Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Урок-семинар "Решение тригонометрических уравнений"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Урок-семинар "Решение тригонометрических уравнений"

библиотека
материалов

Повторительно-обобщающий урок-семинар

в 10 классе на тему

«Решение тригонометрических уравнений»


учитель Пушкарева Н.В.


Цель урока: повторить решение различных типов тригонометрических уравнений; обобщить знания учащихся по этой теме; привить, по возможности, интерес к изучению тригонометрии; научить работать самостоятельно при подготовке к семинару, а также воспитать умение коллективного творчества при решении поставленных задач.


Оборудование к уроку: рабочие тетради, тетради для подготовки к семинару, таблица основных тригонометрических формул (на стенде), заготовленные заранее задания к самостоятельной работе, указка, мел.


Ход урока: подготовка к семинару начинается за неделю до урока. Все учащиеся заводят тонкие тетради, в которых выполняется д.з., а также решаются подобранные каждой группой уравнения, соответствующие предложенному вопросу. В них же будет написана самостоятельная работа контролирующего характера в конце семинара. План семинара и д.з. вывешиваются на стенде.

В 10 классе 24 человека, класс разбивается на 6 групп по 4 человека. Каждой группе даётся одно из заданий плана семинара. Учащиеся должны подобрать 2-3 уравнения каждого типа и показать способ их решения. Для этого прорабатывается соответствующий раздел учебника, дополнительная литература, ученики консультируются с учителем.


Домашнее задание:

1. Записать в тетради решения простейших тригонометрических уравнений вида:

sin t = a, cos t = a, tg t = a, ctg t = a.

2. Решить уравнения: 1) cos2x = 0,5; 2) sin3x = 0; 3) tg x = 1/√3;

4) 8cos2x + 6sin x-3 = 0; 5) 2tg x-2ctg x = 3; 6) 3sin2x + sinx cosx = 2cos2x;

7) sin5x + cos5x = 0; 8) 2sin3x + cosxsin2x = 1


План семинара:

1) Доклад об истории развития тригонометрии. (1 группа)

2) Решение тригонометрических уравнений, содержащих одну и ту же функцию одного и того же аргумента, методом подстановки (приведение к квадратному уравнению) (2 группа).

3) Решение тригонометрических уравнений, приводящихся к предыдущему типу, по формулам (3 группа):

а) sin2x + cos2x = 1; б) tgx ctgx = 1;

в) cos2x = cos2x-sin2x = 1-2sin2x = 2cos2x - 1; г) sin2x = 2sinx cosx.

4) Решение однородных тригонометрических уравнений (4группа).

5) Решение тригонометрических уравнений разложением на множители (5группа).

6) Показать прикладную направленность данной темы. Подобрать 1-2 задачи по физике, где используется умение решать тригонометрические уравнения. (6группа)

7) Решение уравнений различными способами (для учителя: подобрать 1-2 уравнения и решить несколькими способами).



Ход урока.


1) Организационно-психологический момент: приветствие, открыли тетради, записали число, тему «Решение тригонометрических уравнений». Сообщается цель урока, этапы урока. Оценка работы учащихся сложится из Д.З. в спец.тетрадях, работы во время семинара и выполнения сам. работы.

2) Согласно плану представитель 1 группы делает доклад об истории развития тригонометрии.

Учащиеся при необходимости делают записи в тетрадях. Добавления членов 1 группы.

3) Представитель 2 группы объясняет решение уравнений методом подстановки, приводящим к квадратным.

4) Представитель 3 группы показывает решение уравнений, сводящихся к квадратным, но с использованием некоторых основных формул.

5) Представитель 4 группы объясняет решение однородных тригонометрических уравнений.

6) Представители 5 группы объясняют решение тригонометрических уравнений разложением на множители.

7) Представитель 6 группы решает физические задачи и объясняет прикладную направленность тригонометрических уравнений.

8) Выступления учеников закончились. Чтобы немного отдохнуть, ещё раз обобщить решение уравнений различных типов: 1 –квадратных методом подстановки; 2 – сводящихся к предыдущему типу через преобразования с помощью формул; 3 – однородных тригонометрических; 4 – путём разложения на множители.

9) Далее учитель показывает на примере одного уравнения несколько способов его решения: sinxcosx = 1.

10) Заключительный этап урока – самостоятельная работа, цель которой – проверить степень усвоения изученного материала, т.е. умение учащихся применять основные приёмы решения тригонометрических уравнений.

Работа ведётся в отдельных тетрадях для семинара.


Задания для 1 варианта: 1) tg23x + 3tg3x - 4 = 0;

2) 1+ cosx + cos2x = 0;

3) sin2x - 5sinx cosx + 4cos2x = 0.

Задания для 2 варианта: 1) 2tg2x – 3tgx +1 = 0;

2) 2cosx tgx = 3sinx tgx;

3) 2sin2x/2 – 3sinx/2 cosx/2 - 2cos2x/2 = 0.

Дополнительное задание: 1) tg2x –(1+√3)tgx +√3 = 0;

2) ctgx = 4 – 3tgx.



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 05.10.2015
Раздел Математика
Подраздел Конспекты
Просмотров235
Номер материала ДВ-033571
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх