Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Лекция по математике тема: "Логарифмические уравнения"

Лекция по математике тема: "Логарифмические уравнения"


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика

Поделитесь материалом с коллегами:

Лекция

Тема: Логарифмические уравнения

План

1. Определение логарифмического уравнения

2. Решение простейших уравнений

3. Потенцирование.

4. Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

5. Уравнения вида Alog a f(x) + Blog b g(x) + C = 0.

6. Введение новой переменной


Определение логарифмического уравнения

Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Простейшим примером логарифмического уравнения служит уравнение вида loga x = b (где а>0, и а ≠1).

Функция у=log a x является возрастающей (или убывающей) на промежутке

(0; +∞) и принимает на этом промежутке все действительные значения. По теореме о корне) для любого b это уравнение имеет корень, и только один.

Решение простейших уравнений

Простейшими логарифмическими уравнениями будем называть уравнения следующих видов:

log a x = b, a > 0, a  1.

log a f(x) = b, a > 0, a  1.

log f(x) b = c, b > 0.

Эти уравнения решаются на основании определения логарифма:

если logb a = c, то a = bc.

Пример 2.1.

Решение. Область определения уравнения x > 0. По определению логарифма x = 23, x = 8 принадлежит области определения уравнения.

Ответ: x = 8.

Уравнения вида loga f(x) = b, a > 0, a ≠ 1.

Уравнения данного вида решаются по определению логарифма с учётом области определения функции f(x). Уравнение равносильно следующей системе

hello_html_54812a95.gif

Обычно область определения находится отдельно, и после решения уравнения f(x) = ab проверяется, принадлежат ли его корни области определения уравнения.

Пример 2.2. log3(5х – 1) = 2.

Решение: ОДЗ: 5х – 1 > 0; х > 1/5. log3(5х– 1) = 2, log3(5х – 1) = log332, 5х - 1 =9,
х = 2.
Ответ: 2.

Пример 2.3.

hello_html_m5150842c.gif

Решение. Область определения уравнения находится из неравенства 2х2 – 2х – 1 > 0. Воспользуемся определением логарифма:

hello_html_m7ba2065e.gif

Применим правила действий со степенями, получим 2х2 – 2х – 1 = 3. Это уравнение имеет два корня х = –1; х = 2. Оба полученные значения неизвестной удовлетворяют неравенству 2х2 – 2х – 1 > 0, т.е. принадлежат области определения данного уравнения, и, значит, являются его корнями.

Ответ. х1 = –1, х2 = 2.

Уравнения вида logf(x) b = с, b > 0.

Уравнения этого вида решаются по определению логарифма с учётом области определения уравнения. Данное уравнение равносильно следующей системе

hello_html_36547287.gif

Чаще всего, область определения логарифмического уравнения находится отдельно, и после решения уравнения (f(x))c = b или равносильного уравнения

hello_html_m5e8ea629.gif

проверяется, принадлежат ли его корни найденной области.

Пример 2.4. logx–19 = 2.

Решение. Данное уравнение равносильно системе

hello_html_4052fc04.gifОтвет. x = 4.

Потенцирование.

Суть метода заключается в переходе от уравнения

log a f(x) = log a g(x) к уравнению f(x) = g(x), которое обычно

не равносильно исходному.

Уравнения вида loga f(x) = loga g(x) , а > 0, а  1.

На основании свойства монотонности логарифмической функции заключаем, что f(x) = g(x).

Переход от уравнения loga f(x) = loga g(x) к уравнению f(x) = g(x) называется потенцированием.

Нужно отметить, что при таком переходе может нарушиться равносильность уравнения. В данном уравнении f(x) > 0, g(x) > 0, а в полученном после потенцирования эти функции могут быть как положительными, так и отрицательными. Поэтому из найденных корней уравнения f(x) = g(x) нужно отобрать те, которые принадлежат области определения данного уравнения. Остальные корни будут посторонними.

Пример 3.1 log3 (x2 – 3x – 5) = log3 (7 – 2x).

Решение. Область определения уравнения найдётся из системы неравенств

hello_html_201a571d.gif

Потенцируя данное уравнение, получаем х2 – 3х – 5 = 7 – 2х,

х2х – 12 = 0, откуда х1 = –3, х2 = 4. Число 4 не удовлетворяет системе неравенств. Ответ. х = –3.


Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

Если уравнение содержит логарифмы по одному основанию, то для приведения их к виду log a f(x) = log a g(x) используются следующие свойства логарифмов:

  • logb a + logb c = logb (ac), где a > 0; c > 0; b > 0, b 1,

  • logb a – logb c = logb (a/c), где a > 0; c > 0; b > 0, b 1,

  • m logb a = logb a m, где a > 0; b > 0, b  1; mR.

  Пример 4. 1. log6 (x – 1) = 2 – log6 (5x + 3).

Решение. Найдём область определения уравнения из системы неравенств

hello_html_126d555a.gif

Применяя преобразования, приходим к уравнению

log6 (x – 1) + log6 (5x + 3) = 2,

log6 ((x – 1)(5x + 3)) = 2, далее, потенцированием, к уравнению

(х – 1)(5х + 3) = 36, имеющему два корня х = –2,6; х = 3. Учитывая область определения уравнения, х = 3. Ответ. х = 3.

  Пример 4.2. hello_html_e0a6c4a.gif

Решение. Найдём область определения уравнения, решив неравенство

(3x – 1)(x + 3) > 0 методом интервалов.hello_html_m78966d89.gif

Учитывая, что разность логарифмов равна логарифму частного, получим уравнение log5 (x + 3) 2 = 0. По определению логарифма

(х + 3) 2 = 1, х = –4, х = –2. Число х = –2 посторонний корень.

Ответ. х = –4.

  Пример 4. 3. log2 (6 – x) = 2log6 x.

Решение. На области определения 0 < x < 6 исходное уравнение равносильно уравнению 6 – x = x2, откуда х = –3, х = 2. Число х = –3 посторонний корень.

Ответ. х = 2.


Уравнения вида Alog a f(x) + Blog b g(x) + C = 0.

Метод потенцирования применяется в том случае, если все логарифмы, входящие в уравнение, имеют одинаковое основание. Для приведения логарифмов к общему основанию используются формулы:

hello_html_m29b8ad9f.gif

hello_html_m39be6191.gif

hello_html_7b825d79.gif

hello_html_m478f68ab.gif

 

Пример 5.1. hello_html_m3ee05e18.gif

Решение. Область определения уравнения 1 < x < 2. Используя формулу (3), получим hello_html_m14846b2.gif

Так как 3 = log28, то на области определения получим равносильное уравнение (2–x)/(x–1) = 8, откуда x = 10/9. Ответ. x = 10/9.

  Пример 5.2. hello_html_m74545d09.gif

Решение. Область определения уравнения x > 1. Приведём логарифмы к основанию 3, используя формулу (4).hello_html_m2f2cf69.gifОтвет. х = 6.

  Пример 5. 3. hello_html_6af0c9de.gif

Решение. Область определения уравнения x > –1, x 0. Приведём логарифмы к основанию 3, используя формулу (2). hello_html_2d021aed.gif

Умножим обе части уравнения на log 3(x + 1) 0 и перенесем все слагаемые в левую часть уравнения. Получим (log 3(x + 1)–1)2 = 0, откуда log 3(x + 1) = 1 и

x = 2. Ответ. x = 2..

Введение новой переменной

Рассмотрим два вида логарифмических уравнений, которые введением новой переменной приводятся к квадратным.

hello_html_1fefb1a8.gif

hello_html_74720d2.gif

Уравнения видаhello_html_66f86c35.gifгде a > 0, a 1, A, В, Сдействительные числа.

Пусть t = loga f(x), tR. Уравнение примет вид t2 + Bt + C = 0.

Решив его, найдём х из подстановки t = loga f(x). Учитывая область определения, выберем только те значения x, которые удовлетворяют неравенству f(x) > 0.

Пример 6. 1. lg 2 xlg x – 6 = 0.

Решение. Область определения уравнения – интервал (0; ).Введём новую переменную t = lg x, tR.

Уравнение примет вид t 2t – 6 = 0. Его корни t1 = –2, t2 = 3.

Вернёмся к первоначальной переменной lg x = –2 или lg x = 3,

х = 10 –2 или х = 10 3. Оба значения x удовлетворяют области определения данного уравнения (х > 0).Ответ. х = 0,01; х = 1000.

Пример 6. 2. hello_html_402d444e.gif

Решение. Найдём область определения уравнения

hello_html_m3610bb4d.gif

Применив формулу логарифма степени, получим уравнение hello_html_50b7cba.gif

Так как х < 0, то | x | = –x и следовательно hello_html_40e05e21.gif

Введём новую переменную t = log3 (–x), tR. Квадратное уравнение

t 2 – 4t + 4 = 0имеет два равных корня t1,2 = 2. Вернёмся к первоначальной переменной log3 (–x) = 2, отсюда –х = 9, х = –9. Значение неизвестной принадлежит области определения уравнения. Ответ. х = –9.

 Уравнения вида hello_html_m1ee445de.gifгде a > 0, a 1, A, В, Сдействительные числа , A0, В0.

Уравнения данного вида приводятся к квадратным умножением обеих частей его на loga f(x) 0. Учитывая, что loga f(x) logf(x) a=1

(свойство logb a = 1/ loga b), получим уравнение

hello_html_28f5c9a6.gif

Замена loga f(x)=t, tR приводит его к квадратному At2 + Ct + B = 0.

Из уравнений loga f(x)= t1 , logb f(x)= t2 найдем значения x и выберем среди них принадлежащие области определения уравнения: f(x) > 0, f(x) 1.

 Пример.6.3 hello_html_2d178910.gif

Решение. Область определения уравнения находим из условий x+2>0, x+2 1, т.е. x >–2, x –1.Умножим обе части уравнения на log5 (x+2) 0, получим

hello_html_35083cce.gifили, заменив log5 (x+2) = t, придем к квадратному уравнению t 2t2 = 0, t1 = –1, t2 =2.

Возвращаемся к первоначальной переменной:

log5 (x+2) = –1, x+2 = 1/5, x = –9/5,

log5 (x+2) = 2, x+2 = 25, x = 23.

Оба корня принадлежат области определения уравнения.

Ответ: x = –9/5, x = 23.

Упражнения для закрепления материала

Решить уравнения

1)hello_html_m1c671947.gif; 2)hello_html_m7cae961d.gif; 3)hello_html_m25538350.gif;

4)hello_html_33eadeab.gif; 5)hello_html_a7b9e9b.gif;

Контрольные вопросы

1. Сформулировать определение логарифмического уравнения.

2. Назвать основные методы решения логарифмических уравнений

Литература

1.Ш.А.Алимов, стр.105-111 2 О.Н.Афанасьева, стор.2753-279 3.А.Г.Мерзляк, стор.202-2




57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 26.12.2015
Раздел Математика
Подраздел Конспекты
Просмотров286
Номер материала ДВ-290337
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх