «Иррациональные уравнения»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 60% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ) в соответствии с ФГОС" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Подать заявку на этот курс    Смотреть список всех 646 курсов

Разработка урока алгебры «Иррациональные уравнения»

библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Урок в 11 классе по теме «Иррациональные уравнения»

Аннотация:

Урок алгебры и начала анализа в 11 общеобразовательном классе.

Цель урока: обобщение и систематизация знаний по теме «Иррациональные уравнения», рассмотреть практическое применение иррациональных уравнений. Подготовка учащихся к ЕГЭ. В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. На уроках учащиеся анализируют различные методы решения иррациональных уравнений. Также среди заданий ЕГЭ есть задачки на практическое применение данной темы. Одна из целей урока – рассмотреть применение иррациональных уравнений при решении задач ЕГЭ на практическое применение в жизни.

Цель урока:

  1. Обобщение и систематизация знаний, умений и навыков по теме урока.

  2. Решение задач ЕГЭ по теме урока на практическое применение в жизни.

  3. Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений.

  4. Развивать самостоятельность, воспитывать грамотность речи.


Задачи урока:

1. Расширить и углубить представления учащихся о приемах и методах решения иррациональных уравнений.

2. Помочь овладеть рядом технических и интеллектуальных умений на уровне свободного их использования.

3. Развить интерес и положительную мотивацию изучения математики.

Тип урока: урок-практикум с использованием на уроке ЭОР.

Форма урока: индивидуальная, групповая.

Оборудование: компьютеры, мультимедийный проектор.

Продолжительность: 45 минут.

Ход урока:

  1. Организационный момент

Альберт Эйнштейн сказал замечательные слова, вслушайтесь в них: “Ощущение тайны – наиболее прекрасное из доступных нам переживаний. Именно это чувство стоит у колыбели истинного искусства и настоящей науки”.

Вот и мы сегодня с вами в очередной раз попытаемся приоткрыть одну из тайн, которую дарит нам наука. Тема нашего сегодняшнего урока: учитель зачитывает тему и цель урока.

На предыдущих уроках мы с вами рассмотрели различные методы и способы решения иррациональных уравнений. На данном уроке мы рассмотрим практическое применение данной темы, поссмотрим задания из ЕГЭ на практическое применение иррациональных уравнений в жизни.

А начнём урок с проверки домашнего задания.

  1. Проверка домашнего задания

1 ученик:

Метод замены переменной или метод подстановки очень часто используется при решении иррациональных уравнений и неравенств. Он позволяет значительно упростить решение, разбить его на самостоятельные этапы. Решить уравнение. http://mathvaz.ru/img_sad/2009-12-13/mp_1.gif.

Решение.

http://mathvaz.ru/img_sad/2009-12-13/mp_2.gif

Проверка:

http://mathvaz.ru/img_sad/2009-12-13/mp_3.gif

Выполняем обратную подстановку

http://mathvaz.ru/img_sad/2009-12-13/mp_4.gif

Ответ: -5; 2.

2 ученик:

Решить уравнение hello_html_m7c2e4f58.gif

Решение. Умножим обе части уравнения на hello_html_m467b8135.gif.

Получим, hello_html_355c95c8.gif.

Имеем, hello_html_3f349112.gif

Отсюда, hello_html_7c54ce7a.gif

Проверкой убеждаемся, что х = 1 является корнем данного уравнения.

Ответ: 1.

Во время проверки домашнего задания трое учащихся работают за компьютерами, выполняют интерактивный тест, состоящий из 5 заданий по теме урока. (это учащиеся, которые по мнению учителя, наиболее хорошо усвоили тему)

Остальные учащиеся класса работают устно.

3.Устная работа.

Ребята, вы знаете, что учителя работают экспертами ЕГЭ, они проверяют ваши работы. Сегодня я вам предлагаю побыть экспертами.

Перед вами работы учащихся. Вам необходимо найти ошибки в их работе.

C:\Users\Ольга\Desktop\Уравнения\IMG_0004.jpg

hello_html_m5bb64325.png



hello_html_m15885771.png


hello_html_7a9335fc.png


hello_html_82af5c6.png

После выполнения устной работы учитель проверяет выполнение домашней работы и выполнение интерактивных тестов.

4.Решение задач.

Существует мнение, что математика, изучаемая в старших классах школы, не имеет практического применения в жизни. Но мне не хочется с этим соглашаться.

Оказывается, иррациональные уравнения применяются не только в математике, но и в фигурном катании(чтобы рассчитать длину шага при вращении, в биологии (для расчёта площади тела насекомого или плотности среды обитания), в физике (для вычисления скорости тела в специальной теории относительности Эйнштейна), а также в авиации (вычисление скорости горизонтального полёта самолёта).

Обсуждение решения практической задачи «Определение глубины ущелья».

В повседневной жизни человек решает много практических задач. Одну из таких задач я предлагаю решить тебе. Учитель открывает презентацию, выполненную в программе «Живая математика», делает Демонстрацию экрана. Ученик на своем экране видит презентацию.

После нажатия кнопки «Опредедление глубины ущелья» происходит переход по ссылке на сайт (http://mikahome.narod.ru/10a/), где выложен ролик, необходимый на уроке. В ролике смоделированна ситуация: определение глубины ущелья с помощью камешка. После запуска ролика и определения времени полета камешка, ученику задается вопрос: «Как определить по формуле, глубину ущелья?»

Нужно в формулу подставить вместо t время полета камня.

hello_html_70b7249b.png













А сейчас мы посмотрим практическое применение иррациональных уравнений, рассмотрим это на примерах заданий ЕГЭ.

  1. Задание В 12

Расстояние от наблюдателя, находящегося на небольшой высоте h километров над землeй, до наблюдаемой им линии горизонта вычисляется по формуле l=√2Rh, где R=6400 (км) — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километров? Ответ выразите в километрах.

Решение

Нам нужно найти такую высоту h, что

4=√26400h

Решаем уравнение и получаем

h=1/800=0.00125 км

Ответ: 0.00125.

  1. Задание B12 (№ 28331)

Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной {l} км с постоянным ускорением a\text{км}/\text{ч}^2, вычисляется по формуле v = \sqrt {2la}. Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 110 км/ч. Ответ выразите в км/ч{}^2.

  1. Задание B12 (№ 28343)

При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону l = l_0 \sqrt {1 - \frac{{v^2 }}{{c^2 }}}, где l_0 = 75 м — длина покоящейся ракеты, c = 3 \cdot 10^5 км/с — скорость света, а v — скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 21 м? Ответ выразите в км/с.

Ребята, подобные задания вы можете увидеть на моём персональном сайте сайте

http://bobrova-teacher.ucoz.ru



5.Подведение итогов урока.

Сегодня на уроке мы посмотрели практическое применение в жизни иррациональных уравнений. А закончить урок мне бы хотелось словами М.В.Ломоносова «Математику уже затем учить надо, что она ум в порядок приводит»

Ого! На "Инфоуроке" олимпиады стали бесплатными    успеть подать заявку
Не тот материал, который искали? Воспользуйтесь поиском по нашей базе из 3113902 материалов.
Искать
Краткое описание документа:
Урок алгебры и начала анализа в 11 общеобразовательном классе. Цель урока: обобщение и систематизация знаний по теме «Иррациональные уравнения», рассмотреть практическое применение иррациональных уравнений. Подготовка учащихся к ЕГЭ. В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. На уроках учащиеся анализируют различные методы решения иррациональных уравнений. Также среди заданий ЕГЭ есть задачки на практическое применение данной темы. Одна из целей урока – рассмотреть применение иррациональных уравнений при решении задач ЕГЭ на практическое применение в жизни. Цель урока: 1.      Обобщение и систематизация знаний, умений и навыков по теме урока. 2.      Решение задач ЕГЭ по теме урока на практическое применение в жизни. 3.      Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений. 4.      Развивать самостоятельность, воспитывать грамотность речи. Задачи урока: 1. Расширить и углубить представления учащихся о приемах и методах решения иррациональных уравнений. 2. Помочь овладеть рядом технических и интеллектуаль­ных умений на уровне свободного их использования. 3. Развить интерес и положительную мотивацию изучения математики. Тип урока: урок-практикум с использованием на уроке ЭОР. Форма урока: индивидуальная, групповая. Оборудование: компьютеры, мультимедийный проектор. Продолжительность: 45 минут.
Общая информация

К учебнику: Алгебра и начала математического анализа. 10-11 классы. (базовый и углубленный уровни) Алимов А.Ш., Колягин Ю.М. и др. 3-е изд. - М.: Просвещение, 2016. - 464 с.

К уроку: § 9. Иррациональные уравнения

Показать все

Номер материала: 65918041059

Вам будут интересны эти курсы:

Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Подростковый возраст - важнейшая фаза становления личности»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс «Правовое обеспечение деятельности коммерческой организации и индивидуальных предпринимателей»
Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»
Курс повышения квалификации «Основы управления проектами в условиях реализации ФГОС»
Курс профессиональной переподготовки «Клиническая психология: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Финансы предприятия: актуальные аспекты в оценке стоимости бизнеса»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс повышения квалификации «Международные валютно-кредитные отношения»
Курс профессиональной переподготовки «Организация и управление службой рекламы и PR»
Курс профессиональной переподготовки «Организация маркетинговой деятельности»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Благодарность за вклад в методическое обеспечение учебного процесса по преподаваемой дисциплине

Опубликуйте 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Добавить материал
Сертификат о создании персонального учительского сайта

Опубликуйте 5 материалов, чтобы БЕСПЛАТНО получить сертификат о создании сайта

Добавить материал
Грамота за высокий уровень сформированности информационно-коммуникационной компетентности

Опубликуйте 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Добавить материал
Свидетельство за транслирование результатов своей профессиональной деятельности

Опубликуйте 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Добавить материал
Грамота за личный вклад в повышение качества образования

Опубликуйте 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Добавить материал
Почётная грамота за высокий уровень профессионализма

Опубликуйте 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Добавить материал
Золотая грамота за современный подход к преподаванию и повышение качества педагогического труда

Опубликуйте 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную золотую грамоту

Добавить материал
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.