Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии (8 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по геометрии (8 класс)

библиотека
материалов




Муниципальное бюджетное образовательное учреждение

«Средняя школа №11»











РАБОЧАЯ ПРОГРАММА


по______геометрии____


для ________8 б________ класса


учителя Зулкарнаевой Елены Ринатовны

(Ф.И.О. учителя, составителя рабочей программы)












2015 - 2016 учебный год




Пояснительная записка


Рабочая программа по геометрии для учащихся 8 класса составлена на основе Примерной программы основного общего образования по математике в соответствии с федеральным компонентом государственного стандарта и с учетом рекомендаций авторской программы к учебнику для 7 – 9 классов общеобразовательных школ Л.С. Атанасяна, В.Ф. Бутузова и др.   (Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных учреждений/ составитель Т.А. Бурмистрова. – М.: Просвещение, 2011).

Рабочая программа рассчитана на 70 часов годовой учебной нагрузки, 2 учебных часа в неделю.

Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач -- основной учебной деятельности на уроках математики -развиваются творческая и прикладная стороны мышления. Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся чувство точности, экономности, информативности речи, формировать умение точно выражать мысли, отбирая для этого наиболее подходящие языковые (в частности символические, графические) средства.

Математическое образование необходимо и для общей культуры человека. Это касается знакомства с методами познания действительности. Изучение математики способствует эстетическому воспитанию человека, формируя понимание красоты и изящества математических рассуждений, помогает восприятию геометрических форм, усвоению идеи симметрии, развивает воображение, пространственные представления.

Изучение геометрии опирается па наглядно-интуитивные представления учащихся, широкое использование справочного материала, роль формальных рассуждений и доказательств существенно снижается. При изучении стереометрического материала идея обоснования всей геометрии на основе системы аксиом перестаёт быть превалирующей, акцент переносится на формирование пространственного воображения и умения применять полученные факты в простейших случаях.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходи­мых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необ­ходимых человеку для полноценной жизни в современном общест­ве: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению труд­ностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.


Формирование общеучебных умений и навыков.

В результате освоения содержания курса « Геометрии» учащийся получает возможность совершенствовать и расширить круг общих учебных умений, навыков и спо­собов деятельности. Познавательная деятельность.

Умение самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки дели до получения и оценки результата). Использование элементов причинно-следственного и структурно-функционального анализа. Исследование несложных реальных связей и зависимостей. Определение сущностных характеристик изучаемого объекта; самостоятельный выбор критериев для сравнения, сопоставления, оценки и классификации объектов.

Участие в организации и проведении учебно-исследовательской и творческой работы: выдвижение гипотез, осуществление их проверки, владение приемами исследовательской деятельности, элементарными умениями. Самостоятельное создание алгоритмов познавательной деятельности для решения задач творческого и поискового характера. Формулирование полученных результатов.

Информационно-коммуникативная деятельность

Поиск нужной информации по заданной 'теме в источниках различного типа. Извлечение необходимой информации из источников, созданных в различных знаковых системах (текст, таблица, график, диаграмма, аудиовизуальный ряд и др.), отделение основной информации от второстепенной, критическое оценивание достоверности полученной информации, передача содержания информации адекватно поставленной цели [сжато, полно, выборочно). Перевод информации из одной знаковой системы в другую (из текста в таблицу, из аудиовизуального ряда в текст и др.), выбор знаковых систем адекватно познавательной и коммуникативной ситуации. Умение развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного). Объяснение изученных положений на самостоятельно подобранных конкретных примерах.

Выбор вида чтения в соответствии с поставленной целью (ознакомительное, просмотровое, поисковое и др.). Свободная работа с математическими текстами, понимание их специфики; адекватное восприятие языка средств массовой информации.

Владение основными видами публичных выступлений (высказывание, монолог, дискуссия, полемика), следование этическим нормам и правилам ведения диалога. Рефлексивная деятельность

Понимание ценности образования как средства развития культуры личности. Объективное оценивание своих учебных достижений, поведения, черт своей личности; учет мнения других людей при определении собственной позиции и самооценке. Умение соотносить приложенные усилия с полученными результатами своей деятельности. Владение навыками организации и участия в коллективной деятельности: постановка общей дели и определение средств ее достижения, конструктивное восприятие иных мнений и идей, /чет индивидуальности партнеров по деятельности, объективное определение своего вклада в общий результат.

Осуществление осознанного выбора путей продолжения образования.


ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ


Начальные понятия и теоремы геометрии.

Возникновение геометрии из практики.

Геометрические фигуры и тела. Равенство в геометрии.

Точка, прямая и плоскость.

Понятие о геометрическом месте точек.

Расстояние. Отрезок, луч. Ломаная.

Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства.

Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой.

Многоугольники.

Окружность и круг.

Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Примеры сечений. Примеры разверток.

Треугольник. Прямоугольные, остроугольные, и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинам сторон и углов треугольника.

Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число ; длина дуги. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности.Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.



Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника.

Площадь круга и площадь сектора.

Связь между площадями подобных фигур.

Объем тела. Формулы объема прямоугольного параллелепипеда, куба, шара, цилиндра и конуса.

Векторы.

Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение, разложение, скалярное произведение. Угол между векторами.

Геометрические преобразования.

Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур.

Построения с помощью циркуля и линейки.

Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы, деление отрезка на n равных частей.

Правильные многогранники.


ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ


В результате изучения геометрии ученик должен

знать/понимать
  • существо понятия математического доказательства; приводить примеры доказательств;

  • существо понятия алгоритма; приводить примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.


уметь

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;


  • вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;


использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).



Требования к оценке знаний учащихся



Требования к оценке знаний учащихся


Критерии оценки устных ответов учащихся

 Отметка «5» ставится в следующих случаях:

  • полно раскрыто содержание материала в объеме, предусмотренном программой и учебником,

  • изложен материал грамотным языком в определенной логической последовательности, точно использована математическая терминология и символика;

  • правильно выполнены рисунки, чертежи, графики, сопутствующие ответу;

  • показано умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

  • продемонстрировано усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;

  • ответ самостоятелен, без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

 Отметка «4» ставится в следующих случаях:

  • ответ удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

 Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);

  • имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из по­ставленных вопросов по изучаемому материалу.

 


 Критерии оценки письменных  работ учащихся

Отметка «5» ставится, если:

  • работа выполнена полностью;

  • в логических  рассуждениях и обосновании решения нет пробелов и ошибок; 

  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

 Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

 Отметка «3» ставится, если:

  • допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме. 

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере. 

Отметка «1» ставится, если:

  • работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.




Обьем домашнего задания не должен превышать затраты на его выполнение, указанные в СанПин 2.4.2.2821-10 (в астр. ч)

в 6 – 8 кл.- 2,5 часа














Учебно-методическое обеспечение

Учебник

Л.С. Атанасян., В.Ф. Бутузов. Геометрия: Учеб. для 7–9 класс для общеобразовательных учреждений. – М.: Просвещение, 2003.

Пособие для учителя:

Гаврилова Н.Ф. Поурочные разработки по геометрии. 8 класс. М.: «ВАКО». 2009.


Дидактический материал

С.Б. Веселовский, В.Д. Рябчинская Дидактические материалы для 8 класса. – М.: - Просвещение, 2003.

Б.Г. Зив, В.М. Мейлер, А.Г. Баханский Задачи по геометрии: Сборник задач. – М.: Просвещение 2003.

Л.И. Звавич, Л.Я. Шляпочкин,Б.В. Козулин. Контрольные и проверочные работы по геометрии. – М.:Дрофа, 2005.

Карпушина Н.М. Развивающие задачи по геометрии. 8 класс. - М.: Школьная пресса, 2004.

Контрольно – измерительные материалы. Геометрия. 8 класс. Составитель Н.Ф. Гаврилова. - М.: «ВАКО». 2012.


Интернет - ресурсы

  1. http://nsportal.ru/shkola/geometriya/library

  2. http://prezentacii.com/matematike/

  3. http://videouroki.net/view_catfile.php?cat=32&klass=7&subj_id=2













Содержательная часть


Четырехугольники (14 ч)

 Обязательный минимум содержания

  • Выпуклые многоугольники.

  • Сумма углов выпуклого многоугольника.

  • Параллелограмм, его свойства и признаки.

  • Прямоугольник, квадрат, ромб, их свойства и признаки.

  • Трапеция, средняя линия трапеции; равнобедренная трапеция.

  • Теорема Фалеса.

Уровень обязательной подготовки обучающегося

  • Знать различные виды четырехугольников, их признаки и свойства.

  • Уметь применять свойства четырехугольников при решении простых задач.

Уровень возможной подготовки обучающегося

  • Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.

  • Уметь решать задачи на построение.

Уровень обязательной подготовки обучающегося

Меньшая сторона прямоугольника равна 6 см. Найдите длины диагоналей, если они пересекаются под углом 600.

Уровень возможной подготовки обучающегося

  1. В параллелограмме ABCD проведена биссектриса угла А, которая пересекает сторону ВС в точке F. Докажите, что треугольник АВF равнобедренный

  2. Постройте прямоугольник по стороне и диагонали.



Площади фигур (14 ч)


 Обязательный минимум содержания

  • Понятие о площади плоских фигур.

  • Равносоставленные и равновеликие фигуры.

  • Площадь прямоугольника.

  • Площадь параллелограмма.

  • Площадь треугольника.

  • Площадь трапеции.

  • Теорема Пифагора.

Уровень обязательной подготовки обучающегося

  • Уметь пользоваться языком геометрии для описания предметов окружающего мира.

  • Уметь вычислять значения площадей основных геометрических фигур и фигур, составленных из них;

  • Знать формулы вычисления площадей геометрических фигур, теорему Пифагора и уметь применять их при решении задач.

  • Уметь выполнять чертежи по условию задач

Уровень возможной подготовки обучающегося

  • Знать формулы вычисления площадей геометрических фигур, теорему Пифагора, формулу Герона и уметь применять их при решении задач.

  • Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии.

  • Уметь решать задачи на доказательство и использовать дополнительные формулы для нахождения площадей геометрических фигур.

Уровень обязательной подготовки обучающегося

  1. Найдите площадь равнобокой трапеции, если ее основания равны 12 см и 6 см, а боковая сторона образует с одним из оснований угол, равный 450.

  2. В прямоугольнике ABCD найдите AD, если АВ = 5, АС = 13.

Уровень возможной подготовки обучающегося

  1. В ромбе высота, равнаяhello_html_794bb0d7.gifсм, составляет hello_html_m520d504.gif большей диагонали. Найдите площадь ромба.

  2. В равнобедренном треугольнике АВС с основанием ВС высота АD равна 8 см. Найдите площадь треугольника АВС, если медиана DM треугольника АDС равна 8 см.



Подобные треугольники (19 ч)


Обязательный минимум содержания

Подобие треугольников.

  • Признаки подобия треугольников.

  • Связь между площадями подобных фигур.

  • Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника.

  • Решение прямоугольных треугольников.

  • Основное тригонометрическое тождество.

Уровень обязательной подготовки обучающегося

  • Знать определение подобных треугольников.

  • Уметь применять подобие треугольников при решении несложных задач.

  • Уметь пользоваться языком геометрии для описания предметов окружающего мира.

  • Уметь распознавать геометрические фигуры, различать их взаимное расположение.

  • Уметь изображать геометрические фигуры.

  • Уметь выполнять чертежи по условию задач.

  • Знать признаки подобия треугольников, уметь применять их для решения практических задач.

  • Уметь находить синус, косинус, тангенс и котангенс острого угла прямоугольного треугольника.

Уровень возможной подготовки обучающегося

  • Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.

  • Уметь применять признаки подобия треугольников для решения практических задач.

  • Уметь проводить доказательные рассуждения при решении задач, используя известные теоремы.

  • Уметь решать геометрические задачи на соотношения между сторонами и углами прямоугольного треугольника.

Уровень обязательной подготовки обучающегося

В трапеции ABCD проведены диагонали АС и ВD, которые пересекаются в точке О. Докажите, что треугольник СОВ подобен треугольнику AOD.

Уровень возможной подготовки обучающегося

  1. Докажите, что середины сторон ромба являются вершинами прямоугольника.

  2. Постройте треугольник, если даны середины его сторон.

  3. Биссектрисы MD и NK треугольника MNP пересекаются в точке О. Найдите отношение ОК:ON, если MN = 5 см, NP = 3 см, MP = 7 см.



Окружность (17 ч)

Обязательный минимум содержания

  • Центральный, вписанный угол; величина вписанного угла.

  • Взаимное расположение прямой и окружности.

  • Касательная и секущая к окружности.

  • Равенство касательных, проведенных из одной точки.

  • Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан.

  • Окружность, вписанная в треугольник.

  • Окружность, описанная около треугольника.

 Уровень обязательной подготовки обучающегося

  • Уметь вычислять значения геометрических величин.

  • Знать свойства биссектрисы угла и серединного перпендикуляра к отрезку.

  • Уметь распознавать геометрические фигуры, различать их взаимное расположение.

  • Уметь решать задачи на построение.

Уровень возможной подготовки обучающегося

  • Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.

  • Уметь проводить доказательные рассуждения при решении задач, используя известные теоремы.

  • Знать метрические соотношения в окружности: свойства секущих, касательных, хорд и уметь применять их в решении задач.

  • Иметь понятие о вписанных и описанных четырехугольниках.

Уровень обязательной подготовки обучающегося

  1. Окружность разделена на две дуги, причем градусная мера одной из них в три раза больше градусной меры другой. Чему равны центральные углы, соответствующие этим дугам?

  2. Через точку А окружности проведены диаметр АС и две хорды АВ и AD, равные радиусу этой окружности. Найдите углы четырехугольника АВСD и градусные меры дуг АВ, ВС, CD, AD.

Уровень возможной подготовки обучающегося

  1. К данной окружности постройте касательную, проходящую через данную точку вне окружности.

  2. Биссектрисы углов при основании АВ равнобедренного треугольника АВС пересекаются в точке М. Докажите, что прямая СМ перпендикулярна к прямой АВ.

  3. В окружность вписан равнобедренный треугольник АВС с основанием ВС. Найдите углы треугольника, если hello_html_m416cb943.gifВС =1020 .


Повторение. Решение задач (5ч, из них 2 ч на вводное повторение)


Уровень обязательной подготовки обучающегося

  1. В равнобедренной трапеции диагональ равна 10 см, а высота равна 6 см. Найдите площадь трапеции.

  2. Два угла треугольника равны 450 и 300. Найдите отношения противолежащих им сторон.

  3. Две окружности с центрами в точках О и О1 и равными радиусами пересекаются в точках А и В. Докажите, что четырехугольник АО1ВО – параллелограмм.

Уровень возможной подготовки обучающегося

  1. В треугольнике АВС проведена высота ВН. Докажите, что если:

а) угол А острый, то hello_html_6e8919cf.gif;

б) угол А тупой, то hello_html_14273b67.gif.

  1. Найдите радиус вписанной в равносторонний треугольник окружности, если радиус описанной окружности равен 10 см.



Календарно - тематическое планирование по геометрии

8б класс

2 урока в неделю (70 уроков в год)


урока

Тема урока

Кол-во часов

Дата

Примечание

1-2 Вводное повторение (2 часа)

Четырехугольники (14 уроков)

3-4

Многоугольники

2

2,7.

09


5-10

Параллелограмм и трапеция

6

9,14,16,21,23,28

09


11-14

Прямоугольник, ромб, квадрат

4

30. 09

6,7,12. 10


15

Решение задач по теме: Четырехугольники

1

14. 10


16

Контрольная работа по теме «Четырехугольники»

1

19.10


Площадь (14 уроков)

17-18

Площадь многоугольника

2

21,26

10


19-24

Площади параллелограмма, треугольника и трапеции

6

28. 10

9,11,16,18,23.11


25-27

Теорема Пифагора

3

25,30.11

02. 12


28-29

Решение задач по теме «Площадь»

2

7,9. 12


30

Контрольная работа по теме «Площадь»

1

14. 12


Подобные треугольники (19 часов)

31-32

Определение подобных треугольников

2

16,21. 12


33-37

Признаки подобия треугольников

5

23,28. 12



38

Контрольная работа по теме «Подобные треугольники»

1



39-45

Применение подобия к доказательству теорем и решению задач

7



46-48

Соотношения между сторонами и углами прямоугольного треугольника

3



49

Контрольная работа по теме «Подобные треугольники»

1



Окружность (17 часов)

50-52

Касательная к окружности

3



53-56

Центральные и вписанные углы

4




57-59

Четыре замечательные точки треугольника

3



60-63

Вписанные и описанные окружности

4



64-65

Решение задач по теме «Окружность»

2



66

Контрольная работа по теме: Окружность

1



Повторение. Решение задач (3 часа)

67-68

Повторение. Решение задач

2



69

Итоговая контрольная работа

1



70

Анализ итоговой контрольной работы

1













































Контрольная работа №1

Четырехугольники


1. Периметр параллелограмма ABCD равен 80 см. hello_html_7707454f.gifА = 30о, а перпендикуляр ВН к прямой АD равен 7,5 см. Найдите стороны параллелограмма


2. Докажите, что у равнобедренной трапеции углы при основании равны.


3. Постройте ромб по двум диагоналям. Сколько осей симметрии у ромба?

________________________________________________


4. Точки Р, К, L, M – середины сторон ромба АВСD. Докажите, что четырехугольник РКLM – прямоугольник.











Контрольная работа №2

Площадь


1. В прямоугольнике ABCD АВ = 24 см, АС = 25 см. Найдите площадь прямоугольника.


2. Найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см, а острый угол равен 60о.


3. Найдите площадь ромба, если его диагонали равны 14 и 6 см.


4. Найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны.

____________________________________________________


5. Середины оснований трапеции соединены отрезком.

Докажите, что полученные две трапеции равновелики.














Контрольная работа №3

Подобные треугольники

hello_html_56fa0048.jpg

1. На рисунке АВ || CD.

а) Докажите, что АО : ОС = ВО : OD.

б) Найдите АВ, если OD = 15 см, ОВ = 9 см,

CD = 25 см.


2. Найдите отношение площадей тре­угольников ABC и KMN, если АВ = 8 см, ВС = 12 см, АС = 16 см, КМ = 10 см, MN = 15 см, NK = 20 см.


__________________________________________


3.Докажите, что в подобных треугольниках отношение двух сходственных сторон равно отношению двух сходствен­ных высот.





Контрольная работа №4

Подобные треугольники


1. Отрезки АВ и СМ пересекаются в точке О так, что АС || ВМ. Найдите длину отрезка СМ, если АО=12 см, ОВ=3 см, СО=8 см.


2. В треугольнике АВС точка К принадлежит стороне АВ, а точка Р – стороне АС. Отрезок КР|| BC. Найдите периметр треугольника АКР, если АВ=9 см, ВС=12 см, АС=15 см и АК : КВ=2:1.


3. В треугольнике АВС угол С=900. АС=15см, ВС=8 см. Найдите hello_html_m41691548.gif

__________________________________________


4. Между пунктами А и В находится болото. Чтобы найти расстояние между А и В, отметили вне болота произвольную точку С, измерили расстояние АС = 600 м и ВС = 400 м, а также hello_html_2ef92351.gifАСВ = 62°.

Начертите план в масштабе 1 : 10 000 и найдите по нему расстояние между пунктами А и В.







Контрольная работа №5

Окружность


1. Из точки данной окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.


2. Хорда АВ стягивает дугу, равную 125о, а хорда АС – дугу в 52о. Найдите угол ВАС


3. Постройте окружность, описанную около тупоугольного треугольника.

_____________________________________________


4. Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.









Контрольная работа №6

Итоговая контрольная работа


1. В прямоугольном треугольнике найдите гипотенузу с, если его катеты равны: а=5 см, b=12 см.

2. В треугольнике АВС hello_html_m13c7957e.gif. Найдите hello_html_m23ddb626.gif.


3. В равнобедренном треугольнике боковая сторона равна 10 дм и основание равно 12 см. Найдите: а)высоту треугольника, проведенную к основанию треугольника; б) площадь треугольника.


4. Постройте равнобедренный треугольник по боковой стороне и углу при основании.

__________________________________________________


5. Около остроугольного треугольника АВС описана окружность с центром О. Расстояние от точки О до прямой АВ равно 6 см, hello_html_7002d2e7.gif.

Найдите: а) угол АВО; б) радиус окружности.





Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 09.10.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров278
Номер материала ДВ-044957
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх