Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Конспект урока по математике "Решение задач с помощью квадратных уравнений"

Конспект урока по математике "Решение задач с помощью квадратных уравнений"

  • Математика

Поделитесь материалом с коллегами:

"Решение задач с помощью квадратных уравнений"

Цель урока:

продолжить формирование умений применять теоретические знания на практике при решении квадратных уравнений;

Цель урока: • Повторение и систематизация изученного материала; • Проверка знаний, умений и навыков по решению квадратных уравнений; • Развитие интереса учащихся к математике и расширение кругозора; • Пропаганда здорового образа жизни на уроках математики.

Задачи:

Образовательные: научить составлять уравнение по условию задачи, знать особенности алгоритма её решения.

Развивающие: развитие самостоятельности, потребности к самообразованию, к активной творческой деятельности, расширение кругозора

Воспитательные: воспитание уверенности в себе, формирование познавательного интереса и ценностей здорового образа жизни.

Место урока по данной теме 2-ой урок

Формы работы: фронтальная, индивидуальная.


Тип урока: Обобщение и проверки знаний по данной теме.

Учебно-методический комплекс.

  • Ю.Н. Макарычев, Н.Г. Миндюк. Учебник АЛГЕБРА-8 Москва «Просвещение» 2010г

  • В.В. Черноруцкий КИМ 8 класс Москва «ВАКО» 2012г

Оборудование

  • Компьютер учителя, пректор.

  • Учебник «Алгебра 8»

  • Презентация.

  • Раздаточный материал для проверочной работы

Ход урока

I.Орг.момент

Добрый день, ребята давайте друг друга поприветствуем глазами поздороваемся и пожелаем улыбкой удачного дня.

Сегодня на уроке мы продолжим решение квадратных уравнений по формуле, решение задач с помощью квадратных уравнений; а также выполним самостоятельную работу, чтобы проверить насколько хорошо вы умеете решать квадратные уравнения.

II. Устная работа

1) Устный опрос

  1. Дайте определение квадратного уравнения.

  2. Назовите виды квадратных уравнений.

  3. Что значит решить уравнение?

  4. Как определить имеет ли квадратное уравнение корни?

  5. Назовите формулу корней квадратного уравнения.

  6. Напишите формулу корней квадратного уравнения, в котором второй коэффициент является чётным числом.





Найдите сторону квадрата, если его площадь равна:

а) 81 см2; б) 0,49 дм2; в) hello_html_maa12df3.png м2;

г) hello_html_m4860061a.png м2; д) 225 см2; е) hello_html_m135674c7.png м2.



2) На доске записаны уравнения. 

В старину корой этого дерева «заговаривали» зубы и лихорадку. Вырежут из коры треугольник, чтобы отдать дань Богу Отцу, Богу Сыну, Святому Духу, и трут десны, читая молитву. А потом треугольник прикладывают на место, откуда вырезали. И боль утихает. И неведомо было людям, что дело не в богах, а в содержащихся веществах в коре именно этого дерева.

О каком дереве идет речь?

Учащиеся выходят к доске по желанию решают с пояснением. Одновременно в таблице находит букву соответствующую ответу и записывает рядом с ответом.



1. x2-3x-18=0 (-3;6)и

2. –x2+9=0 (-3;3)а

3. 7x+x2=0 (0;-7)н

4. 9x2+4=0 (нет корней)о

5. x2-x-30=0 (6;-5)с









б

а

е

и

о

н

р

с

з

Х1

5

3

-2.3

6

Нет корней

0

3

6

4

Х2

0

-3

0.4

-3

-7

4.2

-5

-7



























На дополнительной доске записаны уравнения – дополнительные задания для учащихся, которые заканчивают каждый вид работы раньше:

1) (5x+3)2=(3x+5)2

2) (4x+5)2=5x2+4x

3) (3x-5)2-(2x+4)2=(x+3)2

4) (8x-1)(3x+5)-(2x-1)(8x+6)=33x+53









III.Историческая справка о квадратных уравнениях (подготовлена учеником).

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н. э. правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в”Книге абака”, написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М.Штифелем.



IV.Фронтальная работа с классом.

Работа с учебником: № 564,(№565) № 567.

V. Проверочная работа

Решите задачи:

В а р и а н т 1

1. Два последовательных чётных числа таковы, что квадрат большего из них в 9 раз больше меньшего числа. Найдите эти числа.

2. Одну сторону квадрата уменьшили на 2 см, а другую – на 1 см и получили прямоугольник с площадью 6 см2. Найдите длину стороны квадрата. Изобразите квадрат и прямоугольник.

В а р и а н т 2

1. Два последовательных нечётных числа таковы, что квадрат большего из них в 9 раз больше меньшего числа. Найдите эти числа.

2. Одну сторону квадрата увеличили на 2 см, а другую – на 1 см и получили прямоугольник с площадью 12 см2. Найдите длину стороны квадрата. Изобразите квадрат и прямоугольник.



VI. Итоги урока В о п р о с ы у ч а щ и м с я:

Какие этапы выделяют при решении задачи алгебраическим методом?

В чём состоит интерпретация полученного решения задачи?

Когда полученное решение может противоречить условию задачи?

Какие решения, полученные на сегодняшнем уроке, вы интерпретировали как противоречащие условию задачи?

Домашнее задание: № 574, № 578 (б)- повторение

В рабочей тетради стр. 20 №6

Выбери картинку, соответсвующую твоему настроению на уроке.


thumbnail.aspx_.jpegimgpreview.jpgi (3).jpg







Этапы решения задачи алгебраическим методом:

1. Анализ условия задачи и его схематическая запись.

2. Перевод естественной ситуации на математический язык (построение математической модели текстовой задачи).

3. Решение уравнения, полученного при построении математической модели.

4. Интерпретация полученного решения.


Р е ш е н и е проверочной работы

В а р и а н т 1

1. Пусть х и (х + 2) – два последовательных чётных числа. Зная, что квадрат большего из них в 9 раз больше меньшего числа, составим уравнение:

(х + 2)2 = 9х;

х2 + 4х + 4 – 9х = 0;

х2 – 5х + 4 = 0;

D = (–5)2 – 4 · 1 · 4 = 25 – 16 = 9; D> 0; 2 корня.

x1 = hello_html_m782bb1f7.gif = 4;

x2 = hello_html_74f334b7.gif = 1.

Так как число – чётное, то х2 = 1 – не удовлетворяет условию задачи.

О т в е т: 4; 6.

2. Пусть х см – сторона квадрата, тогда (х – 2) см и (х – 1) см – стороны прямоугольника. Зная, что площадь полученного прямоугольника равна 6 см, составим уравнение:

(х – 2) (х – 1) = 6;

х2х – 2х + 2 – 6 = 0;

х2 – 3х – 4 = 0;

D = (–3)2 – 4 · 1 · (–4) = 9 + 16 = 25; D> 0; 2 корня.

x1 = hello_html_840fcd.gif = 4;

x2 = hello_html_4b4373ff.gif = –1.

Так как сторона квадрата выражается положительным числом, то
х2 = –1 – не удовлетворяет условию задачи. Ответ:4см

hello_html_m1bec334e.png



В а р и а н т 2

1. Пусть х и (х + 2) – два последовательных нечётных числа. Зная, что квадрат большего из них в 9 раз больше меньшего числа, составим уравнение:

(х + 2)2 = 9х;

х2 + 4х + 4 – 9х = 0;

х2 – 5х + 4 = 0;

D = (–5)2 – 4 · 1 · 4 = 25 – 16 = 9; D> 0; 2 корня.

x1 = hello_html_m782bb1f7.gif = 4;

x2 = hello_html_74f334b7.gif = 1.

Так как число – нечётное, то х1 = 4 – не удовлетворяет условию задачи.

О т в е т: 1; 3.

2. Пусть хсм – сторона квадрата, тогда (х + 2) см и (х + 1) см – стороны прямоугольника. Зная, что площадь полученного прямоугольника равна 12 см, составим уравнение:

(х + 2) (х + 1) = 12;

х2 + х + 2х + 2 – 12 = 0;

х2 + 3х – 10 = 0;

D = 32 – 4 · 1 · (–10) = 9 + 40 = 49; D> 0; 2 корня.

x1 = hello_html_8d83213.gif = 2;

x2 = hello_html_m4044ba9f.gif = –5.

Так как сторона квадрата выражается положительным числом, то
х2 = –5 – не удовлетворяет условию задачи. Ответ 2 см

hello_html_m1c46b27b.png























Историческая справка о квадратных уравнениях (подготовлена учеником).

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н. э. правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в”Книге абака”, написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М.Штифелем.



Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 05.02.2016
Раздел Математика
Подраздел Конспекты
Просмотров150
Номер материала ДВ-419901
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх