Инфоурок / Математика / Тесты / Подготовка к ОГЭ. Задание №9 (4 варианта)

Подготовка к ОГЭ. Задание №9 (4 варианта)

Такого ещё не было!
Скидка 70% на курсы повышения квалификации

Количество мест со скидкой ограничено!
Обучение проходит заочно прямо на сайте проекта "Инфоурок"

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок" 20 мая 2016 г. бессрочно).


Список курсов, на которые распространяется скидка 70%:

Курсы повышения квалификации (144 часа, 1800 рублей):

Курсы повышения квалификации (108 часов, 1500 рублей):

Курсы повышения квалификации (72 часа, 1200 рублей):
библиотека
материалов

1 вариант

1. Най­ди­те угол АDС рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной АВ углы, рав­ные 30° и 50° со­от­вет­ствен­но.

2. Около тра­пе­ции, один из углов ко­то­рой равен 49°, опи­са­на окруж­ность. Най­ди­те осталь­ные углы тра­пе­ции.

За­пи­ши­те ве­ли­чи­ны углов в ответ через точку с за­пя­той в по­ряд­ке не­убы­ва­ния.

3. В тре­уголь­ни­ке ABC AB = BC = 53, AC = 56. Най­ди­те длину ме­ди­а­ны BM.

4. Диа­го­наль BD па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 65° и 50°. Най­ди­те мень­ший угол па­рал­ле­ло­грам­ма.

5. Два угла впи­сан­но­го в окруж­ность че­ты­рех­уголь­ни­ка равны 82° и 58°. Най­ди­те боль­ший из остав­ших­ся углов. Ответ дайте в гра­ду­сах.

6. В тре­уголь­ни­ке ABC угол C пря­мой, BC = 8 , sin A = 0,4.   Най­ди­те AB.

7.  Най­ди­те ве­ли­чи­ну угла AOK, если OK — бис­сек­три­са угла AOD, DOB = 64°. Ответ дайте в гра­ду­сах.

hello_html_cff1451.png

8. Ра­ди­ус окруж­но­сти с цен­тром в точке O равен 85, длина хорды AB равна 80 (см. ри­су­нок). Най­ди­те рас­сто­я­ние от хорды AB до па­рал­лель­ной ей ка­са­тель­ной k.

hello_html_26ed9816.png

9. На плос­ко­сти даны че­ты­ре пря­мые. Из­вест­но, что  hello_html_ed30b63.png,  hello_html_27665ac9.png,  hello_html_m712f8c6.png. Най­ди­те  hello_html_32110c73.png. Ответ дайте в гра­ду­сах.

hello_html_m57874c66.png

10. Диа­го­наль AC па­рал­ле­ло­грам­ма ABCD об­ра­зу­ет с его сто­ро­на­ми углы, рав­ные 25° и 30°. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма.


2 вариант

1. В рав­но­сто­рон­нем тре­уголь­ни­ке  ABC  ме­ди­а­ны  BK  и  AM  пе­ре­се­ка­ют­ся в точке O. Най­ди­те hello_html_m3721721f.png.

2. В тре­уголь­ни­ке ABC угол C равен 90°, AC = 12 , tgA = 1,5. Най­ди­те BC.

3. Сумма двух углов рав­но­бед­рен­ной тра­пе­ции равна 140°. Най­ди­те боль­ший угол тра­пе­ции. Ответ дайте в гра­ду­сах.

4. Ос­но­ва­ния тра­пе­ции равны 4 и 10. Най­ди­те боль­ший из от­рез­ков, на ко­то­рые делит сред­нюю линию этой тра­пе­ции одна из её диа­го­на­лей.

5.  Най­ди­те ве­ли­чи­ну угла AOK, если OK — бис­сек­три­са угла AOD, DOB = 64°. Ответ дайте в гра­ду­сах.

hello_html_cff1451.png

6. Два ост­рых угла пря­мо­уголь­но­го тре­уголь­ни­ка от­но­сят­ся как 4:5. Най­ди­те боль­ший ост­рый угол. Ответ дайте в гра­ду­сах.

7. Точка O — центр окруж­но­сти, на ко­то­рой лежат точки P, Q и R таким об­ра­зом, что OPQR — ромб. Най­ди­те угол ORQ. Ответ дайте в гра­ду­сах.

hello_html_6c1fc5b9.png

8. На про­дол­же­нии сто­ро­ны AD па­рал­ле­ло­грам­ма ABCD за точ­кой D от­ме­че­на точка E так, что DC = DE. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма ABCD, если DEC = 27°. Ответ дайте в гра­ду­сах.

9. Най­ди­те угол АDС рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной АВ углы, рав­ные 30° и 40° со­от­вет­ствен­но.

10. В тре­уголь­ни­ке ABC про­ве­де­ны ме­ди­а­на BM и вы­со­та BH . Из­вест­но, что AC = 84 и BC = BM. Най­ди­те AH.


3 вариант

1. На про­дол­же­нии сто­ро­ны AD па­рал­ле­ло­грам­ма ABCD за точ­кой D от­ме­че­на точка E так, что DC = DE. Най­ди­те боль­ший угол па­рал­ле­ло­грам­ма ABCD, если DEC = 53°. Ответ дайте в гра­ду­сах.

2. В тре­уголь­ни­ке hello_html_m65f4a6e3.png угол hello_html_45d7fb01.png равен 90°, hello_html_11ee88bf.png hello_html_3649f1bd.png Най­ди­те hello_html_3a1008ca.png

3. Четырёхуголь­ник ABCD впи­сан в окруж­ность. Угол ABC равен 80°, угол CAD равен 54°. Най­ди­те угол ABD. Ответ дайте в гра­ду­сах.

4. Най­ди­те мень­ший угол рав­но­бед­рен­ной тра­пе­ции  ABCD, если диа­го­наль  AC  об­ра­зу­ет с ос­но­ва­ни­ем  BC  и бо­ко­вой сто­ро­ной  CD  углы, рав­ные 30° и 105° со­от­вет­ствен­но.


5. Пря­мые m и n па­рал­лель­ны. Най­ди­те 3, если 1= 38° , 2 = 76° . Ответ дайте в гра­ду­сах.

hello_html_m5795bcb4.png

6. В тре­уголь­ни­ке ABC AB = BC, а вы­со­та AH делит сто­ро­ну BC на от­рез­ки BH = 64 и CH = 16. Най­ди­те cosB.

7. Точка D на сто­ро­не AB тре­уголь­ни­ка ABC вы­бра­на так, что AD = AC. Из­вест­но, что CAB = 80° и ACB=59. Най­ди­те угол DCB. Ответ дайте в гра­ду­сах.

8. Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна hello_html_m79fa3ea5.png Один из ост­рых углов равен 30°. Най­ди­те длину ка­те­та, ле­жа­ще­го на­про­тив этого угла.

9. Най­ди­те боль­ший угол рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль AC об­ра­зу­ет с ос­но­ва­ни­ем AD и бо­ко­вой сто­ро­ной AB углы, рав­ные 30° и 45° со­от­вет­ствен­но.

10. Бис­сек­три­сы углов N и M тре­уголь­ни­ка  MNP  пе­ре­се­ка­ют­ся в точке  A. Най­ди­те  hello_html_m5cbd4e95.png, если  hello_html_4c361cf2.png, а  hello_html_740fa0.png


4 вариант

1. В вы­пук­лом че­ты­рех­уголь­ни­ке ABCD hello_html_753e6ae5.pnghello_html_c50d8f6.pnghello_html_m53bf44d.pnghello_html_m3db3b12c.png. Най­ди­те угол A. Ответ дайте в гра­ду­сах.

2. В тре­уголь­ни­ке ABC про­ве­де­на бис­сек­три­са AL, угол ALC равен 112°, угол ABC равен 106°. Най­ди­те угол ACB. Ответ дайте в гра­ду­сах.

3. Пря­мые m и n па­рал­лель­ны. Най­ди­те 3, если 1 = 22°, 2 = 72°. Ответ дайте в гра­ду­сах.

hello_html_59359c7e.png

4. Сумма двух углов рав­но­бед­рен­ной тра­пе­ции равна 220°. Най­ди­те мень­ший угол тра­пе­ции. Ответ дайте в гра­ду­сах.

5. Два угла впи­сан­но­го в окруж­ность че­ты­рех­уголь­ни­ка равны 82° и 58°. Най­ди­те боль­ший из остав­ших­ся углов. Ответ дайте в гра­ду­сах.

6. В тре­уголь­ни­ке ABC AC = BC. Внеш­ний угол при вер­ши­не B равен 146°. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

7. Най­ди­те мень­ший угол рав­но­бед­рен­ной тра­пе­ции ABCD, если диа­го­наль АС об­ра­зу­ет с ос­но­ва­ни­ем ВС и бо­ко­вой сто­ро­ной CD углы, рав­ные 30° и 105° со­от­вет­ствен­но.

8. Один угол па­рал­ле­ло­грам­ма в два раза боль­ше дру­го­го. Най­ди­те мень­ший угол. Ответ дайте в гра­ду­сах.

9. Най­ди­те мень­ший угол рав­но­бед­рен­ной тра­пе­ции  ABCD, если диа­го­наль  AC  об­ра­зу­ет с ос­но­ва­ни­ем  BC  и бо­ко­вой сто­ро­ной  CD  углы, рав­ные 30° и 105° со­от­вет­ствен­но.

10. Четырёхуголь­ник ABCD впи­сан в окруж­ность. Угол ABD равен 14°, угол CAD равен 30°. Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.


Общая информация

Номер материала: ДВ-512990

Похожие материалы