Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Методическая разработка урока на тему "Теорема Пифагора"

Методическая разработка урока на тему "Теорема Пифагора"

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

  • Математика

Поделитесь материалом с коллегами:

Нагибина Изабелла Викторовна,

учитель математики,

МБОУ г.Иркутска СОШ №49


Урок по теме: «Теорема Пифагора»


Класс: 8

Цель урока:

познакомить учащихся:

  1. с жизнью и творчеством Пифагора;

  2. с теоремой Пифагора.

научить учащихся:

  1. применять теорему Пифагора при решении задач.


Ход урока:

  1. Организационный момент.

  2. Страницы из жизни Пифагора

  3. Опорное повторение по готовым чертежам

  4. Практическая работа

  5. Теорема Пифагора

  6. Устная работа

  7. Прикладное значение теоремы Пифагора

  8. Решение задач по готовым чертежам

  9. Подведение итогов

  10. Домашнее задание


  1. Организационный момент (1 слайд)

Настрой учащихся на работу. Сообщение темы урока и цели урока.

  1. Страницы из жизни Пифагора (2 и 3 слайды. Рассказ ученицы)

Пифагор – не только самый популярный ученый, но и самая загадочная личность, человек-символ, философ, пророк. Подлинную картину его жизни и достижений восстановить трудно, так как письменных документов о Пифагоре Самосском не осталось. Известно, что Пифагор родился на острове Самос в Эгейском море у берегов малой Азии около 570 г. до н. э. По многим античным свидетельствам родившийся мальчик был сказочно красив, а вскоре проявил и незаурядные способности. Увлекался музыкой и поэзией. Неугомонному воображению Пифагора очень скоро стало тесно на маленьком острове. Мудрый Ферекид – один из учителей Пифагора однажды сказал: «Ты вырос из Самоса, отправляйся путешествовать – только так ты утолишь жажду познаний. Помни: путешествие и память – суть два средства, возвышающие человека и открывающие ему врата мудрости». В Кротоне Пифагор учредил нечто вроде религиозно-этического братства, тайного монашеского ордена, члены которого обязывались вести «пифагорейский образ жизни». Это был одновременно и религиозный союз, и политический клуб, и научное общество. Не только сила личности и мудрость Пифагора, но и высокая нравственность проповедуемых им идей и жизненных принципов притягивала к нему единомышленников. Поначалу именно талант политического оратора и религиозного проповедника, а не мудрость философа и, тем более, естествоиспытателя, принесли Пифагору успех. Нравственные принципы и правила, проповедуемые Пифагором, и сегодня достойны подражания. Для всех было у него одно правило: беги от всякой хитрости; отсекай огнем, железом и любым оружием от тела болезнь, от души – невежество, от утробы – роскошь, от города – смуту, от семьи – ссору. Есть две поры, учил Пифагор, наиболее подходящие для размышления, – когда идешь ко сну и когда пробуждаешься ото сна. День пифагорейцу надлежало закончить стихами: «Не допускай ленивого сна на усталые очи, прежде чем на три вопроса о деле дневном не ответишь: «Что я сделал? Что не сделал? И что мне осталось сделать?», и начинать день со стихов: «Прежде чем встать от сладостных снов, навеваемых ночью, душой раскинь, какие дела тебе день приготовил». Пифагор древнегреческий ученый, живший в VI веке до нашей эры.

Вообще надо заметить, что о жизни и деятельности Пифагора, который умер две с половиной тысячи лет тому назад, нет достоверных сведений. Биографию учёного и его труды приходится реконструировать по произведениям других античных авторов, а они часто противоречат друг другу. С именем Пифагора связано много важных научных открытий: в географии и астрономии – представление о том, что Земля – шар и что существуют другие, похожие на неё миры; в музыке – зависимость между длиной струны арфы и звуком, который она издаёт; в геометрии – построение правильных многоугольников (один из них пятиконечная звезда – стал символом пифагорейцев). Венчала геометрию теорема Пифагора, которой посвящён сегодняшний урок. Но изучение вавилонских клинописных таблиц и древних китайских рукописей показало, что это утверждение было известно задолго до Пифагора. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

  1. Опорное повторение по готовым чертежам (слайд 4 и 5)

    • Какой треугольник изображён? (Определите его вид)

    • Назовите катеты и гипотенузу данного треугольника.

    • Как найти площадь Δ АВС?

    • На какие два многоугольника разбит данный многоугольник ABCDE?

    • Каким свойством площадей необходимо воспользоваться, чтобы найти площадь многоугольника ABCDE?

    • С помощью каких формул можно найти площадь квадрата ABCF и площадь треугольника DFE?

    • Запишите формулой площадь многоугольника ABCD.

  2. Практическая работа (слайд 6)

    • Постройте в тетрадях прямоугольный треугольник (с катетами, длина которых для удобства выражается целыми числами).

    • Измерьте катеты и гипотенузу. Результаты измерений запишите в тетрадях.

    • Возведите все результаты в квадрат, т. е. узнайте величины a2; b2; c2.

    • Сложите квадраты катетов (a2 + b2) и сравните с квадратом гипотенузы.

    • У всех ли получилось, что a2 + b2 = с2?

  3. Теорема Пифагора: (кадр 7) В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. c2 = a2 + b2

Стихотворение о теореме Пифагора (слайд 8)

Если дан нам треугольник, Катеты в квадрат возводим,

И притом с прямым углом. Сумму степеней находим –

То квадрат гипотенузы И таким простым путём

Мы всегда легко найдём: К результату мы придём.

(И. Дырченко)

  1. Устная работа (9 слайд)

Составьте по готовым чертежам, если это возможно, верное равенство.

  1. Прикладное значение теоремы Пифагора.(слайд 10-12, устное описание задачи)

Задача индийского математика XII века Бхаскары – Ачария.

На берегу реки рос тополь одинокий.

Вдруг ветра порыв его ствол надломал.

Бедный тополь упал. И угол прямой

С теченьем реки его ствол составлял.

Запомни теперь, что в том месте река

В четыре лишь фута была широка.

Верхушка склонилась у края реки.

Осталось три фута всего от ствола.

Прошу тебя, скоро теперь мне скажи:

У тополя как велика высота?

АВ = АС + СВ – по свойству длин отрезков.

АВ = АС + CD, т. к. СВ = CD по условию.

CD2 = AC2 + AD2 - по теореме Пифагора.

CD2 = 32 + 42; CD = 5

АВ = 3 + 5 = 8 футов.

Ответ: высота дерева 8 футов

  1. Решение задач по готовым чертежам (слайд 13-16, с записью решения в тетрадях)

  2. Подведение итогов (слайд 17-18)

    • Возможно ли было решение задач данного типа без применения теоремы Пифагора?

    • В чём суть теоремы Пифагора?

    • Для любых ли треугольников можно применить данную теорему?

    • В Древнем Египте был известен треугольник со сторонами 3, 4, 5; его использовали при разметке прямоугольных земельных участков после ежегодного уничтожения их границ разлившимся Нилом. Для построения прямых углов египтяне поступали так: на веревке делали метки, делящие ее на 12 равных частей, связывали концы веревки и растягивали на земле с помощью кольев в виде треугольника со сторонами 3, 4 и 5. Тогда угол между сторонами, равными 3 и 4, оказывался прямым. ( практическая работа).

    • Занимаясь поисками треугольников, стороны которых a, b, c удовлетворяли бы условию a2 + b2 = c2, Пифагор нашел формулы, которые в современной символике могут быть записаны так:

a = 2n + 1, b = 2n(n + 1), c = 2n2 + 2n + 1, n Є Z.

  • Треугольник с такими сторонами является прямоугольным:

n = 1: а = 3, b = 4, с = 5 (приведите примеры самостоятельно).

  • Где применяется, по вашему, сейчас теорема Пифагора?

Домашнее задание. П. 54. № 483 (б,в); № 484 (а,б,в)


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 20.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров299
Номер материала ДВ-359385
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх