Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 5 -9 классы

Рабочая программа по математике 5 -9 классы


  • Математика

Поделитесь материалом с коллегами:


Негосударственное образовательное учреждение средняя общеобразовательная
школа Альфа с углубленным изучением отдельных предметов



РАССМОТРЕНО

на ШМО (протокол № ____

от ____.____. 20____)

Руководитель ШМО


____________

СОГЛАСОВАНО

Зам. директора


__________ А.Ф. Ибрагимов


____.____. 20____

УТВЕРЖДАЮ

Директор школы


__________ Г.К. Фасхутдинова


____.____. 20____




Рабочая программа

учебного предмета, курса



Математика

наименование предмета, курса

основное общее образование

уровень образования

5- 9 классы

класс или возраст учащихся

5 лет

срок реализации

Примерные программы основного общего образования. Математика. - М.:

название примерной, авторской программы

Просвещение, 2011 г (Стандарты второго поколения)


Боркова Л.В.

составитель (фамилия, инициалы)

2015

год составления


Пояснительная записка

Рабочая программа по математике составлена на основе:

  • Закона «Об образовании в Российской Федерации» от 29 декабря 2012 года

273-ФЗ

  • Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897 с внесенными изменениями от 29.12.2014 приказ №1644

  • Примерной программы основного общего образования по математике (Сборник серии Стандарты второго поколения. Математика. М.: Просвещение, 2011),

  • Учебного плана образовательного учреждения на 2015-2016 учебный год.



Уровень программы: базовый.

Выбор данной программы и учебно-методического комплекса обусловлен с преемственностью целей образования, логикой внутри предметных связей, а также с возрастными особенностями развития учащихся, и опираются на вычислительные умения и навыки учащихся, полученные на уроках математики 1 – 4 классов.

Настоящая программа основного общего образования по математике составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам общего образования, представленных в федеральном государственном образовательном стандарте общего образования, с учетом преемственности с Примерными программами для начального общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.


Согласно Федеральному базисному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 часов из расчёта 5 учебных часов в не­делю в 5-9 классах.

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 класс – «Математика» (интегрированный предмет), 7–9 классах предмет «Математика» (Алгебра и Геометрия).


Программа ориентирована на использование в учебном процессе следующих УМК:

  • УМК для 5–6-го классов авторов Н.В.Виленкин, В.И.Жохов, А.С.Чесноков,С.И.Шварцбурд,

  • УМК для 7-9-го классов авторов Ю.Н.Макарычев и др.

  • УМК 7-9-го классов автор Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев.


Обучение математике в основной школе направлено на достижение следующих целей:

  1. в направлении личностного развития:

    • Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

    • Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

    • Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

    • Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

    • Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

    • Развитие интереса к математическому творчеству и математических способностей;

  2. в метапредметном направлении:

    • Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

    • Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  3. в предметном направлении:

    • Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

    • Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.


Общая характеристика учебного предмета (курса)

В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления развития учащихся средствами предмета «Математика».

Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.


Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает его распределение между 5—6 и 7—9 классами.

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно- методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств в решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределено — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.


Целью изучения курса математики в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.

Целью изучения курса алгебры в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств, как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.

Изучение математики в 5 -6 классах проводится в следующих видах и формах:

  • повторение и контроль теоретического материала;

  • разбор и анализ домашнего задания;

  • устный счет;

  • математический диктант;

  • самостоятельная работа;

  • контрольные срезы.

Основными формами и методами организации учебного процесса в 5- 9 классах являются: индивидуальные, групповые, фронтальные, объяснительно-иллюстративный, репродуктивный и частично-поисковый. На уроках используются такие формы занятий как: практические занятия, консультации, лекции, зачетные уроки.

Виды и формы контроля: текущий и итоговый. Проводится в форме самостоятельных, проверочных, контрольных работ, тестов. Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала. Итоговые контрольные работы проводятся после изучения наиболее значимых тем программы, в конце четверти, полугодия, года.

Место учебного предмета (курса) в учебном плане

Учебный (образовательный) план на изучение математики в основ­ной школе отводит 5 учебных часов в не­делю в течение каждого года обучения, всего 875 уроков. Согласно учебного (образовательного) плана в 5—6 клас­сах изуча­ется предмет «Математика», в 7—9 классах - «Алгебра» и «Геометрия». Предмет «Математика» в 5—6 классах включает арифмети­ческий мате­риал, элементы алгебры и геометрии, а также эле­менты вероятностно-статистиче­ской линии.

Раздел «Алгебра» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функ­ции, элементы вероятностно-статистической линии. В рамках учебного раздела «Геометрия» изучаются: евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Распределение учебных часов:


Классы

Предмет

Количество часов в неделю

Количество

контрольных работ

5 - 6

Математика

5 часов в неделю (175 часов в год)

14-15

7-9

Алгебра


Геометрия

3 часа в неделю (105 часов в год)

2 часа в неделю (70 часов в год)

7- 10


5 - 6

Личностные, метапредметные и предметные результаты освоения
учебного предмета (курса)

5–9 классы

Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 56 класс – «Математика», 79 класс – «Математика» («Алгебра» и «Геометрия») являются следующие качества:

– независимость и критичность мышления;

– воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

– система заданий учебников;

– представленная в учебниках в явном виде организация материала по принципу минимакса;

– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно-деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:


56-й классы

– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.


79-й классы

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать как основные, так и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию;

работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

уметь оценить степень успешности своей индивидуальной образовательной деятельности;

давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).


Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).






Познавательные УУД:

59-й классы

анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты, гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

– Использование математических знаний для решения различных математических задач и оценки полученных результатов.

– Совокупность умений по использованию доказательной математической речи.

– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

Умения использовать математические средства для изучения и описания реальных процессов и явлений.

Независимость и критичность мышления.

– Воля и настойчивость в достижении цели.


Коммуникативные УУД:

59-й классы

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты, гипотезы, аксиомы, теоремы;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно деятельностного обучения.



Предметными результатами изучения предмета «Математика» являются следующие умения:

5-й класс


Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • как образуется каждая следующая счётная единица;

  • названия и последовательность разрядов в записи числа;

  • названия и последовательность первых трёх классов;

  • сколько разрядов содержится в каждом классе;

  • соотношение между разрядами;

  • сколько единиц каждого класса содержится в записи числа;

  • как устроена позиционная десятичная система счисления;

  • единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

  • десятичных дробей и правила действий с ними;

- сравнивать десятичные дроби;

  • выполнять операции над десятичными дробями;

  • преобразовывать десятичную дробь в обыкновенную и наоборот;

  • округлять целые числа и десятичные дроби;

  • находить приближённые значения величин с недостатком и избытком;

  • выполнять приближённые вычисления и оценку числового выражения;

  • функциональной связи между группами величин: цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа.

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1000;

  • вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

  • решать простые и составные текстовые задачи;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • находить вероятности простейших случайных событий;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.





6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • раскладывать натуральное число на простые множители;

  • находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

- отношений и пропорций; основного свойства пропорции;

  • прямой и обратной пропорциональных зависимостях и их свойствах;

  • процентов;

  • целых и дробных отрицательных числах; рациональных числах;

  • правила сравнения рациональных чисел;

  • правила выполнения операций над рациональными числами; свойства операций.

  • делить число в данном отношении;

  • находить неизвестный член пропорции;

  • находить данное количество процентов от числа и число по известному количеству процентов от него;

  • находить, сколько процентов одно число составляет от другого;

  • увеличивать и уменьшать число на данное количество процентов;

  • решать текстовые задачи на отношения, пропорции и проценты;

  • сравнивать два рациональных числа;

  • выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

  • решать комбинаторные задачи с помощью правила умножения;

  • находить вероятности простейших случайных событий;

  • решать простейшие задачи на осевую и центральную симметрию;

  • решать простейшие задачи на разрезание и составление геометрических фигур;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • натуральных, целых, рациональных, иррациональных, действительных числах;

  • степени с натуральными показателями и их свойствах;

  • одночленов и правила действий с ними;

  • многочленов и правила действий с ними;

  • формул сокращённого умножения;

  • тождеств; методов доказательства тождеств;

  • линейных уравнений с одной неизвестной и методах их решения;

  • систем двух линейных уравнений с двумя неизвестными и методах их решения.

  • Выполнять действия с одночленами и многочленами;

  • узнавать в выражениях формулы сокращённого умножения и применять их;

  • раскладывать многочлены на множители;

  • выполнять тождественные преобразования целых алгебраических выражений;

  • доказывать простейшие тождества;

  • находить число сочетаний и число размещений;

  • решать линейные уравнения с одной неизвестной;

  • решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

  • решать текстовые задачи с помощью линейных уравнений и систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Геометрия


Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • основных геометрических понятий: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;

  • определения угла, биссектрисы угла, смежных и вертикальных углов;

  • свойства смежных и вертикальных углов;

  • определения равенства геометрических фигур; признаков равенства треугольников;

  • геометрических мест точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;

  • определения параллельных прямых; признаков и свойств параллельных прямых;

  • аксиомы параллельности и её краткой истории;

  • формулы суммы углов треугольника;

  • определения и свойства средней линии треугольника;

  • теореме Фалеса.

  • Применять свойства смежных и вертикальных углов при решении задач;

  • находить в конкретных ситуациях равные треугольники и доказывать их равенство;

  • устанавливать параллельность прямых и применять свойства параллельных прямых;

  • применять теорему о сумме углов треугольника;

  • использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


8-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • алгебраической дроби; основном свойстве дроби;

  • правилах действий с алгебраическими дробями;

  • степенях с целыми показателями и их свойствах;

  • стандартном виде числа;

  • функциях hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif, их свойствах и графиках;

  • понятии квадратного корня и арифметического квадратного корня;

  • свойствах арифметических квадратных корней;

  • функции hello_html_58f5fa8d.gif, её свойствах и графике;

  • формуле для корней квадратного уравнения;

  • теореме Виета для приведённого и общего квадратного уравнения;

  • основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

  • методе решения дробных рациональных уравнений;

  • основных методах решения систем рациональных уравнений.

  • Сокращать алгебраические дроби;

  • выполнять арифметические действия с алгебраическими дробями;

  • использовать свойства степеней с целыми показателями при решении задач;

  • записывать числа в стандартном виде;

  • выполнять тождественные преобразования рациональных выражений;

  • строить графики функций hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif и использовать их свойства при решении задач;

  • вычислять арифметические квадратные корни;

  • применять свойства арифметических квадратных корней при решении задач;

  • строить график функции hello_html_58f5fa8d.gif и использовать его свойства при решении задач;

  • решать квадратные уравнения;

  • применять теорему Виета при решении задач;

  • решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

  • решать дробные уравнения;

  • решать системы рациональных уравнений;

  • решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



8-й класс.

Геометрия


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

  • определении трапеции; элементах трапеции; теореме о средней линии трапеции;

  • определении окружности, круга и их элементов;

  • теореме об измерении углов, связанных с окружностью;

  • определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

  • определении вписанной и описанной окружностей, их свойствах;

  • определении тригонометрические функции острого угла, основных соотношений между ними;

  • приёмах решения прямоугольных треугольников;

  • тригонометрических функциях углов от 0 до 180°;

  • теореме косинусов и теореме синусов;

  • приёмах решения произвольных треугольников;

  • формулах для площади треугольника, параллелограмма, трапеции;

  • теореме Пифагора.

  • Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

  • решать простейшие задачи на трапецию;

  • находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

  • применять свойства касательных к окружности при решении задач;

  • решать задачи на вписанную и описанную окружность;

  • выполнять основные геометрические построения с помощью циркуля и линейки;

  • находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;

  • применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;

  • решать прямоугольные треугольники;

  • сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

  • применять теорему косинусов и теорему синусов при решении задач;

  • решать произвольные треугольники;

  • находить площади треугольников, параллелограммов, трапеций;

  • применять теорему Пифагора при решении задач;

  • находить простейшие геометрические вероятности;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



9-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • свойствах числовых неравенств;

  • методах решения линейных неравенств;

  • свойствах квадратичной функции;

  • методах решения квадратных неравенств;

  • методе интервалов для решения рациональных неравенств;

  • методах решения систем неравенств;

  • свойствах и графике функцииhello_html_m1baf31d2.gif при натуральном n;

  • определении и свойствах корней степени n;

  • степенях с рациональными показателями и их свойствах;

  • определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

  • Использовать свойства числовых неравенств для преобразования неравенств;

  • доказывать простейшие неравенства;

  • решать линейные неравенства;

  • строить график квадратичной функции и использовать его при решении задач;

  • решать квадратные неравенства;

  • решать рациональные неравенства методом интервалов;

  • решать системы неравенств;

  • строить график функцииhello_html_m1baf31d2.gif при натуральном nи использовать его при решении задач;

  • находить корни степени n;

  • использовать свойства корней степени nпри тождественных преобразованиях;

  • находить значения степеней с рациональными показателями;

  • решать основные задачи на арифметическую и геометрическую прогрессии;

  • находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


9-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • признаках подобия треугольников;

  • теореме о пропорциональных отрезках;

  • свойстве биссектрисы треугольника;

  • пропорциональных отрезках в прямоугольном треугольнике;

  • пропорциональных отрезках в круге;

  • теореме об отношении площадей подобных многоугольников;

  • свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;

  • определении длины окружности и формуле для её вычисления;

  • формуле площади правильного многоугольника;

  • определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;

  • правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;

  • определении координат вектора и методах их нахождения;

  • правиле выполнений операций над векторами в координатной форме;

  • определении скалярного произведения векторов и формуле для его нахождения;

  • связи между координатами векторов и координатами точек;

  • векторным и координатным методах решения геометрических задач.

  • формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.

  • Применять признаки подобия треугольников при решении задач;

  • решать простейшие задачи на пропорциональные отрезки;

  • решать простейшие задачи на правильные многоугольники;

  • находить длину окружности, площадь круга и его частей;

  • выполнять операции над векторами в геометрической и координатной форме;

  • находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;

  • решать геометрические задачи векторным и координатным методом;

  • применять геометрические преобразования плоскости при решении геометрических задач;

  • находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Содержание учебного предмета (курса)

5 класс.

  1. Натуральные числа и шкалы (17 ч)

Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, многоугольник. Измерение и построение отрезков.

Координатный луч.

Основная цель — систематизировать и обобщать сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков.

Рассматриваются простейшие комбинаторные задачи. Вводятся понятия координатного луча, единичного отрезка и координаты точки. Начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному штриху на координатном луче.

  1. Сложение и вычитание натуральных чисел (10 ч)

Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.

Основная цель — закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы главное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями. Начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе записи мости между компонентами действий (сложение и вычитание).

  1. Умножение и деление натуральных чисел (37 ч)

Умножение и деление натуральных чисел, свойства умножения. Степень числа. Квадрат и куб числа. Решение текстовых задач.

Основная цель — закрепить и развить навыки арифметических действий с натуральными числами.

Проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия степени (с натуральным показателем), квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.

Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (и...)», а также задачи на известные учащимся зависимости между величинами (скоростью, временем и пройденным путем; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении задач на части с помощью составления уравнений учащиеся впервые встречаются с уравнениями, и левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

  1. Площади и объемы (17 ч)

Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.

Основная цель — расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

  1. Обыкновенные дроби (23 ч)

Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Основная цель — познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

Изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа и представлению смешанного числа в виде неправильной дроби. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся.

  1. Десятичные дроби. Сложение и вычитание десятичных дробей (15 ч)

Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение текстовых задач.

Основная цель — выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.

При введении десятичных дробей важно добиться у учащихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.

Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.

Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.

При изучении операции округления числа вводится новое понятие — приближенное значение числа, отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

  1. Умножение и деление десятичных дробей (25 ч)

Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Основная цель — выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

Главное внимание уделяется алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

  1. Инструменты для вычислений и измерений (17ч)

Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол. Величина (градусная мера) угла. Чертежный треугольник. Измерение углов. Построение угла заданной величины.

Основная цель — сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.

Важно выработать у учащихся содержательное понимание смысла термина процент. На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.

Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы.

Представления о наглядном изображении распределения отдельных составных частей какой-нибудь величины дают учащимся круговые диаграммы. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.

  1. Повторение. Решение задач (14ч)



6 класс.

1. Делимость чисел (19 часов).

Делители и кратные. Признаки делимости на 10, на 5, и на 2. Признаки делимости на 9

и на 3. Простые и составные числа. Разложение на простые множители. Наибольший общий делитель, Взаимно простые числа. Наименьшее общее кратное.

В ходе изучения темы обучающиеся должны:

  Знать

- определение кратного и делителя натурального числа

- признаки делимости на 2, на 3, на 5, на 9, на 10

- определение простых и составных чисел

- определение наибольшего общего делителя, наименьшего общего кратного и взаимно простых чисел

Уметь

- находить делители и кратные натуральных чисел

- узнавать по записи натурального числа делиться ли оно без остатка на 2, на 3, на 5, на 9,

на 10

- раскладывать числа на простые множители

- находить наибольший общий делитель и наименьшее общее кратное двух и более чисел.

2. Сложение и вычитание дробей с разными знаменателями (22 часа).

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей с разными знаменателями. Сложение и вычитание смешанных чисел.

В ходе изучения темы обучающиеся должны

Знать

- основное свойство дроби

- определение несократимой дроби и сокращением дробей

- алгоритм приведения дробей к общему знаменателю

- правила сравнения, сложения, вычитания дробей с разными знаменателями, сложения и вычитания смешанных чисел

Уметь

- сокращать дроби

- находить дополнительный множитель к дроби, приводить дроби к общему знаменателю

- сравнивать, складывать, вычитать дроби с разными знаменателями

- складывать и вычитать смешанные числа  

3. Умножение и деление обыкновенных дробей (33 часа).

Умножение дробей. Нахождение дроби от числа. Применение распределительного свойства умножения. Взаимно обратные числа. Деление. Нахождение числа по его дроби. Дробные выражения.

В ходе изучения темы обучающиеся должны:

Знать

- правила умножения на натуральное число, двух дробей

- свойства умножения дробей

- правила нахождения дроби от числа и числа по его дроби

- определение взаимно обратных чисел

- определение дробных выражений

Уметь

- умножать дробь на натуральное число и дробь на дробь

- применять распределительное свойство умножения при нахождении значений выражений

- записывать числа обратные дроби, натуральному числу, смешанному числу

- выполнять деление смешанных чисел

- находить дроби от числа и числа по его дроби

4. Отношение и пропорции (19 часов).

Отношения. Пропорции. Прямая и обратная пропорциональные зависимости. Масштаб. Длина окружности и площадь круга. Шар.

  В ходе изучения темы обучающиеся должны:

 Знать

- определение отношений, пропорции

- названия членов пропорции

- формулировку основного свойства пропорции

- определения прямо пропорциональных и обратно пропорциональных величин

- что такое масштаб

- формулы для нахождения длины окружности и площади круга

- определения радиуса шара, диаметра шара, сферы

Уметь

- находить, какую часть одно число составляет от другого, сколько процентов одно число составляет от другого

- применять основное свойство пропорции при решении задач и уравнений

- приводить примеры прямо пропорциональных и обратно пропорциональных величин

- находить по формулам площадь круга и длину окружности

5. Положительные и отрицательные числа (13 часов).

  Координаты на прямой. Противоположные числа. Модуль числа. Сравнение чисел. Изменение величин.

 В ходе изучения темы обучающиеся должны:

Знать

- определения координатной прямой, координаты точки на прямой

- какие числа называются противоположными, целыми

- определение модуля числа и его обозначение

- алгоритм сравнения положительных и отрицательных чисел

Уметь

- отмечать точки с заданными координатами на горизонтальных и вертикальных прямых

- находить числа противоположные данным

- находить модуль положительного, отрицательного чисел

- сравнивать положительные и отрицательные числа

6. Сложение и вычитание положительных и отрицательных чисел (11 часов).

  Сложение чисел с помощью координатной прямой. Сложение отрицательных чисел. Сложение чисел с разными знаками. Вычитание.

В ходе изучения темы обучающиеся должны:

Знать

- алгоритм сложения чисел с помощью координатной прямой

- правила сложения отрицательных чисел и чисел с разными знаками

- что означает вычитание отрицательных чисел, и каким действием можно заменить вычитание одного числа из другого

 Уметь

- складывать числа с помощью координатной прямой

- выполнять сложение отрицательных чисел и чисел с разными знаками

- вычитать из данного числа другое число

7. Умножение и деление положительных и отрицательных чисел (12 часов).

   Умножение. Деление. Рациональные числа. Свойства действий с рациональными числами.

 В ходе изучения темы обучающиеся должны:

 Знать

- правило умножения двух чисел с разными знаками и двух отрицательных чисел

- правило деления отрицательного числа на отрицательное и правило деления чисел, имеющих разные знаки

- определение рациональных чисел

- свойства сложения и умножения рациональных чисел

 Уметь

 - умножать числа с разными знаками и отрицательные числа

- делить отрицательное число на отрицательное

- делить числа с разными знаками

- представлять рациональное число в виде десятичной дроби, либо в виде периодической дроби

- применять свойства действий с рациональными числами при нахождении значений выражений

8. Решение уравнений (15 часов).

  Раскрытие скобок. Коэффициент. Подобные слагаемые. Решение уравнений.

 В ходе изучения темы обучающиеся должны:

Знать

- правила раскрытия скобок

- определение числового коэффициентом выражения

- определение подобных слагаемых

- алгоритм решения линейных уравнений

Уметь

- упрощать выражения с применением правил раскрытия скобок

- уметь приводить подобные слагаемые

- решать линейные уравнения

9. Координаты на плоскости (12 часов).

  Перпендикулярные прямые. Параллельные прямые. Координатная плоскость. Столбчатые диаграммы. Графики.

 В ходе изучения темы обучающиеся должны:

Знать

- определения перпендикулярных и параллельных прямых

- определение координатной плоскости, осей абсцисс и ординат

Уметь

- строить перпендикулярные и параллельные прямые с помощью чертёжного треугольника и транспортира

- изображать точки с заданными координатами на координатной плоскости

- определять координаты точки

- строить столбчатые диаграммы

- строить простейшие графики

10. Итоговое повторение курса математики 6 класса (19 часов).


7 класс. Алгебра.

1. Выражения, тождества, уравнения (18 часов).

Числовые выражения с переменными. Простейшие преобразо­вания выражений. Уравнение, корень уравнения. Линейное урав­нение с одной переменной. Решение текстовых задач методом со­ставления уравнений. Статистические характеристики.

Основная цель — систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навы­ков вычислений должно уделяться серьезное внимание и в даль­нейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выра­жений расширяются сведения о неравенствах: вводятся знаки неравенств, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводят­ся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание кото­рых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчер­кивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащи­мися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется реше­нию уравнений вида ах = b при различных значениях а и b. Про­должается работа по формированию у учащихся умения исполь­зовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с про­стейшими статистическими характеристиками: средним арифме­тическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в не­сложных ситуациях.

2. Функции (11 часов)

Функция, область определения функции. Вычисление значе­ний функции по формуле. График функции. Прямая пропорцио­нальность и ее график. Линейная функция и ее график.

Основная цель — ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорцио­нальности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие по­нятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной пе­ременной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значе­ние функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции, ее частного вида — прямой про­порциональности. Умения строить и читать графики этих функ­ций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kх, где и k0, как зависит от зна­чений k и b взаимное расположение графиков двух функций вида у = kх + b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функ­ций сопровождаются рассмотрением примеров реальных зависи­мостей между величинами, что способствует усилению приклад­ной направленности курса алгебры.

3. Степень с натуральным показателем (12 часов)

Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным по­казателем. В курсе математики б класса учащиеся уже встреча­лись с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств степени учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материа­ле. Свойства степени с натуральным показателем на­ходят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функ­ций. Важно обратить внимание учащихся на особенности графи­ка функции у = х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у = х2 и у = х3 использует­ся для ознакомления учащихся с графическим способом решения уравнений.

4. Многочлены (17 часов)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Основная цель — выработать умение выполнять сложе­ние, вычитание, умножение многочленов и разложение много­членов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное ме­сто в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны по­нимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вы­читания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. По­этому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению мно­гочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преоб­разования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональ­ными дробями.

В данной теме учащиеся встречаются с примерами использо­вания рассматриваемых преобразований при решении разнооб­разных задач, в частности при решении уравнений. Это позволя­ет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются неслож­ные задания на доказательство тождества.

5. Формулы сокращенного умножения (17 часов)

Формулы (а + b)2 = а2 ± b + b2, (а ± b)3 = а3 ± За2b + Заb2 ± b3, (а ± b) (а2 + аb + b2) = а3 ±b3. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у уча­щихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам - b) (а + b) = а2 - b2, (а ± b)2 = а2 ± 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы ± b)3 = а3± За2b + Заb2 ± b3, а3 ± b3 = (а ± b) (а2 + аb + b2). Одна­ко они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использо­вание.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

6. Системы линейных уравнений (17 часов)

Система уравнений. Решение системы двух линейных урав­нений с двумя переменными и его геометрическая интерпрета­ция. Решение текстовых задач методом составления систем урав­нений.

Основная цель — ознакомить учащихся со способом ре­шения систем линейных уравнений с двумя переменными, выра­ботать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматри­ваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравне­ние с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя пе­ременными в целых числах.

Формируется умение строить график уравнения ах + bу = с, где а ≠ 0 или b ≠ 0, при различных значениях а, b, с. Введение гра­фических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя пе­ременными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает про­цесс перевода данных задачи с обычного языка на язык уравнений.

7. Повторение (10 часов)

Уметь применять полученные знания на практике


7 класс. Геометрия.


1. Начальные геометрические сведения (11 часов).

Начальные понятия планиметрии. Геометрические фигуры. Понятие о равенстве фигур. Отрезок. Равенство отрезков. Длина отрезка и её свойства. Угол. Равенство углов. Величина угла и её свойства. Смежные и вертикальные углы и их свойства. Перпендикулярные прямые.

Основная цель – систематизировать знания учащихся об основных свойствах простейших геометрических фигур, ввести понятия равенства фигур.

Материал данной темы посвящён введению основных геометрических понятий. Основное внимание уделяется двум аспектам: понятию равенства геометрических фигур (отрезков, углов) и свойствам измерения отрезков и углов.

Изучение темы решает задачу введения терминологии, развития навыков изображения планиметрических фигур и простейших геометрических конфигураций, связанных с условиями решаемых задач.

2. Треугольники (20 часов)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Основные задачи на построение с помощью циркуля и линейки.

Основная цель – сформировать умение доказывать равенство данных треугольников, опираясь на изученные признаки; отработать навыки решения простейших задач на построение с помощью циркуля и линейки.

Основное внимание уделяется формированию у учащихся умения доказывать равенство треугольников, т.е. выделять равенство трёх соответствующих элементов данных треугольников и делать ссылки на изученные признаки.

3. Параллельные прямые (13 часов).

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель – дать систематические сведения о параллельности прямых; ввести аксиому параллельных прямых.

Знания признаков параллельности прямых, свойств углов при параллельных прямых и секущей. Находить равные углы при параллельных прямых и секущей.

4. Соотношения между сторонами и углами треугольника (20 часов)

Сумма углов треугольника. Соотношения между сторонами и углами треугольника. Неравенство треугольника. Некоторые свойства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Задачи на построение.

Основная цель – расширить знания учащихся о треугольниках.

Важнейшая теорема о сумме углов треугольника и следствия – свойство внешнего угла треугольника, некоторые свойства и признаки прямоугольных треугольников.

5. Повторение. Решение задач (6 часов)


8 класс. Алгебра.


1. Повторение курса алгебры за 7 класс (3 часа)

Повторение вычислительных навыков с обыкновенными и десятичными дробями. Формулы сокращенного умножения. Тождественные преобразования алгебраических выражений.

2. Рациональные дроби (20 часов)

Рациональная дробь. Основное свойство дроби, сокращение дробей.

Тождественные преобразования рациональных выражений.

Функция у = k/х.

Основная цель – выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции у = k/х.

3. Квадратные корни (17 часов)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразование выражений, содержащих квадратные корни. Функция hello_html_m6a379d44.gif, ее свойства и график.

Основная цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразование выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби вида, hello_html_m66036fcd.gif. Умение преобразовывать выражения, содержащие корни, часто используются как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция y =hello_html_m73b825e0.gif, ее свойства и график. При изучении функции y =hello_html_m73b825e0.gif показывается ее взаимосвязь с функцией y = x2, где хhello_html_m136867ac.gif0.

4. Квадратные уравнения (21 час)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель – выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bx + c =0, где а hello_html_457f5114.gif 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

5. Неравенства (17 часов)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Основная цель – ознакомить учащихся с применением неравенств при оценке значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие, как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильности неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b,ах < b, остановившись специально на случае, когда а< 0.

В этой теме рассматриваются также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

6. Степень с целым показателем. Статистические исследования (13 часов)

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Основная цель – выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательств этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

7. Повторение(12 часов)

Основная цель - повторить и систематизировать полученные в течение учебного года знания.


8 класс. Геометрия.

1. Вводное повторение (2ч.)

2. Четырехугольники (13 часов)

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому, полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

3. Площадь (14 часов)

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Цель: расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

4. Подобные треугольники (18 часов)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Цель: ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

5. Окружность (18 часов)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.

6. Повторение. Решение задач. (4 часа)

Цель: повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.




9 класс. Алгебра.


1. Повторение курса алгебры за 8 класс (3 ч)

Рациональные дроби. Квадратные корни. Решение квадратных уравнений, неравенств. Преобразование степеней с целым показателем.

2. Свойства функций. Квадратичная функция (21 часов)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с > 0, ах2 + bх + с < 0, где а ≠ 0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Обучающиеся знакомятся со свойствами степенной функции у= хn при четном и нечетном натуральном показателе n. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей видаhello_html_m1b965993.gif, hello_html_6e927663.gif. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

3. Уравнения и неравенства с одной переменной (14 часов)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Основная цель: систематизировать и обобщить сведения о решении целых и дробных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с>0, ах2 + bх + с<0, где а≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Формирование умений решать неравенства вида ах2 + bх + с>0, ах2 + bх + с<0, где а≠ 0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

4. Уравнения и неравенства с двумя переменными (17 часов)

Уравнения и неравенства с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель: выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков, позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

5. Прогрессии (17 часов)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

6. Элементы комбинаторики и теории вероятностей (17 часов)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Основная цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Следует обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

7. Повторение (19 часов)

Основная цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.


9 класс. Геометрия.

1. Вводное повторение (2ч.)

2. Векторы. Метод координат (16 часов)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель: научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число);

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

3. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (11 часов)

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольники (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

4. Длина окружности и площадь круга (12 часов)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоугольника, и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2n-угольника, если дан правильный n-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

5. Движения (8 часов)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, с взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

6. Начальные сведения из стереометрии (8 часов)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их объемов.

Основная цель: дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара), проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

7. Об аксиомах геометрии (4 часов)

Беседа об аксиомах геометрии.

Основная цель: дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

8. Повторение. Решение задач (7 часов)

Основная цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7-9 классов.


Тематическое планирование
с определением основных видов учебной деятельности

5 класс


Раздел, количество часов

Основные виды учебной деятельности учащихся

Повторение курса математики 1-4 классов

(5 ч).

Описывать свойства натурального ряда. Читать и записывать натуральные числа. Находить сумму цифр числа и сумму разрядных слагаемых.

Натуральные числа и шкалы (12ч).

Решать задачи на увеличение и уменьшение на несколько единиц, а также увеличение и уменьшение в несколько раз. Читать и записывать единицы измерения длины и массы.

Снимать показания приборов.

Выражать одни единицы измерения длины и массы в других единицах.

Строить на координатном луче точки по заданным координатам; определять координаты точек.

Сложение и вычитание натуральных чисел (10 ч).

Читать и записывать числовые выражения.

Выполнять вычисления с натуральными числами, находить значение выражения.

Исследовать простейшие числовые закономерности, проводить числовые эксперименты.

Анализировать текст задачи, моделировать условие с помощью схем, составлять план решения, записывать решения с пояснениями, оценивать полученный ответ, проверяя ответ на соответствие условию

Умножение и деление натуральных чисел, упрощение выражений

(37 ч).

Читать и записывать числовые выражения.

Выполнять вычисления с натуральными числами, находить значение выражения.

Исследовать простейшие числовые закономерности, проводить числовые эксперименты.

Анализировать текст задачи, моделировать условие с помощью схем, составлять план решения, записывать решения с пояснениями, оценивать полученный ответ, проверяя ответ на соответствие условию

Площади и объемы (17 ч).

Вычислять значения степеней. Находить значение числового выражения, содержащего степени чисел.

Пользоваться таблицами квадратов и кубов чисел.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и прямоугольника.

Выражать одни единицы измерения площади через другие.

Решать задачи на нахождение площадей квадратов и прямоугольников.

Исследовать площадь прямоугольников с заданным периметром.

Исследовать простейшие числовые закономерности, проводить.

Изготавливать пространственные тела из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса.

Соотносить пространственные фигуры с их проекциями на плоскость.

Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.

Решать задачи на нахождение объемов кубов и прямоугольных параллелепипедов

Обыкновенные дроби (23 ч).

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби. Читать и записывать дроби.

Строить на координатной прямой точки по заданным координатам, представленным в виде обыкновенных дробей; определять координаты точек.

Решать задачи на части (нахождение части от целого и целого по его части).

Складывать и вычитать дроби с одинаковыми знаменателями.

Умножать дроби на натуральные числа.

Исследовать закономерности с обыкновенными дробями, проводить числовые эксперименты.

Десятичные дроби. Сложение и вычитание десятичных дробей

(15 ч).

Записывать и читать десятичные дроби.

Умножать и делить на 10, 100, 1000 и т.д.

Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных.

Строить на координатной прямой точки по заданным координатам, представленных в виде десятичных дробей; определять координаты точек.

Складывать и вычитать десятичные дроби.

Находить сумму разрядных слагаемых десятичных дробей.

Умножение и деление десятичных дробей (25 ч).

Умножать десятичные дроби.

Применять умножение десятичных дробей к решению задач.

Делить десятичные дроби на натуральное число.

Решение задач с использованием деления десятичной дроби на натуральное число.

Выполнение всех арифметических действий с десятичными и обыкновенными дробями.

Решение задач с десятичными и обыкновенными дробями.

Инструменты для вычисления и измерения

(17 ч).

Объяснять, что такое процент. Представлять проценты в дробях и дроби в процентах. Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Решать задачи на проценты. Уметь пользоваться транспортиром, микрокалькулятором.

Итоговое повторение (14 ч).



6 класс


Раздел, количество часов

Основные виды учебной деятельности учащихся

Делимость чисел (19 ч).


Знать понятие простых чисел, уметь раскладывать числа на простые множители. Знать и применять признаки делимости чисел на 2, 3, 5 и 9.

Сложение и вычитание дробей с разными знаменателями (22 ч)


Знать основное свойство дроби. Уметь сокращать дроби. Складывать и вычитать дроби с разными знаменателями. Уметь складывать и вычитать смешанные дроби.

Решение задач с использованием действий с дробями с разными знаменателями.

Умножение обыкновенных дробей (16 ч)


Уметь умножать обыкновенные дроби с разными знаменателями, выделять целую часть. Применять распределительное свойство умножения в выполнении действий с обыкновенными дробями с разными знаменателями.

Деление обыкновенных дробей (17ч)


Знать, что такое взаимно обратные числа. Уметь выполнять деление обыкновенных дробей с разными знаменателями. Уметь находить число по его дроби. Решение задач с использованием всех действий с обыкновенными дробями с разными знаменателями.

Отношения и пропорции

(19 ч)

Решение задач на прямую и обратную пропорциональность. Знать основное свойство пропорции. Решение задач на нахождение длины окружности и площади круга. Знать, что такое окружность и шар.

Положительные и отрицательные числа (13 ч)

Ознакомление с отрицательным рядом чисел. Уметь изображать положительные и отрицательные числа на координатном луче.

Сложение и вычитание положительных и отрицательных чисел (11ч)


Выполнение действий по сложению и вычитанию положительных и отрицательных чисел. Использование правила сложения чисел с одинаковыми и разными знаками. Сравнение чисел с разными знаками, сравнение двух отрицательных чисел.

Умножение и деление положительных и отрицательных чисел (12ч)


Выполнение действий на умножение и деление положительных и отрицательных чисел. Упрощение выражений и решение уравнений с использованием всех действий с положительными и отрицательными числами.

Решение уравнений (15 ч)


Решение уравнений с использованием правил раскрытия скобок, приведения подобных слагаемых.

Координаты на плоскости

(12 ч)


Нахождение координат точек на плоскости. Построение столбчатых диаграмм, графиков зависимости.

Повторение (19 ч)



7 класс (алгебра)

Раздел, количество часов

Основные виды учебной деятельности учащихся

1.Повторение курса математики

за 6 класс (3ч)

Правильно выполнять действия с обыкновенными и десятичными дробями, отрицательными числами, осуществлять построения на координатной плоскости

2. Выражения. Тождества. Уравнения (18 ч)


Осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.

3.Функции (11 ч)


Правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач. Находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу. Строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.

4.Степень с натуральным показателем. (12ч)


Находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у= х2, у= х3; выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

5.Многочлены (17ч)


Приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.

6.Формулы сокращенного умножения (17 ч)


Читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

7.Системы линейных уравнений (17 ч)


Правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.

8.Повторение. Решение задач (10ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).



8 класс (алгебра)

Раздел, количество часов

Основные виды учебной деятельности учащихся

1.Повторение курса алгебры 7 класса (3ч)

Повторение вычислительных навыков с обыкновенными и десятичными дробями. Формулы сокращенного умножения. Тождественные преобразования алгебраических выражений.

2.Рациональные дроби (20ч)

Формулирование определения рациональной дроби. Выполнение заданий на упрощение выражений. Сложение и вычитание дробей с одинаковыми и разными знаменателями. Умножение и деление дробей. Использование формул сокращенного умножения при сокращении дробей. Решение рациональных уравнений.

3.Квадратные корни (17ч)

Формулирование определения арифметического квадратного корня. Определение рациональных и иррациональных чисел. Нахождение приближенных значений квадратного корня. Выполнение действий с применением свойств арифметического корня.

4.Квадратные уравнения (21ч)

Формулирование определения квадратного корня. Решение квадратных уравнений выделением квадрата двучлена. Применение формулы дискриминанта для нахождения корней квадратного уравнения. Нахождение корней квадратного уравнения при помощи теоремы Виета. Решение дробно-рациональных уравнений.

5.Неравенства (17ч)

Формулирование определения неравенства. Решение неравенств, применяя свойства неравенств. Сложение и умножение числовых неравенств.

6.Степень с целым показателем.

Статистические исследования (13ч)

Формулирование определения степени с целым отрицательным показателем. Нахождение значений выражений с использованием свойств степени с целым показателем. Формулирование начальных представлений о сборе и группировке статистических данных, их наглядной интерпретации.

7.Повторение. Решение задач (12ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 8 класса).







9 класс (алгебра)

Раздел, количество часов

Основные виды учебной деятельности учащихся

1. Повторение курса алгебры 8 класса (3ч)

Действия с рациональными дробями, квадратными корнями. Решение квадратных уравнений, неравенств. Преобразование степеней с целым показателем.

1.Свойства функций. Квадратичная функция (21 ч)


Расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 и ах2 + bх + с<0, где а≠ 0.

2.Уравнения и неравенства с одной переменной (14 ч)


Систематизировать и обобщить сведения о решении целых и дробных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с>0, ах2 + bх + с<0, где а≠ 0.

3.Уравнения и неравенства с двумя переменными (17 ч)


Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

4.Прогрессии (17 ч)


Дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий.

5.Элементы комбинаторики и теории вероятностей (13 ч)


Ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события».

6.Повторение (20 ч)


Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.



7 класс (геометрия)

Раздел, количество часов

Основные виды учебной деятельности обучающихся

1. Начальные геометрические сведения (11 ч)

Систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

2.Треугольники (20 ч)

Ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; поиск равных треугольников – обоснование их равенства с помощью какого-то признака – следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач.

3.Параллельные прямые (13 ч)


Ввести одно из важнейших понятий – понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых. Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными).

4.Соотношения между сторонами и углами треугольника (20ч)


Рассмотреть новые интересные и важные свойства треугольников. В данной теме доказывается одна из важнейших теорем геометрии – теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

5.Повторение. Решение задач (6ч.)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 7 класса).


8 класс (геометрия)

Раздел, количество часов

Основные виды учебной деятельности обучающихся

Вводное повторение (2ч.)

повторение знаний, умений и навыков, полученных на уроках геометрии (курс 7 класса).

Четырехугольники (13ч.)

Формулирование определения четырехугольника. Распознавание на моделях различных видов четырехугольника. Объяснение, какие четырехугольники называются правильными. Решение задач на нахождение элементов четырехугольника.

Площадь (14ч.)

Формулирование определения площади фигуры. Формулирование нескольких формул нахождения площади четырехугольника, треугольника. Иллюстрация применения формул нахождения площади через высоту, диагонали. Решение задач на вычисления и доказательство с использованием различных формул.

Подобные треугольники (18ч.)

Формулирование определения подобных треугольников, трех признаков подобия треугольников. Распознавание по тексту задачи признак подобия. Формулирование и иллюстрирование признаков подобия треугольников. Решение задач на доказательство с применением признаков подобия.

Окружность (18ч.)

Формулирование определения окружности, касательной к окружности. Изображение касательной к окружности. Формулирование определений вписанной и описанной окружности. Решение задач на нахождение площади окружности, длины окружности. Формулирование теорем нахождения центров вписанной и описанной окружности.

Повторение. Решение задач (5ч.)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 8 класса).








9 класс (геометрия)

Раздел, количество часов

Основные виды учебной деятельности обучающихся

1.Вводное повторение (2ч)

Повторение знаний, умений и навыков, полученных на уроках геометрии (курс 7-8 класса).

2.Векторы. Метод координат (17 ч)


Научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

3.Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (13 ч)

Развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.


4.Длина окружности и площадь круга (11 ч)


Расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

5.Движения (8 ч)


Познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, с взаимоотношениями наложений и движений.

6.Начальные сведения из стереометрии (8 ч)


Дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

7.Об аксиомах геометрии (4 ч)

Дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

8.Повторение. Решение задач (7 ч)

Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7-9 классов.


Учебно- методическое и материально- техническое обеспечение

5 – 6 классы

Средства обучения:

Комплект инструментов классных

Комплект инструментов классных с магнитными держателями

Линейка классная (1)

Портреты выдающихся математиков

Мультимедийный проектор

Модели:

Числовая прямая

Таблицы демонстрационные:

Математика. Действия над натуральными числами.

Математика. Действия над обыкновенными дробями.

Математика. Десятичные дроби.

Математика. Умножение и деление на 0,1, 0,01, 0,001, . . .

Математика. Геометрические фигуры.

Математика. Площади геометрических фигур.

Математика. Объемы геометрических фигур.

Математика. Сложение и умножение положительных и отрицательных чисел.

Математика. Умножение и деление положительных и отрицательных чисел.

Раздаточный материал:

Дидактический материал.

Сборник самостоятельных и контрольных работ.

Набор геометрических фигур.

Компакт диски:

История математики.

Уроки математики в 5 и 6 классах КиМ

Познавательная деятельность в 5 классе.

Список литературы, электронных образовательных ресурсов:

  1. Учебник Математика 5 класс. Н.Я. Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд, М., Мнемозина, 2012.

  2. Учебник Математика 6 класс. Н.Я. Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд, М., Мнемозина, 2012.

  3. Поурочные разработки по математике к учебному комплекту Н.Я.Виленкина. 5 класс, М.: ВАКО, 2011.

  4. Чесноков А.С., Нешков К.И.. Дидактические материалы по математике для 5 класса. М.: Классик Стиль, 2011.

  5. Чесноков А.С., Нешков К.И.. Дидактические материалы по математике для 6 класса. М.: Классик Стиль, 2011.

  6. Ермилова Т.В. Тематическое и поурочное планирование по математике 5 класс. К учебнику Н.Я. Виленкина и др. М.: Мнемозина, 2012.

  7. Киселева Г.М. Организация познавательной деятельности в 5-6 классах. Издательство «Учитель», 2013.

7 – 9 классы (алгебра)

Раздаточный материал:

Дидактический материал (карточки с самостоятельными и контрольными работами).


Список литературы, образовательные ресурсы

Бурмистрова Т.А. Алгебра 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2013г.

Дорофеев Г. В. и др. Оценка качества подготовки выпускников основной школы по математике. М., «Дрофа», 2010.

Концепция модернизации российского образования на период до 2010// «Вестник образования» -2009- № 6 - с.11-40.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра. Учебник для 7класса общеобразовательных учреждений. М., «Мнемозина», 2010.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра. Учебник для 8 класса общеобразовательных учреждений. М., «Мнемозина», 2010.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра. Учебник для 9 класса общеобразовательных учреждений. М., «Мнемозина», 2010.

Макарычев Ю.Н., Миндюк Н.Г. Элементы статистики и теории вероятностей. Алгебра. 7 – 9 классы. М., «Просвещение», 2010г.

Стандарт основного общего образования по математике//«Вестник образования» -2012 - № 12 - с.107-119.



Источники информации для учителя

Алгебра. 7класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. – Волгоград: Учитель, 2012. – 303 с.

Алгебра. 8 класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. – Волгоград: Учитель, 2012. – 303 с.

Алгебра. 9 класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. – Волгоград: Учитель, 2012. – 303 с.

Алгебра: Учеб. для 7 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010.

Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010.

Алгебра: Учеб. для 9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010.

Государственный стандарт основного общего образования по математике.

Дидактические материалы по алгебре для 7 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2011. – 144 с.

Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2011. – 144 с.

Дидактические материалы по алгебре для 9 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2011. – 144 с.

Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. – М.: Просвещение, 2010 г.

Дидактические материалы по алгебре 7 класс. Л.И.Звавич, Н.В.Дьяконова Издательство Экзамен, 2013г.

http://school-collection.edu.ru/ – единая коллекция цифровых образовательных ресурсов.


7 – 9 классы (геометрия)


Список литературы, электронных образовательных ресурсов.

  1. Примерная программа общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2010. – с. 19-21).

2. Геометрия, 7–9 /авторы: Л.С. Атанасян, В.Ф. Бутузов и т.д./ Учебник для общеобразовательных учреждений. М., 2012.

3. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С.

Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2011.

  1. Гусев В. А. Геометрия: дидакт. материалы для 7 кл. / В.А. Гу­сев, А.И. Медяник. — М.: Просвещение, 2010.

  2. Гусев В. А. Геометрия: дидакт. материалы для 8 кл. / В.А. Гу­сев, А.И. Медяник. — М.: Просвещение, 2010.

  3. Гусев В. А. Геометрия: дидакт. материалы для 9 кл. / В.А. Гу­сев, А.И. Медяник. — М.: Просвещение, 2010.

  4. Зив Б.Г. Геометрия: дидакт. материалы для 7 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2012.

  5. Зив Б.Г. Геометрия: дидакт. материалы для 8 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2012.

  6. Зив Б.Г. Геометрия: дидакт. материалы для 8 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2012.

12. Гаврилова Н.Ф. Поурочные разработки по геометрии: 7 класс. – М.: ВАКО, 2012.

13. Гаврилова Н.Ф. Поурочные разработки по геометрии: 8 класс. – М.: ВАКО, 20012.

  1. Гаврилова Н.Ф. Поурочные разработки по геометрии: 9 класс. – М.: ВАКО, 2012.




Интернет-ресурсы

1. www. edu - "Российское образование" Федеральный портал.

2. www. school.edu - "Российский общеобразовательный портал".

3. www.school-collection.edu.ru/ Единая коллекция цифровых образовательных ресурсов


Планируемые результаты изучения учебного предмета (курса)


Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходя­щую, в зависимо­сти от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и пись­менные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью вели­чин, процен­тами, в ходе решения математических задач и задач из смеж­ных предметов, выпол­нять несложные практические расчёты.

Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, от­личными от 10;

• углубить и развить представления о натуральных числах и свойст­вах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приоб­рести при­вычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чи­сел;

• оперировать понятием квадратного корня, применять его в вычисле­ниях.

Выпускник получит возможность:

• развить представление о числе и числовых системах от натураль­ных до действитель­ных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чи­сел (периодиче­ские и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связан­ные с приближёнными значениями величин.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характери­стики объектов окружающего мира, являются преимущест­венно приближёнными, что по записи приближённых значений, содержа­щихся в информационных источниках, можно судить о погрешности прибли­жения;

• понять, что погрешность результата вычислений должна быть соизме­рима с погрешно­стью исходных данных.



Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразова­ние», решать за­дачи, содержащие буквенные данные; работать с форму­лами;

• выполнять преобразования выражений, содержащих степени с целыми по­казателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе пра­вил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широ­кий набор способов и приёмов;

• применять тождественные преобразования для решения задач из раз­личных разде­лов курса (например, для нахождения наиболь­шего/наименьшего значения выражения).

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, сис­темы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описа­ния и изуче­ния разнообразных реальных ситуаций, решать текстовые задачи алгебраическим мето­дом;

• применять графические представления для исследования уравнений, иссле­дования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравне­ний; уве­ренно применять аппарат уравнений для решения разнообраз­ных задач из математики, смеж­ных предметов, практики;

• применять графические представления для исследования уравнений, сис­тем уравне­ний, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отноше­нием неравен­ства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; ре­шать квадрат­ные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разде­лов курса.

Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно приме­нять аппарат неравенств для решения разнообразных математиче­ских задач и задач из смежных предметов, практики;

• применять графические представления для исследования нера­венств, систем нера­венств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, сим­волические обозначения);

• строить графики элементарных функций; исследовать свойства число­вых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описа­ния процес­сов и явлений окружающего мира, применять функциональный язык для описания и исследова­ния зависимостей между физическими величи­нами.

Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколо­тыми» точками и т. п.);

• использовать функциональные представления и свойства функций для реше­ния математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символиче­ские обозначения);

• применять формулы, связанные с арифметической и геометрической про­грессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, приме­няя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функ­ции натураль­ного аргумента; связывать арифметическую прогрессию с линейным ростом, геометриче­скую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и ана­лиза статистиче­ских данных.

Выпускник получит возможность приобрести первоначальный опыт орга­низации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таб­лицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случай­ного события.

Выпускник получит возможность приобрести опыт проведения случай­ных экспериментов, в том числе с помощью компьютерного моделирова­ния, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире пло­ские и пространственные геометрические фигуры;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фи­гур, составлен­ных из прямоугольных параллелепипедов;

• распознавать развёртки куба, прямоугольного параллелепипеда, правиль­ной пира­миды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные раз­меры самой фи­гуры и наоборот;

• углубить и развить представления о пространственных геометриче­ских фигурах;

• научиться применять понятие развёртки для выполнения практиче­ских расчётов.

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фи­гуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, гра­дусную меру углов от 0 до 180, применяя определения, свойства и при­знаки фигур и их элемен­тов, отношения фигур (равенство, подобие, симмет­рии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элемен­тарные опера­ции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фи­гур и отноше­ний между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алго­ритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность научиться:

• овладеть методами решения задач на вычисления и доказательства: методом от против­ного, методом подобия, методом перебора вариан­тов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометриче­ского аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помо­щью циркуля и линейки: анализ, построение, доказательство и исследова­ние;

• научиться решать задачи на построение методом геометрического места точек и мето­дом подобия;

• приобрести опыт исследования свойств планиметрических фигур с по­мощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические пре­образования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при реше­нии задач на нахождение длины отрезка, длины окружности, длины дуги окруж­ности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кру­гов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя фор­мулы длины окружности и длины дуги окружности, формулы площадей фи­гур;

• решать задачи на доказательство с использованием формул длины окруж­ности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометриче­ских величин (исполь­зуя при необходимости справочники и технические сред­ства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольни­ков, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновелико­сти и равно составленности;

• применять алгебраический и тригонометрический аппарат и идеи движе­ния при реше­нии задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять коорди­наты сере­дины отрезка;

• использовать координатный метод для изучения свойств прямых и окруж­ностей.

Выпускник получит возможность научиться:

• овладеть координатным методом решения задач на вычисления и дока­зательства;

• приобрести опыт использования компьютерных программ для ана­лиза частных слу­чаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение коорди­натного метода при решении задач на вычисления и доказатель­ства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, задан­ных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, коорди­наты суммы и разности двух и более векторов, координаты произведе­ния вектора на число, применяя при необходимости сочетатель­ный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векто­рами, устанавливать перпендикулярность прямых.

Выпускник получит возможность научиться:

• овладеть векторным методом для решения задач на вычисления и дока­зательства;

• приобрести опыт выполнения проектов на тему «применение вектор­ного метода при решении задач на вычисления и доказательства».








Автор
Дата добавления 21.10.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров303
Номер материала ДВ-083321
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх