1736882
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
Добавить материал и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
До повышения цен на курсы профессиональной переподготовки и повышения квалификации осталось:
0 дней 0 часов 0 минут 0 секунд
Успейте подать заявку на курсы по минимальной цене!
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%
ИнфоурокМатематикаКонспектыУрок- консультация по математике для 11 класса « Решение задач на сплавы, смеси»

Урок- консультация по математике для 11 класса « Решение задач на сплавы, смеси»

библиотека
материалов

Акмолинская область

Зерендинский район

Зерендинская средняя школа №1

Урок – консультация в 11 классе

по теме «Задачи на смеси и сплавы»

Подготовила: учитель математики

Белогурова Н.С.

с. Зеренда

2013-2014 учебный год

Урок – консультация в 11 классе по теме «Задачи на смеси и сплавы»

Цели: закрепить умение рассуждать и решать задачи на дроби и проценты, составлять по задаче уравнения и решать его, научить решать задачи на смеси и сплавы арифметическим способом.

I. Организационный момент.

Задачи, которые мы будем решать, относятся к традиционным задачам математики. Они охватывают большой круг ситуаций: смешение товаров разной цены, жидкостей с различным содержанием соли, кислот разной концентрации, сплавление металлов с различным содержанием некоторого металла. Когда-то они имели исключительно практическое значение. В настоящее время эти задачи часто встречаются в тестах на выпускных экзаменах и на вступительных экзаменах в вузы.

Мы рассмотрим задачи на смешение, которые можно решить не только алгебраически, то есть с помощью уравнения, но и арифметическим способом.

Для успешной работы нам понадобится повторить основные понятия этой темы.

II. Устный счёт

1. Концентрация вещества в смеси – это часть, которую составляет масса вещества в смеси от массы смеси. Нахождение части от целого. В химии вы называли эту величину массовой долей вещества.

Концентрация вещества может быть указана и числом и %.

2. Объясните значение высказываний:

а) Концентрация раствора 3 %;

(В 100 г раствора содержится 3 г вещества).

в) Молоко имеет 1,5 % жирности;

(В100 г молока содержится 1,5 г жира).

с) золотое кольцо имеет 583 пробу?

(В1 г кольца содержит 583 миллиграмма золота).

Сколько сахара содержится в 200 г 10%- го сахарного сиропа?

Теперь давайте попробуем решить устно несколько задач.

3. К одной части сахара прибавили 4 части воды. Какова концентрация полученного раствора?

(1: 5 ·100 = 20 %)

4. Килограмм соли растворили в 9 л воды. Какова концентрация раствора?

(1 : 10 ·100 = 10%)

III. Разбор задач

Следующие задачи мы решим с вами с помощью уравнения.

I Задачи на сушку грибов, ягод.

Важно помнить, что количество тв. вещ-ва в свежих и сухих грибах, ягодах и т.д. постоянное, изменяется количество воды.

1. Свежие абрикосы содержат 80 % воды по массе, а курага (сухие абрикосы) – 12 % воды. Сколько понадобится килограммов свежих абрикосов, чтобы получить 10 кг кураги?

Решение: Составим таблицу:


Свежие абрикосы

Курага

Масса, кг

Х кг

10 кг

вода

80 %

12 %

Тв. вещ., %

20 %

88 %

Тв. вещ., кг

х∙0,2

10∙0,88

Количество тв. вещ-ва в свежих и сухих абрикосов постоянное, изменяется количество воды.

Составим уравнение: 0,2х=10∙0,88

Х=44

Ответ: 44 кг.

2 Свежие грибы по весу содержат 90% воды, а сухие 12% воды. Сколько получится сухих грибов из 22 кг свежих?

2,2=0,88х

Ответ:2,5 кг.

3. Свежесрезанные грибы содержат 90% воды. После длительного хранения 120 кг грибов на складе содержание воды в них уменьшилось до 84%. Какой стала масса грибов после хранения?

120∙0,1=0,16х

Х= 75

Ответ: 75 кг

II Задачи на смешение двух растворов, решаемые алгебраически.

№1. В каких пропорциях нужно смешать раствор 50 % и 70 % кислоты, чтобы получить раствор 65 % кислоты?

Для решения задачи я попрошу вас заполнить таблицу, которая находится у вас на столе.

 

Концентрация

Масса раствора ( г )

Масса кислоты ( г )

I раствор

 50

 х

 0,5х

II раствор

 70

у

 0,7у

смесь

 65

 х+у

 0,65(х+у)

Заполняем 1-й столбик. Здесь мы указываем концентрацию растворов.

Заполняем 2-й столбик. Здесь мы указываем массу каждого раствора. Предположим, что первого раствора нужно взять х г, а второго у г. Считаем, что при смешении нет потерь массы, то есть масса смеси равна сумме масс смешиваемых растворов.

Тогда масса смеси будет (х + у) г.

Теперь заполним 3-й столбик. Найдем количество чистой кислоты в 1-ом растворе. Это 0,5х г, во втором растворе 0,7у г, а в смеси будет 0,65(х + у) г кислоты.

По условию задачи составим и решим уравнение.

0,65 (х + у) = 0,5 х + 0,7 у,

65 х – 50 х = 70 у – 65 у,

15 х = 5 у,

3 х = 1 у,

х : у = 1 : 3.

Нужно взять: 1 часть раствора 50% кислоты и 3 части раствора 70% кислоты

Ответ: 50% раствора кислоты -1 часть, 70% раствора кислоты - 3 части.

А теперь я хочу предложить вам схему решения этой задачи арифметическим методом, который позволяет решить ее практически устно. Запишем концентрацию каждого раствора кислоты и концентрацию смеси так:

hello_html_40c3c1a6.jpghello_html_m1177a37f.png

Вычислим, на сколько концентрация первого раствора кислоты меньше, чем концентрация смеси и на сколько концентрация второго раствора кислоты больше, чем концентрация смеси и запишем результат по линиям:

hello_html_41bca690.png

Таким образом, 5 частей нужно взять 50% раствора кислоты и 15 частей 70% раствора кислоты, то есть отношение взятых частей hello_html_m5c66da66.png. Окончательно получаем: 50% раствора кислоты-1 часть, 70% раствора кислоты-3 части. Сравните полученные результаты. Делаем вывод: получили один и тот же ответ, но времени затратили гораздо меньше.

Этот метод решения назвали «правило креста». «Правилом креста» называют диагональную схему правила смешения для случаев с двумя растворами. Слева на концах отрезков записывают исходные массовые доли растворов (обычно слева вверху – большая), на пересечении отрезков – заданная, а справа на их концах записываются разности между исходными и заданной массовыми долями. Получаемые массовые части показывают, в каком отношении надо слить исходные растворы.

hello_html_75bcb11e.png







№2. В каких пропорциях нужно сплавить золото 375 пробы с золотом 750 пробы, чтобы получить золото 500 пробы?

И так составляем схему.

hello_html_3fd90b90.png

hello_html_m58d2e715.gifЧтобы получить золото 500 пробы нужно взять: 2 части золота 375 пробы и 1 часть золота750 пробы.

№3. Морская вода содержит 5 % соли по массе. Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составляла 1,5 %?

hello_html_3db6b2ec.png

hello_html_mdc239da.png

hello_html_m33a64703.gif

Откуда х=70 кг.

Или нужно взять 7 частей пресной воды и 3 части морской воды. По условию нам известно, что морской воды 30 кг и это 3 части нового раствора. Значит, на одну часть приходится 10 кг. Следовательно, 7частей пресной воды – это 70 кг.

Ответ: нужно добавить 70 кг пресной воды.

IV Задачи для самостоятельного решения

Следующие задачи решить удобным для вас способом.

№4. Имеется два сплава с разным содержанием меди. В первом сплаве содержится 40%, а во втором – 70% меди. В каком отношении надо взять первый и второй сплавы, чтобы из них получить новый сплав, содержащий 60% меди?


Решение: пусть X – масса сплава, 40% содержанием меди, Y – масса сплава с 60% содержанием меди. 0,4X – масса меди в первом сплаве, 0,7Y – масса меди во втором сплаве, 0,6(X +Y) – масса меди в новом сплаве. Составим уравнение: 0,4X+0,7Y=0,6(X +Y). Решив уравнение, имеем, что X: Y=1:2.


Ответ: необходимо взять одну часть 40% сплава и две части 70% сплава.


№5. В куске сплава меди и цинка количество меди увеличили на 40%, а количество цинка уменьшила на 40%. В результате общая масса куска сплава увеличилась на 20%. Определите процентное содержание меди и цинка в первоначальном куске сплава.


Решение: пусть X – масса меди в сплаве, Y – масса цинка в сплаве. Если количество меди увеличить на 40%, то масса меди составит 1,4 X, если уменьшить на 40% количество цинка, то масса цинка составит 0,6 Y. Масса всего куска увеличится на 20%, а значит будет составлять 1,2(X +Y). Составим уравнение: 1,4 X+0,6 Y=1,2(X +Y). Решив уравнение, имеем:

X: Y=3:1. Процентное содержание меди: 0,75=75%, цинка 0,25=25%.


Ответ: 75% меди и 25% цинка в сплаве.


№6. Смешали 30%-ный и 50%-ный раствор азотной кислоты и получили 45%-ный раствор. Найдите отношение массы 30% раствора к массе 50% раствора.


Решение: пусть X – масса 30% раствора азотной кислоты, Y – масса 50% раствора азотной кислоты. 0,3X – масса азота в первом растворе, 0,5Y – масса азота во втором растворе, 0,45(X +Y) – масса азота в новом растворе. Составим уравнение: 0,3X+0,5Y=0,45(X +Y). Решив уравнение, имеем, что X: Y=1:3.


Ответ: необходимо смешать одну часть 30% раствора и три части 50% раствора.


№7. Соединили два сплава с содержанием меди 40% и 60% и получили сплав, содержащий 45% меди. Найдите отношение массы сплава с 40% содержанием меди к массе сплава с 60% содержанием меди.


Решение: пусть X – масса сплава, 40% содержанием меди, Y – масса сплава с 60% содержанием меди. 0,4X – масса меди в первом сплаве, 0,6Y – масса меди во втором сплаве, 0,45(X +Y) – масса меди в новом сплаве. Составим уравнение: 0,4X+0,6Y=0,45(X +Y). Решив уравнение, имеем, что X: Y=3:1.


Ответ: необходимо взять три части 40% сплава и одну часть 60% сплава.


№8 Имеются два сплава, в одном из которых содержится 20%, в другом 30% олова. Сколько нужно взять первого и второго сплава, чтобы получить 10 кг нового сплава, содержащего 27% олова?
Ответ: 3 кг , 7 кг.

№9  Имеются два сплава, в одном из которых содержится 40%, а во втором 20% серебра. Сколько кг второго сплава нужно добавить к 20 кг первого, чтобы получить сплав, содержащий 32% серебра?
hello_html_6d8db76.png

№10 Имеются два сплава, в одном из которых содержится 10%, а в другом – 20% меди. Сколько нужно взять первого и второго сплавов, чтобы получить 15 кг нового сплава, содержащего 14% меди? 
Ответ: 9 кг и 6 кг.

№ 11 Имеются два сплава, в одном из которых содержится 30%, а в другом – 50% золота. Сколько кг второго сплава нужно добавить к 10 кг первого, чтобы получить сплав, содержащий 42% золота?
Ответ: 15 кг.

№12 Из молока, жирность которого 5%, делают творог, жирностью 0,5%. Определить, сколько творога получается из 1 тонны молока?
Ответ: 300 кг.

№13 При смешивании растворов, содержащих 25% и 60% кислоты, получился раствор, содержащий 39% кислоты. Определить в какой пропорции были смешаны растворы?
Ответ: 3 : 2.

№ 14. Какое количество воды надо добавить к 100 граммам 70%-ной уксусной эссенции, чтобы получить 5% раствор уксуса?
Ответ: 1300 гр.

№15. Морская вода содержит 5% соли. Сколько килограммов пресной воды надо добавить к 40 кг морской воды, чтобы содержание соли в последней составляло 2%.
Ответ: 60 кг.

№16.  Кусок сплава меди с оловом весом 2 кг содержит 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав имел 40% меди?
Ответ: 1,5 кг.

№17 Сколько чистого спирта надо прибавить к 735 г 16%-ного раствора йода в спирте, чтобы получить 10%-ный раствор?
Ответ: 441 г.

№18 .  Кусок сплава меди и цинка массой в 36 кг содержит 45% меди. Какую массу меди нужно добавить к этому куску, чтобы полученный новый сплав содержал 60% меди?

   36∙0,45+х=0,6∙36+х     

Ответ: 13,5 кг.


V. Самостоятельная работа. (решить арифметическим способом задачи)


1. Сколько граммов 75% - ного раствора кислоты надо добавить к 30 г 15%-ного раствора кислоты, чтобы получить 50%- ный раствор кислоты?


2. При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы?


VI.Домашнее задание. (разложены карточки на парты с домашнем заданием)


1.Сколько граммов воды надо добавить к 180 г сиропа, содержащего 25% сахара, чтобы получить сироп, концентрация которого равна 20%?


2. Имеется кусок сплава цинка с железом общей массой 24 кг, содержащий 20% цинка. Сколько килограммов чистого железа надо добавить к этому куску сплава, чтобы получившийся сплав содержал 15% цинка?

3. Составить задачу на смешение и решить ее алгебраическим способом. Какие это могут быть задачи? На смешение товаров разной цены, жидкостей с различным содержанием соли, кислот разной концентрации, сплавление металлов с различным содержанием некоторого металла. Запишите условие задачи, приведите схему решения и решите ее. Несколько лучших задач мы рассмотрим на доске.

Подведем итог урока.



8


Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Краткое описание документа:
Урок- консультация предназначены для учащихся 11 класса при подготовке к ЕНТ. В данном материале рассматривается решение задач на сплавы, смеси как и алгебраическим методом, так и арифметическим. В школьном курсе мало времени отводиться для решения задач такого типа.   Подробно рассматривается старинный метод « правило креста». Разработка снабжена как большим количеством разобранных задач, так и задач для самостоятельного решения, снабженных ответами. Все задачи разбиты по типу решения. Но есть группа задач, для которых приемлемы оба способа решения. 
Общая информация

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.