Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация «История решения квадратных уравнений»
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Презентация «История решения квадратных уравнений»

библиотека
материалов
Учитель математики Каргопольской основной школы Алькеевского района РТ Галиу...
История решения квадратных уравнений (с древности до наших дней) Цель исследо...
“Маршрут” исследований: 1)Древний Вавилон 2)Диофант 3)Индия 4)Европа 5)Казань
Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не тол...
Вавилон Квадратные уравнения умели решать около 2000 лет до нашей эры вавилон...
Вавилон Почти все найденные до сих пор клинописные тексты приводят только за...
Как составлял и решал Диофант квадратные уравнения В «Арифметике» Диофанта со...
Задача Диофанта «Найти два числа, зная, что их сумма равна 20, а произведение...
Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются уже в...
Индия Задача Мухаммеда ибн Мусы ал-Хорезми “Квадрат и 10 корней равны 39”.  ...
В Древней Индии были распространены публичные соревнования в решении трудных...
Квадратные уравнения в Европе XIII-XVII вв. Формулы решения квадратных уравне...
В глубокой древности была найдена формула для решения квадратного уравнения с...
Казанские ученые-математики Большой вклад в теорию решения уравнений внесли к...
Традиционное решение квадратных уравнений 2 корня, если а и с числа с разными...
Нетрадиционное решение квадратных уравнений На зависть древним грекам и индий...
Выводы: Задачи на квадратные уравнения встречаются уже в 499 году. После раб...
Квадрат тигезләмәләр
Каралачак мәсьәләләр: Квадрат тигезләмәләрне чишү тарихы белән танышу Тулы бу...
Әгәр х2+10х-39=0 тигезләмәсен безгә билгеле формула ярдәмендә чишсәк, сезнең...
20 1

"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Описание презентации по отдельным слайдам:

№ слайда 1 Учитель математики Каргопольской основной школы Алькеевского района РТ Галиу
Описание слайда:

Учитель математики Каргопольской основной школы Алькеевского района РТ Галиуллина Фарида Вакифовна

№ слайда 2 История решения квадратных уравнений (с древности до наших дней) Цель исследо
Описание слайда:

История решения квадратных уравнений (с древности до наших дней) Цель исследования:

№ слайда 3 “Маршрут” исследований: 1)Древний Вавилон 2)Диофант 3)Индия 4)Европа 5)Казань
Описание слайда:

“Маршрут” исследований: 1)Древний Вавилон 2)Диофант 3)Индия 4)Европа 5)Казань

№ слайда 4 Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не тол
Описание слайда:

Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики

№ слайда 5 Вавилон Квадратные уравнения умели решать около 2000 лет до нашей эры вавилон
Описание слайда:

Вавилон Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их  клинописных текстах  встречаются, кроме неполных, и такие, например, полные квадратные уравнения:  

№ слайда 6 Вавилон Почти все найденные до сих пор клинописные тексты приводят только за
Описание слайда:

Вавилон Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

№ слайда 7 Как составлял и решал Диофант квадратные уравнения В «Арифметике» Диофанта со
Описание слайда:

Как составлял и решал Диофант квадратные уравнения В «Арифметике» Диофанта содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней. При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

№ слайда 8 Задача Диофанта «Найти два числа, зная, что их сумма равна 20, а произведение
Описание слайда:

Задача Диофанта «Найти два числа, зная, что их сумма равна 20, а произведение –96» Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, т.к. если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10+х, другое же меньше, т.е.10-х. Разность между ними 2х. Отсюда уравнение(10+х)(10-х)=96 или же 100-х 2=96 , х2-4=0 Отсюда х=2.Одно из искомых чисел равно 12, другое 8. Решение х=-2 для Диофанта не существует, т.к.греческая математика знала только положительные числа.

№ слайда 9 Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются уже в
Описание слайда:

Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта(VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: х2+вх=с, а0. В этом уравнении коэффициенты, кроме а,могут быть и отрицатель-ными. Правило Брахмагупты по существу совпадает с нашим.

№ слайда 10 Индия Задача Мухаммеда ибн Мусы ал-Хорезми “Квадрат и 10 корней равны 39”.  
Описание слайда:

Индия Задача Мухаммеда ибн Мусы ал-Хорезми “Квадрат и 10 корней равны 39”.  Эта задача соответствует уравнению х2+10х=39. Ал-Хорезми предлагает решать ее следующим образом: если бы у нас был квадрат со стороной (х+5), тогда его можно было бы разбить на квадрат со стороной х, два прямоугольника 5х и квадрат со стороной 5 (см. рисунок). Нам известно, что х 2+2*5х=39. Тогда площадь большого квадрата 39+25=64, а значит его сторона равна 8. Но сторона этого квадрата равна х+5, то есть х=8-5=3. Ответ: х=3.

№ слайда 11 В Древней Индии были распространены публичные соревнования в решении трудных
Описание слайда:

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звёзды, так учёный человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи» Задачи часто облекались в стихотворную форму. «Обезьянок резвых стая Всласть поевши, развлекалась, Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать, повисая… Сколько ж было обезьянок, Ты скажи мне, в этой стае?»

№ слайда 12 Квадратные уравнения в Европе XIII-XVII вв. Формулы решения квадратных уравне
Описание слайда:

Квадратные уравнения в Европе XIII-XVII вв. Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи.Книга способствовала распространению алгебраических знаний в Италии, в Германии, Франции и др. странах Европы.

№ слайда 13 В глубокой древности была найдена формула для решения квадратного уравнения с
Описание слайда:

В глубокой древности была найдена формула для решения квадратного уравнения с помощью радикалов (корней). Вывод формулы имеется у Виета,но он признавал только положительные корни. Итальянские математики Тарталья, Кордано, Бомбелли в XVI в.учитывают и отрицательные корни. В XVII в. благодаря трудам Жирара, Декарта, Ньютона способ решения квадратных уравнений принимает современный вид.

№ слайда 14 Казанские ученые-математики Большой вклад в теорию решения уравнений внесли к
Описание слайда:

Казанские ученые-математики Большой вклад в теорию решения уравнений внесли казанские ученые-математики. Н.Г.Чеботарев в казанский период жизни и научной деятельности создал казанскую алгебраическую школу. Он и его ученики работали над теориями алгебраических чисел, распределением корней, теориями алгебраических функций. Н.Г.Четаев работал над проблемами устойчивости движения, аэродинамикой и качественными методами решения дифференциональных уравнений.

№ слайда 15 Традиционное решение квадратных уравнений 2 корня, если а и с числа с разными
Описание слайда:

Традиционное решение квадратных уравнений 2 корня, если а и с числа с разными знаками; нет корней, если а и с числа с одинаковыми знаками. 2 корня: 1 корень, x=0

№ слайда 16 Нетрадиционное решение квадратных уравнений На зависть древним грекам и индий
Описание слайда:

Нетрадиционное решение квадратных уравнений На зависть древним грекам и индийцам вы можете научиться решать квадратные уравнения быстрее. Найдите связь между суммой коэффициентов и корнями квадратных уравнений.

№ слайда 17 Выводы: Задачи на квадратные уравнения встречаются уже в 499 году. После раб
Описание слайда:

Выводы: Задачи на квадратные уравнения встречаются уже в 499 году. После работ Жирара (1592-1632), Декарта и Ньютона метод решения квадратных уравнений приобрёл нынешний вид. Выявляются новые методы решения квадратных уравнений.

№ слайда 18 Квадрат тигезләмәләр
Описание слайда:

Квадрат тигезләмәләр

№ слайда 19 Каралачак мәсьәләләр: Квадрат тигезләмәләрне чишү тарихы белән танышу Тулы бу
Описание слайда:

Каралачак мәсьәләләр: Квадрат тигезләмәләрне чишү тарихы белән танышу Тулы булмаган квадрат тигезләмәләрне чишү Квадрат тигезләмәләрне: 1) икебуынның квадратын аерып чыгару юлы белән чишү 2)формула кулланып чишү 3)Виет теоремасын кулланып чишү 4)традицион булмаган юллар белән чишү Тигезләмәләрне график юл белән чишү Укучыларда математика, аның тарихы белән кызыксыну тәрбияләү Квадратик функция һәм аның графигы белән танышу

№ слайда 20 Әгәр х2+10х-39=0 тигезләмәсен безгә билгеле формула ярдәмендә чишсәк, сезнең
Описание слайда:

Әгәр х2+10х-39=0 тигезләмәсен безгә билгеле формула ярдәмендә чишсәк, сезнең исәпләүләр мең ел элек гарәп математиклары башкарган исәпләүләрдән нигездә аерылырмы? Билгеле инде, юк. Димәк, әгәр сез, уй белән генә, квадрат тигезләмәләрне чишү тизлеге буенча шул заман математиклары белән ярышсагыз, кем кемне җиңүе әлегә билгесез. Мөгаен, сез оттырырга мөмкин-алар телдән бик тиз исәпләгәннәр. Ә сез? и ә р х й я 16 8_ 15 5 91 8 128

Краткое описание документа:

"Описание материала:

Умение решать квадратных уравнений -одна из ключевых задач обучения математики. Несмотря на, казалось бы, доступность методов решения таких задач, в школе немало учеников, которые не справляются с этим заданием. Учителю приходится убедить своих учеников на необходимость таких знаний. Очень часто в таких случаях учителя обращаются к дополнительным материалам, которые помогают заинтересовать учащихся той или иной темой. Подготовленные учителем презентации, видеоуроки помогают достичь поставленных целей.

Автор
Дата добавления 08.03.2014
Раздел Математика
Подраздел Презентации
Просмотров764
Номер материала 33616030834
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх