237799
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаДругие методич. материалыМатематика пәнінен методикалық материал "Пифогор теоремасы" (8-сынып)

Математика пәнінен методикалық материал "Пифогор теоремасы" (8-сынып)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.



Кудербекова Алия Галымовна

Оңтүтсік Қазақстаоблысы,Түлкібас ауданы, «Құралай»

мемлекеттік мекемесінің жоғарғы санатты математика пәні мұғалімі


Педагогикалық кредо: Академик А.Н. Колмогоров: «Математик әрқашан реалды құбылыстардың әр түрлі модельдерімен жұмыс жасайды. Оны математик ретінде «қабылданған модель аясында қорытындылар орынды ма?» деген сұрақ ғана ойландырады. Егер де ол реалдылық пен оның математикалық моделінің арасындағы диалектикалық байланысты түсіндіру міндетінен бас тартса, бұл әсте жақсы емес» - деп көрсеткен болатын.

8 сынып

Сабақтың тақырыбы: Пифагор теоремасы


Сабақтың мақсаты:

1) Пифагор теоремасын ың дәлелдеуінің бірнеше әдістері бар екенін түсіндіріп, оны геометриялық есептерді шығару барысында қолдану дағдыларын қалыптастыру;

2) шапшаңдыққа, тапқырлыққа баулу; логикалық ойлау қабілеттерін жан-жақты дамыту;

3) таза жазуға, сызбаларды ұқыпты орындауға,; мәдениетті, әрі көркем сөйлеуге тәрбиелеу;

Пән аралық байланыс: алгебра, тарих, әдебиет


Сабақтың жоспары:

  1. Ұйымдастыру бөлімі

  2. Оқушылардың жаңа сабаққа әзірлігін тексеру

  3. Пифагордың өмірбаянымен таныстыру

  4. Пифагор теоремасының тарихынан мағлұмат беру\

  5. Теоремамен жұмыс

    1. мұғалім

    2. оқушы ізденісі

  6. Теореманың қолданылуы

    1. есептерді шығаруға

    2. есептерді дәлелдеуге

  7. Тест өткізу

  8. Сабақты қорытындылау, бағалау

  9. Үйге тапсырма беру


Көрнекілігі:

Сызу құралдары (бұрыштық, сызғыш),интерактивті тақта, тест құрал,стенд: Пифагор портреті, тарихи мағлұматтар ,тарихи есептер,т.т


Ауызша есептер үшін суреттерhello_html_6a25d6c2.png

hello_html_6a25d6c2.png



«Көпбұрыштың ауданы» өткен материалды қорытындылау мақсатында оқушылардан тест алу.hello_html_6a25d6c2.pnghello_html_2d8713fb.png

1. Дұрыс жауапты анықта:

a) Тіктөртбұрыштың ауданы екі қабырғасының көбейтіндісіне тең;

b) Квадраттың ауданы оның қабырғасының квадратына тең;

c) Тік төртбұрыштың ауданы екі көрші қабырғасының екі еселенген көбейтіндісіне тең.

2. Көп нүктенің орнына керекті сөз тіркесін қой. Ромбының ауданы ... көбейтіндісінің жартысына тең

a) оның қабырғаларының;

b) оның қабырғасы мен сол қабырғаға түсірілген биіктігінің;

c) оның диагональдарының.

3. S = а · һа формуласы бойынша қай фигураның ауданын табуға болады?

a) параллелограмның; b) үшбұрыштың; c) тіктөртбұрыштың.

4. Табандары а және в және биіктігі һ болатын трапецияның ауданы төмендегі формула бойынша есептеледі:

а) S=hello_html_6b991911.gif б) S=hello_html_m2350f4d2.gif с) S=hello_html_6cd686ef.gif

5. Дұрыс жауапты анықта:

Тік бұрышты үшбұрыштың ауданы оның:

  1. кез келген биіктігі мен катетінің көбейтіндісіне;

  2. катеттерінің көбейтіндісінің жартысына;

  3. қабырғасы мен оған түсірілген биіктігінің көбейтіндісіне тең.

Оқушылар, жаңа сендер қайталаған көпбұрыштың аудандарының қасиетін пайдалана отырып, бүгін геометрияның алтын қазынасы есептелетін “Пифагор теоремасы” тақырыбын өтпекпіз.

Пифагор теоремасында” тік бұрышты үшбұрыштың гипотенузасы мен катеттерінің арасындағы тамаша қатыс тағайындалады.

Пифагор теоремасы тарихында тоқталайық.

- Ежелгі Мысыр мен Вавилон жазбаларында бұл теорема, Пифагорға дейін 1200жыл бұрын кездескен, бірақ осы теореманың дәлелдеуін б.э.б. VI ғасырда өмір сүрген грек оқымыстысы,(арифметика,геометрия,музыка,астрономия) Пифагор тапқан болатын. Және дәлелдемесін тапқанда 100 өгіз сойып, той жасаған, ,құдайлардың құрметіне құрбандық берген деседі. Ал одан кейін теореманың дәлелдемелерін бірнеше ғалымдар тапқан. Қазіргі кезде 367 дәлелдеуі бар.

Айтушылардың сөзіне қарағанда ғылымның бұл саласын жоғары тұрғыдан зерттеп, қиқы-шойқы жерлерін түзеп, шалағай ережелерді ширатып, ақыл парасатына жүгіндіріп,үлкен ғылымға айналдырушы Пифагор болған.

Пифагор – гректің ерте замандағы философы және математигі. Ол геометрияны тек практика тұрғысынан ғана қарамай, оны логикаға негіздеп, абстракт ғылым ретінде қарастырған ғалымдардың бірі болса керек. Ұқсас фигуралар жайындағы ілімді жасаған,кейбір дұрыс көпбұрыштар мен көпжақтардың салу тәсілін тапқан . Пифагоршылардың аса маңызды табысы өлшемдес емес кесінділердің болатындығын тағайындау болды.

Қабырғалары 3, 4, 5 сандарымен өрнектелетін тік бұрышты үшбұрыш «Египет үшбұрышы» деп аталған. Египеттіктер жер бетінде тік бұрыш салып көрсету үшін, жіпті 12 тең бөлікке бөліп, 3 бөлігінен 1 түйін, онан кейін 4 бөлігінен 1 түйін салып, 2 ұшын түйетін де, сол түйіндерге қазықтар қағып көргенде жер бетінде тік бұрышты үшбұрыш пайда болатын. Мұндай үшбұрыштар көп болатын. Олардың қабырғаларын 5, 12 және 13; 7, 24 және 25 т.с.с сандармен өрнектеген. Осы сандар «Пифагор сандары» деп аталады.


Пифагор теоремасы

Тік бұрышты үшбұрыштың гепотенузасының квадраты

катеттерінің квадраттарының қосындысына тең.

Пифагор теоремасын дәлелдеудің түрлеріhello_html_2e972dfb.png

1.

Берілгені: ▲АВС(<С=900)


Дәлелдеу керек: АВ2=АС2+СВ2

hello_html_4a56f931.png

Дәлелдеу:АВ=с, АС=b, СВ=а

Берілген үшбұрышты қабыр-

ғасын а+в квадратқа дейін

толықтырайық. S=hello_html_d4a016a.gif (а+в)2

S=hello_html_6f427c88.gif.Сонда

hello_html_60c7f090.gif,бұдан

с2= а2+b2.Теорема дәлелденді.

2. Теореманың қарапайым дәлелдеуі тең бүйірлі үшбұрыш жағдайында қарастырылады. Теореманың өзі де осыдан басталған.

Тік бұрышты үшбұрыштың гипотенузасына салынған квадрат катеттеріне салынған квадраттардың қосындысымен тең шамалы. hello_html_231fcef8.png

Теореманың дұрыстығына көз жеткізу үшін тең бүйірлі тікбұрышты үшбұрыштар мозаикасына қарау жеткілікті. Мысалы, ΔABC үшін : АВ гипотенузасына салынған квадрат 4 үшбұрыштан құралған, ал катеттерге салынған квадраттардың әрқайсысы екі үшбұрыштан тұрады. Теорема дәлелденді.


Пифагор теоремасының қолданылуы

hello_html_1dd3eb49.png

Ауызша есептер

hello_html_ma586db8.pnghello_html_m4a15e70.pnghello_html_m756f46ec.png

Табу керек: АВ Табу керек: ВС Табу керек: АВ

1. Тікбұрышты трапецияның үлкен диагоналы 13 см, ал үлкен табаны 12 см, кіші табаны 8 см болса, трапецияның ауданы қандай болғаны?

2.Параллелограмның кіші биіктігі мен кіші табаны сәйкесінше 9 см және 12 см. Үлкен диагоналы 15 см. Параллелограмның ауданын тап.

Описание: snap0051


Тарихи есептер

XII ғасырдағы үнді математигі Бхаскараның есебі


Өзеннің жағасында жалғыз терек өсіп тұр. Кенеттен жел тұрып, терек сынып түсіп, теректің төбесі өзеннің екінші жағасына түсті. Суретте көрсетілген өлшемдері бойынша теректің ұзындығын тап. (1 фут = 0,3048 м)

Қорытынды: Сонымен қорытындылай келе, Пифагор теоремасы қажеттілігі: Есептер шығаруда, үлкен құрылыстарда, теоремаларды дәлелдегенде т.т. Сондықтан бұл теореманың қыр – сырын толығырақ әрі тереңірек білу қызығушылық тудырады.


Общая информация

Номер материала: ДВ-068771

Вам будут интересны эти курсы:

Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.