Логотип Инфоурока

Получите 30₽ за публикацию своей разработки в библиотеке «Инфоурок»

Добавить материал

и получить бесплатное свидетельство о размещении материала на сайте infourok.ru

Инфоурок Математика СтатьиПлан работы с одаренными детьми по математике

План работы с одаренными детьми по математике

ПЛАН

РАБОТЫ С ОДАРЁННЫМИ ДЕТЬМИ ПО МАТЕМАТИКЕ

Пояснительная записка

Развитие обучающихся во многом зависит от той деятельности, которую они выполняют в процессе обучения. Если деятельность репродуктивная – обучающиеся получает готовую информацию, воспринимает ее, понимает, запоминает, а затем воспроизводит. Цель такой деятельности – формирование знаний, умений и навыков.

Если деятельность продуктивная – происходит активная работа мышления, связанная с логическими операциями анализа, синтеза, сравнения, аналогии, обобщения. Задумываясь над основанием собственных умений (рефлексируя), ребенок овладевает обобщенными способами действий, лежащими в основе этого умения, и тем самым приобретает знания, которые может конкретизировать при решении целого класса частных задач. В общем случае появлению конкретных знаний предшествует овладение методом получения этих знаний.

Проанализировав имеющиеся пособия по работе с одаренными детьми по математике и подготовке их к олимпиадам, можно сделать вывод, что обычно их содержание организовано следующим образом: это сборники заданий для обучающихся повышенной сложности и на смекалку с прилагаемыми ответами или, в лучшем случае, коротким решением. При этом основным методом обучения детей остается репродуктивный: запоминание способа решения заданной конкретной задачи и тренинг (повторение способа решения при многократном выполнении однотипных заданий). При таком методе следующим этапом работы учителя является предложение детям карточек с набором заданий разных типов с целью идентификации ребенком по внешним признакам известных типов заданий и извлечения из памяти заученных способов их решения.

Но “развитая память еще не есть образованность, точная информация еще не есть знания” (У. Глассер). За счет усвоения готовых способов решения разнообразных частных задач невозможно получить развитие способности к самостоятельному нахождению способов решения. Поэтому обучающийся, столкнувшись с задачей нового типа или более повышенной сложности, терпит неудачу при ее решении или отказывается от решения сразу.

В предлагаемой методике работы с одаренными детьми по математике главной задачей является раскрытие принципов действия, решение задачи не ради точного ответа, а ради способа его получения, ради логических рассуждений на пути к нему. Для осуществления технологического процесса при данном подходе к обучению необходима строгая логика построения учебного содержания. Для его наполнения отбираются задания, которые, во-первых, не могли быть использованы на уроках в рамках учебного курса математики:

а) задания, выходящие за рамки изучаемых понятий по годам обучения, но возможность нахождения способов их решения прогнозируется исходя из зоны ближайшего развития продвинутых детей;

б) задания, требующие нестандартного подхода к их решению;

во-вторых (и это главное), могли быть систематизированы по общему способу их решения и представлены в виде модели (знаковой, геометрической, диаграммы, алгоритма действий и т.д.)

Речь идет о моделировании как особом общем способе познания и важнейшем учебном действии, являющимся составным элементом учебной деятельности. С одной стороны, моделирование выступает целью обучения, а с другой – средством самостоятельного решения обучающимися конкретных математических задач. Обучающиеся в процессе особо организованного обучения овладевают действием моделирования, нарабатывая его как способ или даже метод продвижения в системе понятий.



Основные принципы такой организации работы с одаренными детьми:

В ходе использования моделирования нецелесообразно предлагать детям модель в готовом виде. Модель всегда есть результат некоторого этапа исследования. Существенные признаки и связи, зафиксированные в модели, становятся наглядными для обучающихся тогда, когда эти признаки, связи были выделены самими детьми в их собственном действии, т.е. когда они сами участвовали в создании моделей. В противном случае обучающиеся не видят их в модели, и она не становится для них наглядной.

- Для того, чтобы обучающиеся вышли на новую модель, учитель сначала предлагает им задачу, которую они уже легко решают, используя известный способ и модель. Создав ситуацию успеха, можно предложить детям задачу, которая внешне похожа на предыдущую, но её решение старым способ либо приводит к неудаче, либо нерационально. Ребенок обнаруживает дефицит собственных знаний и понимает, что в такой ситуации, когда у него возникают трудности и известная модель не позволяет ему быстро решить задачу, нужно конструировать новый вид модели. Следовательно, у детей возникает необходимость, что является основой для устойчивой мотивации дальнейшей деятельности.

- Построение модели обучающимися обеспечивает наглядность существенных свойств, скрытых связей и отношений, все остальные свойства, несущественные в данном случае, отбрасываются. Часто это не под силу одному, поэтому такую работу целесообразно проводить в группах. Внутри группы дети сами организуют свои действия: либо сначала обсуждают способы решения, а затем каждый самостоятельно пытается выполнить задание, либо сначала каждый пробует выполнить задание, а потом сравнивает свой способ решения со способами других детей. В качестве доказательства правильности решения задачи используется все та же модель. В данном случае она является средством для обоснования точки зрения.

Разобравшись и проанализировав то многообразие текстовых задач, которое есть в школьном курсе математики (включая и нестандартные задачи), можно классифицировать модели, которыми может пользоваться обучающийся. Для различных исследований в математике разработаны методы теории графов, теории вероятностей и математической статистики, математической логики и комбинаторики, аксиоматический метод, методы исследования элементарных функций, решения уравнений, доказательства утверждений, построения геометрических фигур, измерения величин и т.д. В начальной школе обучающиеся вполне могут моделировать комбинаторные и логические задачи, задачи, решаемые с помощью кругов Эйлера, графов, уравнений, задачи на измерение величин.

Как пример описанной выше работы, рассмотрим технологию организации работы с арифметическими ребусами.

При работе с такими типами заданий следует учитывать несколько технологичных приемов:

1. Следует предлагать детям обратные преобразования: сначала обычный пример сделать арифметическим ребусом, заменив цифры буквами; затем ребус превратить в обычный пример, разгадав числа. Тогда дети будут понимать, откуда берутся одинаковые цифры на месте одинаковых букв, лишний старший разряд, разная цифра в суммах одинаковых слагаемых и т.д.

2. Различные “секреты” ребусов не задавать одновременно, это следует делать поочередно, причем после введения каждого “секрета” и его подробного обсуждения предлагать детям самим придумать ребус с таким “секретом”.

3. Следует учитывать возрастные особенности детей: ребусы с буквами требуют умения обучающихся абстрагироваться, выполнять в уме большую часть вычислительных операций, что трудно для малышей, легче дается 3-4-хклассникам.

4. Примеры со * решаются проще, чем ребусы с буквами. Они построены по принципу “распутай клубок”. Поэтому начинать работу следует именно с таких примеров.

Все арифметические ребусы можно разделить на 2 группы:

I группа. Задания, где в примерах цифры частично заменены на * (либо другие значки), нужно восстановить вместо * недостающие цифры и выполнить действие. Эти задания выполняются по общему принципу “распутай клубок”.

II группа. Задания, где примеры либо математические выражения состоят только из * либо из букв (обычных и “сказочных”).

Работа с одаренными детьми

Основные направления деятельности: - интеллектуальная

- творческая

- художественно- эстетическая

Формы работы с одаренными детьми: - индивидуальная работа

-предметные олимпиады

- творческие мастерские

- конкурсы, выставки

- индивидуальные и групповые консультации

Цели:

1. Выявление одаренных детей.

2. Создание условий, способствующих их оптимальному развитию.

Задачи:

1. Проведение целенаправленных наблюдений за учебной и внеурочной деятельностью обучающихся для выявления детей, имеющих склонность и показывающих высокую результативность в области математики.

2. Подбор материалов и проведение тестов, позволяющих определить наличие одаренности.

3. Отбор среди различных систем обучения тех методов, форм и приемов, которые способствуют развитию самостоятельности мышления, инициативности и творчества.

4. Предоставление возможности совершенствовать способности в совместной деятельности с руководителем ( учителем)

5. Работа с родителями по дальнейшему развитию одаренности ребенка

















План работы с одаренными детьми по математике

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал
Скачать тест к материалу

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 478 221 материал в базе

Скачать материал
Скачать тест к материалу

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    Скачать тест к материалу
    • 03.04.2017 226
    • DOCX 53 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Коробкова Валентина Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Пожаловаться на материал
  • Автор материала

    • На проекте: 7 лет и 3 месяца
    • Подписчики: 0
    • Всего просмотров: 9391
    • Всего материалов: 7