Инфоурок Математика КонспектыЛекция по математике тема: "Логарифмические уравнения"

Лекция по математике тема: "Логарифмические уравнения"

Скачать материал

Лекция

Тема: Логарифмические уравнения

План

 1. Определение логарифмического  уравнения

2. Решение простейших уравнений

3. Потенцирование.

4. Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

5. Уравнения вида Alog a f(x) + Blog b g(x) + C = 0.

6. Введение новой переменной

 

Определение логарифмического  уравнения

Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Простейшим примером логарифмического уравнения служит уравнение вида  loga x = b (где а>0, и а ≠1).

Функция у=log a x является возрастающей (или убывающей) на промежутке

 (0; +∞) и принимает на этом промежутке все действительные значения. По теореме о корне) для любого b это уравнение имеет корень, и только один.

Решение простейших уравнений

         Простейшими логарифмическими уравнениями будем называть уравнения следующих видов:

           log a x = b, a > 0, a ¹ 1.

           log a f(x) = b, a > 0, a ¹ 1.

           log f(x) b = c, b > 0.

Эти уравнения решаются на основании определения логарифма:

если logb a = c, то a = bc.

Пример 2.1.

Решение. Область определения уравнения x > 0. По определению логарифма x = 23, x = 8 принадлежит области определения уравнения.

Ответ: x = 8.

Уравнения вида loga f(x) = b, a > 0, a ≠ 1.

Уравнения данного вида решаются по определению логарифма с учётом области определения функции f(x). Уравнение равносильно следующей системе

Обычно область определения находится отдельно, и после решения уравнения f(x) = ab проверяется, принадлежат ли его корни области определения уравнения.

Пример 2.2. log3(5х – 1) = 2.

Решение: ОДЗ: 5х – 1 > 0; х > 1/5. log3(5х– 1) = 2, log3(5х – 1) = log332, 5х - 1 =9,
х = 2.
 Ответ: 2.

Пример 2.3.

Решение. Область определения уравнения находится из неравенства 2х2 – 2х – 1 > 0. Воспользуемся определением логарифма:

Применим правила действий со степенями, получим 2х2 – 2х – 1 = 3. Это уравнение имеет два корня х = –1; х = 2. Оба полученные значения неизвестной удовлетворяют неравенству 2х2 – 2х – 1 > 0, т.е. принадлежат области определения данного уравнения, и, значит, являются его корнями.

Ответ. х1 = –1, х2 = 2.

Уравнения вида logf(x) b = с, b > 0.

Уравнения этого вида решаются по определению логарифма с учётом области определения уравнения. Данное уравнение равносильно следующей системе

Чаще всего, область определения логарифмического уравнения находится отдельно, и  после решения уравнения (f(x))c = b или равносильного уравнения

проверяется, принадлежат ли его корни найденной области.

Пример 2.4. logx–19 = 2.

Решение. Данное уравнение равносильно системе

Ответ. x = 4.

Потенцирование.

Суть метода заключается в переходе от уравнения

log a f(x) = log a g(x) к уравнению  f(x) =  g(x), которое обычно

не равносильно исходному.

Уравнения вида  loga f(x) = loga g(x) ,  а > 0, а ¹ 1.

На основании свойства монотонности логарифмической функции заключаем, что f(x) = g(x).

Переход от уравнения loga f(x) = loga g(x) к уравнению f(x) = g(x) называется потенцированием.

Нужно отметить, что при таком переходе может нарушиться равносильность уравнения. В данном уравнении f(x) > 0, g(x) > 0, а в полученном после потенцирования эти функции могут быть как положительными, так и отрицательными. Поэтому из найденных корней уравнения f(x) = g(x) нужно отобрать те, которые принадлежат области определения данного уравнения. Остальные корни будут посторонними.

Пример 3.1 log3 (x2 – 3x – 5) = log3 (7 – 2x).

Решение. Область определения уравнения найдётся из системы неравенств

                           

Потенцируя данное уравнение, получаем х2 – 3х – 5 = 7 – 2х,

х2х – 12 = 0, откуда х1 = –3, х2 = 4. Число 4 не удовлетворяет системе неравенств. Ответ. х = –3.

 

Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

         Если уравнение содержит логарифмы по одному основанию, то для приведения их к виду log a f(x) = log a g(x) используются следующие свойства логарифмов:

·         logb a + logb c = logb (ac), где a > 0; c > 0; b > 0, b ¹ 1,

·         logb a – logb c = logb (a/c), где a > 0; c > 0; b > 0, b ¹ 1,

·         m logb a = logb a mгде a > 0; b > 0, b ¹ 1; mÎR.

         Пример 4. 1. log6 (x – 1) = 2 – log6 (5x + 3).

Решение. Найдём область определения уравнения из системы неравенств

         Применяя преобразования, приходим к уравнению

log6 (x – 1) + log6 (5x + 3) = 2,

log6 ((x – 1)(5x + 3)) = 2, далее, потенцированием, к уравнению

(х – 1)(5х + 3) = 36, имеющему два корня х = –2,6; х = 3.     Учитывая область определения уравнения, х = 3. Ответ. х = 3.

         Пример  4.2.

Решение. Найдём область определения уравнения, решив неравенство

(3x – 1)(x + 3) > 0  методом интервалов.

         Учитывая, что разность логарифмов равна логарифму частного, получим уравнение log5 (x + 3) 2 = 0. По определению логарифма

(х + 3) 2 = 1, х =  –4, х = –2. Число х = –2 посторонний корень.

Ответ. х =  –4.

         Пример 4. 3.  log2 (6 – x) = 2log6 x.

Решение. На области определения 0 < x < 6 исходное уравнение равносильно уравнению 6 – x = x2, откуда х =  –3, х = 2. Число х = –3 посторонний корень.

Ответ. х = 2.

 

Уравнения вида Alog a f(x) + Blog b g(x) + C = 0.

Метод потенцирования применяется в том случае, если все логарифмы, входящие в уравнение, имеют одинаковое основание. Для приведения логарифмов к общему основанию используются формулы:

 

         Пример 5.1.

Решение. Область определения уравнения 1 < x < 2. Используя формулу (3), получим

Так как  3 = log28, то на области определения получим равносильное уравнение (2–x)/(x–1) = 8, откуда x = 10/9. Ответ. x = 10/9.

         Пример 5.2.

Решение. Область определения уравнения x > 1. Приведём логарифмы к основанию 3, используя формулу (4).Ответ. х = 6.

         Пример 5. 3.

Решение. Область определения уравнения x > –1, x ¹ 0. Приведём логарифмы к основанию 3, используя формулу (2).

Умножим обе части уравнения на log 3(x + 1) ¹ 0 и перенесем все слагаемые в левую часть уравнения. Получим (log 3(x + 1)–1)2 = 0, откуда log 3(x + 1) = 1 и

x = 2. Ответ. x = 2..

Введение новой переменной

Рассмотрим два вида логарифмических уравнений, которые введением новой переменной приводятся к квадратным.

Уравнения видагде a > 0, a ¹ 1, A, В, Сдействительные числа.

         Пусть t = loga f(x), tÎR. Уравнение примет вид t2 + Bt + C = 0.

Решив его, найдём х из подстановки t = loga f(x). Учитывая область определения, выберем только те значения x, которые удовлетворяют неравенству f(x) > 0.

Пример 6. 1. lg 2 xlg x – 6 = 0.

Решение. Область определения уравнения – интервал (0; ¥).Введём новую переменную t = lg x, tÎR.

         Уравнение примет вид t 2t – 6 = 0. Его корни t1 = –2, t2 = 3.

Вернёмся к первоначальной переменной lg x = –2 или lg x = 3,

х = 10 –2 или х = 10 3. Оба значения x удовлетворяют области определения данного уравнения (х > 0).Ответ. х = 0,01; х = 1000.

         Пример 6. 2.

Решение. Найдём область определения уравнения

Применив формулу логарифма степени, получим уравнение 

Так как х < 0, то | x | = –x  и следовательно 

Введём новую переменную  t = log3 (–x), tÎR. Квадратное уравнение

t 2 – 4t + 4 = 0имеет два равных корня  t1,2 = 2. Вернёмся к первоначальной переменной log3 (–x) = 2, отсюда –х = 9, х = –9. Значение неизвестной принадлежит области определения уравнения. Ответ. х = –9.

 Уравнения вида где a > 0, a ¹ 1,  A, В, Сдействительные числа , A¹0, В¹0.

         Уравнения данного вида приводятся к квадратным умножением обеих частей его на loga f(x) ¹0. Учитывая, что loga f(x)× logf(x) a=1

(свойство logb a = 1/ loga b), получим уравнение

                              

         Замена loga f(x)=t, tÎR приводит его к квадратному At2 + Ct + B = 0.

         Из уравнений loga f(x)= t1 , logb f(x)= tнайдем значения x и выберем среди них принадлежащие области определения уравнения:  f(x) > 0,  f(x) ¹1.

 Пример.6.3  

Решение. Область определения уравнения находим из условий x+2>0, x+2 ¹ 1, т.е. x >–2, x ¹ –1.Умножим обе части уравнения на log5 (x+2) ¹0, получим

 или, заменив log5 (x+2) = t, придем к квадратному уравнению  t 2t2 = 0,       t1 = –1, t=2.

Возвращаемся к первоначальной переменной:

         log5 (x+2) = –1,    x+2 = 1/5, x = –9/5,

         log5 (x+2) = 2,      x+2 = 25, x = 23.

Оба корня принадлежат области определения уравнения.

Ответ: x = –9/5,  x = 23.

Упражнения для закрепления материала

Решить уравнения

1);                      2);                      3);

4);  5);              

Контрольные вопросы

1. Сформулировать определение логарифмического уравнения.

2. Назвать основные методы решения логарифмических уравнений

Литература

1.Ш.А.Алимов, стр.105-111 2 О.Н.Афанасьева, стор.2753-279  3.А.Г.Мерзляк, стор.202-2


 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Лекция по математике тема: "Логарифмические уравнения""

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Психолог-перинатолог

Получите профессию

Методист-разработчик онлайн-курсов

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 665 114 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 26.12.2015 9077
    • DOCX 55.4 кбайт
    • 171 скачивание
    • Рейтинг: 1 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Оверченко Галина Леонидовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Оверченко Галина Леонидовна
    Оверченко Галина Леонидовна
    • На сайте: 8 лет и 4 месяца
    • Подписчики: 3
    • Всего просмотров: 47803
    • Всего материалов: 18

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Няня

Няня

500/1000 ч.

Подать заявку О курсе

Курс профессиональной переподготовки

Педагогическая деятельность по проектированию и реализации образовательного процесса в общеобразовательных организациях (предмет "Математика и информатика")

Учитель математики и информатики

300 ч. — 1200 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 36 человек из 17 регионов
  • Этот курс уже прошли 35 человек

Курс повышения квалификации

Особенности подготовки к сдаче ЕГЭ по математике в условиях реализации ФГОС СОО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 188 человек из 55 регионов
  • Этот курс уже прошли 1 700 человек

Курс профессиональной переподготовки

Математика: теория и методика преподавания с применением дистанционных технологий

Учитель математики

300 ч. — 1200 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 34 человека из 16 регионов
  • Этот курс уже прошли 42 человека

Мини-курс

Основы творческой фотографии

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 225 человек из 59 регионов
  • Этот курс уже прошли 35 человек

Мини-курс

Психоаналитический подход: изучение определенных аспектов психологии личности

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Стимулирование интереса к обучению у детей дошкольного возраста

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Этот курс уже прошли 11 человек