1205495
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаДругие методич. материалыЗанятие в математической смене пришкольного лагеря № 5 "Комбинаторика. Подсчёт вариантов. Формула включений-исключений".

Занятие в математической смене пришкольного лагеря № 5 "Комбинаторика. Подсчёт вариантов. Формула включений-исключений".

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Занятие 5.

Остатки и делимость.

1. Докажите, что если а + 1 делится на 13 и 11 – в делится на 13, то 2а – в делится на 13.

2. Докажите, что если а + 10 делится на 13, то и 3а – 9 делится на 13.

3. Может ли число, записанное 2010 единицами и несколькими нулями быть полным квадратом?

4. Может ли число, оканчивающееся цифрами 30, быть полным квадратом?

5. Докажите, что число 543212345432121 не является квадратом натурального числа.


Комбинаторика. Подсчёт вариантов.

6. Сколькими способами можно зажечь свет в комнате, в которой 3 лампочки, у каждой – отдельный выключатель?

7. Комбинация из трёх букв на автомобильном номере состоит только из тех русских букв, у которых есть похожие латинские, а именно А, В, Е, К, М, Н, О, Р, С, Т, У, Х. Сколько всего таких комбинаций?

8. Сколькими способами можно поставить на шахматную доску белую и чёрную ладьи так, чтобы они не били друг друга.

9. Сколько всего существует трёхзначных чисел? А пятизначных?

10. а) У скольких двузначных чисел все цифры чётные? б) А у скольких трёхзначных?

11. Сколько диагоналей в выпуклом 10-угольнике?

12. а) У скольких двузначных чисел все цифры разные? б)А у скольких трёхзначных? в) А у скольких 11-тизначных?

13. На окружности отмечены 5 красных и 7 синих точек. Рассмотрим все возможные отрезки (хорды) с концами в отмеченных точках. У скольких отрезков концы а) разного цвета, б) одинакового цвета?


Формула включений-исключений.

Определение. Множество называется конечным, если оно состоит из конечного числа элементов.

Пересечением двух множеств А и В будем называть множество А ∩В, состоящее из элементов, которые принадлежат одновременно этим двум множествам. Аналогично определяют пересечение большего числа множеств.

Объединением множеств А и В будем называть множество А U В, состоящее из элементов, которые принадлежат хотя бы одному из этих множеств.

Для конечного множества А количество его элементов будем обозначать │A│.

Формула включений-исключений. Если есть два конечных множества А и В, то число элементов в их объединении равно │ А U В│=│A│+│В│-│ А ∩В │.


14. Сколько существует целых положительных чисел, не больших 100, которые:

а) делятся одновременно на 2 и на3,

б) делятся на 2, но не делятся на 3,

в) делятся на 3 , но не делятся на 2,

г) делятся на 3 или на 2,

д) не делятся ни на 2 ни на 3?

15. Сколько целых положительных чисел, меньших 100, которые не делятся ни на 2, ни на 3, ни на 5?


Задачи для проверки.

16. Докажите, что если а -4 делится на 5, то и 6а +1 делится на 5.

17. Докажите, что число, составленное из семи двоек и семи единиц, расположенных в любом порядке, не является квадратом натурального числа.

18. Сколько существует чётных четырёхзначных чисел? А нечётных?

19. Сколько трёхзначных чисел, которые делятся и на 2 и на 5?

20. Сколько диагоналей в выпуклом 101угольнике?


Домашнее задание.

21. Может ли число, оканчивающееся цифрами 45, быть полным квадратом?

22. Докажите, что если (3а +1) и (в – 5) делятся на 7, то (а + в) делится на 7.

23. Сколько трёхзначных чисел, которые не делятся ни на 2, ни на 5?

24. Сколько семизначных чисел с чередующейся чётностью цифр?

25. Имеется 8 тетрадей и 5 книг. Сколькими способами можно выбрать набор из двух тетрадей и книги?









Решения и ответы к занятию 5.

1. а + 1 ≡ 0 (mod 13), значит а ≡ 12 (mod 13); 11 – в ≡ 0 (mod 13), значит в ≡ 11 (mod 13), тогда

2а – в ≡ 2∙12 – 11 = 13 ≡0 (mod 13).

2. аналогично № 1

3. НЕТ. Квадрат любого числа содержит простые делители только в чётных степенях (то есть простой делитель содержится чётное количество раз). Сумма цифр этого числа равна 2010, значит число делится на 3, так как 2+0+1+0=3. Но это число не делится на 9, значит не может быть квадратом.

4. НЕТ. Это число оканчивается на 30 и делится на 2, но не делится на 4.

5. НЕТ. Данное число делится на 3 и не делится на 9, так как сумма его цифр равна 42


Комбинаторика. Подсчёт вариантов.

6. Для каждой лампочки два варианта: включена или нет. Для каждого варианта первой лампочки есть два варианта второй, для каждого варианта первых двух лампочек есть два варианта для третьей. Тогда всего вариантов 2∙ 2∙2 =8. Из них нужно исключить один вариант, при котором все три лампочки выключены. 8-1=7 вариантов включить свет.

7. Для первой буквы 12 вариантов, каждому из них соответствует 12 вариантов второй буквы и т.д. Всего 12∙12∙12= 1728 вариантов.

8. Сначала поставим белую ладью, для неё 64 способа. Тогда вторую нельзя ставить на те клетки, которые бьёт первая, в том числе на ту, на которой стоит первая, то есть 15 клеток. Для каждого из 64 вариантов есть 64-15=49 вариантов поставить вторую ладью, значит всего 64∙49=3136 способов.

9. Первая цифра – 9 вариантов (все цифры, кроме 0), для второй – 10, третьей – 10. Значит всего трёхзначных чисел 9х10х10=900, пятизначных 9х10х10х10х10=90000.

10. Для первой чётной цифры 4 варианта: 2,4,6,8, а для остальных 5 вариантов:0,2,3,4,6,8. Тогда а) 4х5=20, б)4х5х5=100.

11. Из каждой вершины 10-тиугольника выход 10-3=7 диагоналей, и каждая диагональ соединяет две вершины, значит всего 10х7: 2=35 диагоналей.

12. Для первой цифры 9 вариантов (все кроме 0). Для второй – 9 (все кроме первой), для третьей -8 (все кроме первой и второй), и так далее. А)9х9=81, б) 9х9х8=648, в) 0 (всего 10 различных цифр, значит, у 11-тизначного числа все цифры не могут быть различными.

13. а)5х7=35, б)5х4:2 + 7х6: 2 =10+21 =31.


Формула включений-исключений.

14 а) Число делится на 2 и на 3, тогда и только тогда, когда оно делится на 6. На 6 делятся числа 6, 12, …, 96. Значит, их количество равно (96-6): 6 + 1 = 16. б) Всего существует (100-2):2 + 1=50 чисел не больших 100 и делящихся на 2. Из них вычитаем числа, которые делятся и на 2 и на 3 50-16 = 34, в) На 3 делятся числа 3, 6, 9, 12, ….99. Всего (99-3):3 +1 =33. Вычтем из этого количества числа, которые делятся и на 2 и на3: 33-16 = 17. г) Обозначим А – множество чисел, делящихся на 2, через В – множество чисел, делящихся на 3, тогда А ∩В – множество чисел, делящихся на 2 и на 3. │ А U В│=│A│+│В│-│ А ∩В│= 50 + 33 -16 = 67. д) Из 100 рассматриваемых чисел, вычтем те, которые делятся на 2 или на 3. Всего 100 – 67 =33 числа.

15 Пусть А – множество чисел, делящихся на 2, В – множество чисел, делящихся на 3, С – множество чисел, делящихся на 5. Для трёх множеств формула включений-исключений примет вид:

А U В U С│=│A│+│В│+ │С│ -│ А ∩В│-│ А ∩С│- │С ∩В│+ │ А ∩ В ∩ С│

В задаче № 14 некоторые из данных слагаемых найдены, найдём │С│=(100-5):5+1=20,│ А ∩С│=(100-10):10+1=10 найдём │С ∩В│= (90-15):15+1=6, │ А ∩ В ∩ С│ = (90-30):30 +1 = 3. │А U В U С│=50+33+20-16-10-6+3=74. Чисел, которые делятся хотя бы на 2, на 3 или 5 всего 74, значит, чисел, не делящихся ни на одно из них

100 -74=26.


Задачи для проверки.

16. а - 4 ≡ 0 (mod 5), значит а ≡ 4 (mod 5); тогда 6а + 1 ≡ 6∙4 +1 = 25 ≡0 (mod 5).

17. Сумма цифр такого числа равна 21 и делится на 3, но не на 9.

18. У чётного числа 5 вариантов для последней цифры. Всего: 9х10х10х5=4500 чисел, аналогично с нечётным

19. Число делится и на 2 и на 5, когда оно делится на 10, всего таких трёхзначных чисел (990-100):10+1=90.

20. (101 – 3):2 = 49.





Общая информация

Номер материала: ДБ-119239

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.