Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Научные работы / Проект "Оригами в математике"

Проект "Оригами в математике"

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 2 имени И.И.Тарасенко станицы Выселки Выселковского района Краснодарского края.



Секция математики





Математика в оригами













Автор: Свиридова Алиса

Ученица 7 Б класса

Научный руководитель:

Минченко Галина Абдулхамитовна,

учитель математики.





Выселки 2016.

Россия, Краснодарский край, Выселковский район, станица Выселки , муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 2 имени И.И.Тарасенко,6 б класса. Научный руководитель: Минченко Галина Абдулхамитовна, учитель математики муниципального бюджетного общеобразовательного учреждения средней общеобразовательной школы 2 имени И.И.Тарасенко.





Россия, Краснодарский край, Выселковский район, станица Выселки , муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 2 имени И.И.Тарасенко, 6 б класс

Научный руководитель: Минченко Галина Абдулхамитовна, учитель математики муниципального бюджетного общеобразовательного учреждения средней общеобразовательной школы 2 имени И.И.Тарасенко



1.Введение. Я хочу узнать о влиянии математики на оригами - вид декоративно-прикладного искусства; древнее искусство складывания фигурок из бумаги. Искусство оригами своими корнями уходит в Древний Китай, где и была изобретена бумага. Первоначально оригами использовалось в религиозных обрядах. Долгое время этот вид искусства был доступен только представителям высших сословий, где признаком хорошего тона было владение техникой складывания из бумаги.

Цель: Определить степень влияния чисел на жизнь человека

Задачи: 1.Изучить историю оригами

2. Узнать, как математика используется в оригами

3. Выяснить, что такое геометрические и приблежённые построения.

4. Узнать о жёстком складывании и его практической важности.

5. Создать несколько фигурок.

I

Существует множество версий происхождения оригами. Одно можно сказать наверняка — по большей части это искусство развивалось в Японии. Оригами стало значительной частью японских церемоний уже к началу периода Хэйан. Самураи обменивались подарками, украшенными носи, своего рода символами удачи, сложенными из бумажных лент. Сложенные из бумаги бабочки использовались во время празднования свадеб синто и представляли жениха и невесту.

Однако, независимые традиции складывания из бумаги, хоть и не столь развитые, как в Японии, существовали среди прочего в Китае, Корее, Германии и Испании. Европейские традиции складывания из бумаги менее документированы, чем восточные, однако известно, что технология изготовления бумаги достигла арабов около VIII века н. э., мавры принесли бумагу в Испанию около XI века. С этого времени в Испании и с XV века в Германии начало развиваться складывание бумаги. Как и в Японии, в Европе складывание из бумаги тоже было частью церемоний. Обычай складывать особым образом свидетельства о крещении был популярен в центральной Европе в XVII-XVIII вв. К XVII веку в Европе существовал целый ряд традиционных моделей: Испанская Пахарита, шляпы, лодки и домики. В начале XIX века Фридрих Фрёбель сделал огромный вклад в развитие складывания из бумаги, предложив это занятие в качестве обучающего в детских садах для развития детской моторики.

В 1960-х с введением в обиход системы условных обозначений Ёсидзавы-Рандлетта искусство оригами стало распространяться по всему миру. Примерно в те же годы получило распространение модульное оригами. В настоящий момент оригами превратилось по-настоящему в международное искусство.



II

Искусство складывания из бумаги, или оригами, насчитывает уже несколько сотен лет. В последние десятилетия в данном виде искусства стали использоваться достижения математики. Подобные исследования занимаются вопросами различных геометрических построений и во многом похожи на соответствующий раздел математики — построения с помощью циркуля и линейки. Помимо этого, математика оригами решает вопрос о возможности плоского складывания, а также вопрос о возможности твердого складывания какой-либо модели. Данные работы, кроме чисто академического интереса для математиков имеют и практическую ценность как для оригамистов, так и для инженеров.

III

С точки зрения математики оригами, целью оригамиста является точное определение местоположения одной или более точек листа, задающих складки, необходимые для формирования окончательного объекта. Процесс складывания подразумевает выполнение последовательности точно определенных действий по следующим правилам:

1. Линия определяется либо краем листа, либо линией сгиба бумаги.

2. Точки определяются пересечениями линий.

3. Все складки определяются единственным образом путем совмещения различных элементов листа — линий или точек.

4. Сгиб формируется единственной складкой, причем в результате складывания фигура остается плоской.

Последний пункт сильно ограничивает возможности складывания, разрешая только одну складку за раз. На практике даже простейшие модели оригами подразумевают создание нескольких складок за одно действие.

Что же касается приблежённого построения, с практической точки зрения, оно представляет ничуть не меньший интерес, чем математически строгое. В большинстве реальных приложений, ошибки в расстояниях менее 0,5 % стороны квадрата редко имеют значение. К тому же, важным критерием того или иного метода построения является его ранг — количество складок, необходимых для того, чтобы отложить заданную пропорцию. Желательно также по возможности оставить внутреннюю область квадрата не мятой, создав лишь небольшие метки по краям листа.

IV

Хорошим примером практической важности оригами, рассматривающего складки как петли, соединяющие две плоские, абсолютно твёрдые поверхности, пожалуй, будет миура-ори. Это схема жёсткого складывания, которая использовалась для развёртывания больших установок солнечных батарей на космических спутниках. Она была представлена японским астрофизиком Корё Миурой в 1970 году. Сейчас также используется для складывания бумажных документов, в частности карт местности. В отличие от обычных методов складывания карт, складки миура-ори расположены не перпендикулярно, а слегка под наклоном друг к другу. В результате такую карту можно развернуть и свернуть одним движением, а отсутствие многослойных складок уменьшает нагрузку на бумагу.









Вывод:

Закончив свой проект, я могу сказать, что я решила проблему своего проекта;

узнала, как именно математика влияет на оригами и где применяется, а также для наглядности сложила несколько фигурок.



Источники:

1. «Энциклопедический словарь юного математика» Составитель Савин А.П., Москва, «Педагогика», 1989г.



2. «Математика в школе» 8 2003г. «Расчётно –экспериментальные работы при изучении математики».













Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 30.10.2016
Раздел Математика
Подраздел Научные работы
Просмотров46
Номер материала ДБ-301383
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх