326359
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5 480 руб.;
- курсы повышения квалификации от 1 400 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до 28 февраля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

Инфоурок / Математика / Презентации / Презентация по математике на тему "Свойства квадратных корней"

Презентация по математике на тему "Свойства квадратных корней"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Свойства квадратных корней
Теорема 1. Квадратный корень из произведения двух неотрицательных чисел равен...
Теорема 1. Квадратный корень из произведения двух неотрицательных чисел равен...
Пример 1.
Теорема 2. Если a≥0, b>0, то справедливо равенство
Пример 2.
Если a≥0 и n – натуральное число, то
Историческая справка о знаке корня Начиная с 13 века итальянские и другие евр...

Описание презентации по отдельным слайдам:

1 слайд Свойства квадратных корней
Описание слайда:

Свойства квадратных корней

2 слайд Теорема 1. Квадратный корень из произведения двух неотрицательных чисел равен
Описание слайда:

Теорема 1. Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных корней из этих чисел √(a*b) = √a*√b Доказательство: 1)Введём следующие обозначения: √(a*b) = x; √a = y; √b = z. Надо доказать, что для неотрицательных чисел x, y, z выполняется равенство x = y*z, т.е. x = y*z = √(a*b) = √a*√b. 2) Так как √(a*b) = x, то x2 = a*b. Аналогично, так как y = √a и z = √b, то соответственно y2 = a и z2 = b. 3) Итак, x2 = a*b, y2 = a и z2 = b. Тогда x2 = y2 * z2, т.е. x2 = (у*z)2. Если квадраты двух неотрицательных чисел равны, то и сами числа равны, значит, из равенства x2 = (у*z)2 следует, что x = y*z, что и требовалось доказать.

3 слайд Теорема 1. Квадратный корень из произведения двух неотрицательных чисел равен
Описание слайда:

Теорема 1. Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных корней из этих чисел √(a*b) = √a*√b Краткая запись доказательства теоремы: Подготовка к доказательству (введение новых переменных) Перевод на более простой язык Доказательство √(a*b) = x x2 = a*b x2 = y2*z2 √a = y y2= a x2 = (y*z)2 √b = z z2= b x = y*z Доказать: x = y*z

4 слайд Пример 1.
Описание слайда:

Пример 1.

5 слайд
Описание слайда:

6 слайд Теорема 2. Если a≥0, b>0, то справедливо равенство
Описание слайда:

Теорема 2. Если a≥0, b>0, то справедливо равенство

7 слайд Пример 2.
Описание слайда:

Пример 2.

8 слайд Если a≥0 и n – натуральное число, то
Описание слайда:

Если a≥0 и n – натуральное число, то

9 слайд
Описание слайда:

10 слайд
Описание слайда:

11 слайд Историческая справка о знаке корня Начиная с 13 века итальянские и другие евр
Описание слайда:

Историческая справка о знаке корня Начиная с 13 века итальянские и другие европейские математики обозначали корень латинским словом Radix (корень) или сокращённо Rx. В 15 веке писали R212 вместо √212. В 1626 году нидерландский математик А. Ширар ввёл близкое к современному обозначение корня V. Если над этим знаком стояла цифра 2, то это означало корень квадратный. Это обозначение стало вытеснять знак Rx. Однако долгое время писали V(a+b) с горизонтальной чертой над суммой. Лишь в 1637 году Рене Декарт соединил знак корня с горизонтальной чертой, применив современный знак корня √. Этот знак вошёл во всеобщее употребление лишь в начале 18 века.

Общая информация

Номер материала: ДВ-318491

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.