Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Методические рекомендации для обучающихся по выполнению практических занятий по учебной дисциплине ЕН.01 Математика по специальности среднего профессионального образования 43.02.01 Организация обслуживания в общественном питании

Методические рекомендации для обучающихся по выполнению практических занятий по учебной дисциплине ЕН.01 Математика по специальности среднего профессионального образования 43.02.01 Организация обслуживания в общественном питании

  • Математика

Поделитесь материалом с коллегами:


Департамент образования Ямало-Ненецкого автономного округа


Государственное бюджетное образовательное учреждение
среднего профессионального образования
«Ноябрьский колледж профессиональных и информационных технологий»
Ямало-Ненецкого автономного округа







УТВЕРЖДАЮ

И.о. директора, к.п.н.


В.А. Яровенко




Рабочая программа

Методические рекомендации для обучающихся

по выполнению практических занятий

по учебной дисциплине

ЕН.01 Математика

по специальности среднего профессионального образования

43.02.01 Организация обслуживания в общественном питании

(базовая подготовка, очная форма обучения)



















2015г.

Методические рекомендации для обучающихся по выполнению практических занятий разработаны на основе Федерального государственного образовательного стандарта, рабочей программы учебной дисциплины ЕН.01 Математики по специальности СПО 43.02.01 Организация обслуживания в общественном питании (базовая подготовка), укрупненная группа 43.00.00 Сервис и туризм.


Разработчик:

Десятова И.В. – преподаватель первой квалификационной категории ГБПОУ ЯНАО «Ноябрьский колледж профессиональных и информационных технологий»


Содержание

С.

Введение


Общие методические указания по выполнению практических занятий


Требования к результатам выполнения практических занятий


Перечень практических занятий


Практическое занятие №1: Тождественные преобразования рациональных выражений.


Практическое занятие № 2: Вычисление процентов через составление пропорции. Решение задач профессиональной направленности.


Практическое занятие №3: Решение задач по теме основные теоремы теории вероятностей.


Практическое занятие №4: Построение и анализ таблиц и графиков в статистике


Список литературы


Контроль и оценка результатов выполнения практических занятий



Введение

Методические рекомендации для обучающихся по выполнению практических занятий по дисциплине составлены в соответствии с Федеральным государственным образовательным стандартом, рабочим учебным планом, рабочей программой и календарно-тематическим планом учебной дисциплины ЕН.01 Математика по специальности среднего профессионального образования 43.02.01 Организация обслуживания в общественном питании (базовая подготовка), 43.00.00 Сервис и туризм.

Практические занятия относятся к основным видам учебных занятий и составляют важную часть практической подготовки будущих специалистов.

Ведущей дидактической целью предлагаемых практических заня­тий является закрепление теоретических знаний по дисциплине, формирование практических умений, способствующих формированию общих и профессиональных компетенций, необходимых в последующей профессиональной деятельности.

В соответствии с ведущей дидактической целью содержанием практических занятий являются: решение математических задач, анализ полученного решения, сравнения методов решения, определение границ их применения, работа с Интернет-ресурсами, составление простейших программ с использованием ПК, проведение простейших исследовательских работ.

Задачами выполнения практических занятий являются:

- обобщение, систематизация, углубление, закрепление полученных теоретических знаний по конкретным темам дисциплины;

- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;

- развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др.;

- совершенствование умений и навыков самостоятельной работы с научной, справочной, методической литературой, Интернет-ресурсами и другой информацией, необходимой для повышения эффективности профессиональной деятельности, профессионального самообразования и саморазвития;

- формирование творческого подхода к составлению алгоритмов решения математических задач;

- формирование у студентов навыков исследовательской деятельности;

- выработка при решении поставленных задач таких профессионально значимых качеств, как самостоятельность, коммуникабельность, мобильность, конкурентоспособность, ответственность, точность, творческая инициатива.

В методических рекомендациях представлены 7 тем практических занятий, которые включают цели, средства обучения, содержание, алгоритм выполнения, методические указания к их выполнению, контрольные вопросы, список рекомендуемой литературы, критерии оценивания работы студентов на практических занятиях, контроль и оценка результатов выполнения практических занятий по дисциплине.

Предлагаемые практические занятия носят репродуктивный, частично-поисковый и поисковый характер. Формами организации студентов на практических занятиях являются: фронтальная, групповая и индивидуальная.

При самостоятельной подготовке студентов к практическим занятиям предусматривается изучение рекомендуемой литературы.

В ходе практических занятий студенты в тетрадях для выполнения практических работ записывают задания, решают предложенные задания и проводят анализ их решения. Отдельные задания выполняются на ПК, отчеты предоставляются в электронном виде.



Общие методические указания по выполнению практических занятий

При самостоятельной подготовке к практическим занятиям необходимо составить план работы, повторить лекционный материал, при необходимости подобрать дополнительную литературу.

Для практических занятий студенту необходимо завести тетрадь, где на первой странице указываются фамилия, инициалы студента, название изучаемой дисциплины, на второй указывается перечень выполняемых заданий. Оформлять выполненные задания следует аккуратно, не нарушая логики решения задания.

В ходе практических занятий студенты в тетрадях для выполнения практических работ записывают задания, выполняют их в соответствии с целями, предложенными алгоритмом и критериями, заносят данные о выполнении, результаты выполненной работы и их анализ.

При подготовке к выступлению на практических занятиях необходимо заблаговременно продумать возможность использования наглядного материала (схем, плана, видеозаписи, конспектов, презентации и др.), который поможет студенту проиллюстрировать свой доклад.

Оценки за выполнение практических занятий выставляются по пятибалльной системе и учитываются как показатели текущей успеваемости студентов.

Правила подготовки к практическим занятиям


При подготовке к практическим занятиям студент должен:

  • повторить теоретический материал по теме практического занятия;

  • уметь составлять план решения задачи, анализировать процесс решения;

  • уметь делать выводы, умозаключения, оформлять результаты работы в соответствии с требованиями.



Требования к результатам выполнения практических занятий

по дисциплине ЕН.01 Математика

В процессе подготовки и выполнения практических занятий, обучающиеся должны овладеть следующими умениями:

- применять математические знания и умения при решении задач профессиональной деятельности;

знаниями:

- значение математики в профессиональной деятельности и при освоении ППССЗ;

- основные математические методы решения прикладных задач в области профессиональной деятельности;

- основы теории вероятностей и математической статистики.

Перечень практических занятий

Таблица 2

занятия

Тема

Количество часов

1.

Тождественные преобразования рациональных выражений.

6

2.

Вычисление процентов через составление пропорции. Решение задач профессиональной направленности.

8

3.

Решение задач по теме основные теоремы теории вероятностей.

8

4.

Построение и анализ таблиц и графиков в статистике

6


Итого:

28



Практическое занятие № 1.

Тема: Тождественные преобразования рациональных выражений.

Цель: научиться преобразовывать рациональные выражения.

Средства обучения: тетради для выполнения практических занятий, Интернет-ресурсы.

Содержание и порядок выполнения работы

1. Рассмотрите теоретический материал по теме.

2. Рассмотрите пример №1, выполните преобразование выражений.

3. Выполните задания 1,2.

Контрольные вопросы:

  1. Понятие тождественных преобразований.

  2. Понятие рационального выражения.


Пример 1: hello_html_282ec7f0.gif

Выполните преобразование выражений:

Уровень А

1 вариант

2 вариант

3 вариант

1.hello_html_m21459848.gif

а)hello_html_7c66f7c8.gifб)hello_html_12707d53.gifв)hello_html_m4195a877.gif

1.hello_html_m5d00d31c.gif

а) hello_html_m72dae033.gif б) hello_html_m2a439003.gifв)hello_html_6920a06f.gif


1.hello_html_3ab80fbc.gif

а) hello_html_m7f68ec3a.gif б) hello_html_54c5482f.gif в) hello_html_m74e48cb8.gif

2. hello_html_m19ef7e64.gif

а) hello_html_m4891a1b5.gifб) hello_html_4dfa922c.gifв)hello_html_m5de27466.gif

2.hello_html_m3444062.gif

а) hello_html_m539fda91.gifб) hello_html_m15679015.gifв)hello_html_m486f8bc.gif


2. hello_html_m702db72d.gif

а) hello_html_m5e8cc5e3.gif б) hello_html_mfdee8a3.gifв) hello_html_m33135335.gif

3.hello_html_m5f158e68.gif

а) hello_html_42af318d.gif б) hello_html_m67d6815.gif

в)hello_html_m7a14642e.gif

3.hello_html_m4dcf41bf.gif

а) hello_html_m15b82c41.gif б) hello_html_m7d778c49.gif

в)hello_html_m53ac7f21.gif

3.hello_html_47762a52.gif

а) hello_html_31360b23.gif б) hello_html_38b8340c.gif

в)hello_html_31b8c42b.gif

4. hello_html_287bd484.gif

а) hello_html_m8771bdc.gif б)hello_html_m4f44edf5.gif в)hello_html_25beadc5.gif

4.hello_html_60098d8a.gif

а)hello_html_m3fbb473d.gif б) hello_html_1f06fd34.gif в)hello_html_m57fa4531.gif

4.hello_html_m34068c1f.gif

а) hello_html_m47b62cea.gif б) hello_html_m60e0e826.gif в)hello_html_6be1c4e7.gif



Уровень Б

1 вариант

2 вариант

3 вариант

1.hello_html_m6e0fab6c.gif

а) hello_html_m3535356.gif б) hello_html_m4347c4c.gif

в)hello_html_655099f2.gif

1.hello_html_50b593bc.gif

а) hello_html_19364949.gif б) hello_html_5f26ed57.gif

в)hello_html_m1638c1da.gif

1.hello_html_m3b6a8b92.gif

а) hello_html_m6b7c3b32.gif б) hello_html_m406cef7f.gif

в)hello_html_ma69e427.gif

2.hello_html_24d3a464.gif

а) hello_html_m6fe575f9.gif б) hello_html_5e60a004.gif

в)hello_html_6f40efbf.gif

2.hello_html_1f9014f.gif

а) hello_html_m74485859.gif б) hello_html_m66d5fbf7.gif

в)hello_html_m7ccdcbff.gif

2.hello_html_17d66112.gif

а) hello_html_m60288168.gif б)hello_html_m51516602.gif

в)hello_html_m49641f6f.gif

3.hello_html_m34f58765.gif

а) 1+y б) hello_html_m1d23698a.gif в)hello_html_m30364e4c.gif

3.hello_html_639b2bda.gif

а) hello_html_m23482b1f.gif б) y-2 в) y+2

3.hello_html_4cf323af.gif

а) hello_html_md445751.gif б) a-3 в) a+3

4.hello_html_198c3329.gif

а) hello_html_m3302b63a.gif б) hello_html_45710900.gif в)hello_html_339d7965.gif

4.hello_html_f8d74f3.gif

а) hello_html_m72045559.gifб) hello_html_m5b78e2d5.gifв)hello_html_m5d7a05f8.gif

4.hello_html_5ae6f4af.gif

а) hello_html_m72e7b131.gifб)hello_html_m1df1d6c5.gif в)hello_html_5f062e1d.gif


Уровень В

1 вариант

2 вариант

3 вариант

1. hello_html_7e2428f4.gif



а) hello_html_27f3000e.gif б) hello_html_4e2e4e51.gif

в)hello_html_m78604e6f.gif

1.hello_html_69d6e588.gif

а) hello_html_651e04ff.gif б) hello_html_m3e888c9b.gif

в)hello_html_m430ed45d.gif

1.hello_html_m3ee8bdc.gif

а) hello_html_m12f4765a.gif б)hello_html_715a1770.gif

в)hello_html_m602870cc.gif

2.hello_html_m27a9194f.gif

а) hello_html_58efb47e.gif б) hello_html_4eaac57e.gif

в)hello_html_m74624aeb.gif

2.hello_html_5af5ecf.gif

а) hello_html_40331ba6.gif б) hello_html_41f239b.gif

в)hello_html_4e15e739.gif

2.hello_html_1ffc1086.gif

а) hello_html_20d776e7.gif б)hello_html_m3fc5003b.gif

в)hello_html_m5b3cd48f.gif

3.hello_html_m6e318470.gif

а) hello_html_m317b7bbe.gif б) hello_html_m53c4021c.gif

в)hello_html_5eed0a87.gif

3.hello_html_4e996741.gif

а) hello_html_18b4b633.gif б) hello_html_m463c092b.gif

в) hello_html_68dc78c5.gif

3.hello_html_m5c5ff6c9.gif

а) hello_html_43202b73.gif б) hello_html_m2187485c.gif

в) hello_html_m9278841.gif

4.hello_html_m65625135.gif

а) hello_html_f52d174.gifб) hello_html_me43a646.gif

в)hello_html_7c70d933.gif

4.hello_html_m7f27f503.gif

а) hello_html_42816735.gifб) hello_html_5548cf32.gif

в)hello_html_m3b695a5e.gif

4.hello_html_2b8bbce8.gif

а) hello_html_m4e381e3.gifб)hello_html_6fdc7e21.gif

в)hello_html_6258a093.gif


Задание 1:

1. Имеется три числа, сумма которых равна 300, причём, второе число в два раза больше первого, а третье – в 3 раза больше первого. Найдите второе число.

2. Если каждому из своих друзей Сергей даст 4 персика, то у него останется 2 персика; если он станет давать по 5 персиков, то не хватит одного персика. Сколько персиков у Сергея было?

3. В велосипеде ведущая шестерня имеет 44 зубца, а ведомая – 20 зубцов. Найти наименьшее число оборотов, которое сделает ведущая шестерня, чтобы шестерни заняли первоначальное положение.

4. На соревнованиях по настольному теннису участвовали равные по составу команды, всего 123 мальчика и 82 девочки. Во всех командах было одинаковое количество мальчиков и девочек. Сколько команд участвовало в соревнованиях?

5. Используя только арифметические действия и скобки, представить первые десять чисел натурального ряда, обходясь только одной цифрой 3, применяя её в точности четыре раза.

6. Определить трёхзначное число, две цифры которого совпадают, если известно, что: отношение этого числа к разности различных цифр числа равно 121, а произведение трёх цифр, составляющих число, равно их сумме, умноженной на 8.


Задание 2:


1 вариант

2 вариант

3 вариант

Уровень А

hello_html_67ba907a.gif

hello_html_m78975f86.gif

hello_html_6cf97f1e.gif

hello_html_m1e75d93d.gif

hello_html_m5ba165f0.gif

hello_html_4db20c40.gif

Уровень Б

hello_html_m6e854a95.gif

hello_html_m4ea3d9e7.gif

hello_html_m2965de59.gif

hello_html_m4c786e8b.gif

hello_html_m1d79205f.gif

hello_html_m64fe4020.gif

Уровень В

hello_html_m4e61c61f.gif

hello_html_6d18f5b2.gif

hello_html_671e1b15.gif


Задания

Домашнее задание

1. Упростите а) hello_html_mb6e0906.gif

б) hello_html_188cbb7f.gif в) hello_html_fd44796.gif

2. Бассейн наполняется через первую трубу за 4 часа, через вторую – за 6 часов. Какую часть бассейна останется заполнить после совместной работы обеих труб в течении двух часов?


3. Бассейн заполняется через первую трубу за 4 часа, через вторую – за 6 часов. Через сколько часов наполнится бассейн при совместной работе обеих труб?


4. Два автомобиля выезжают одновременно из пунктов А и Б на встречу друг другу с постоянными скоростями. Их встреча произошла через 3 часа после выезда, а ещё через 2 часа первый автомобиль приехал в пункт Б. Через какое время после начала движения, второй автомобиль приедет в пункт А?


Список рекомендуемой литературы

Основная:

1. Архипов, Г.И. Лекции по математическому анализу /Под ред. В.А. Садовничего. – М.: Высшая школа, 2012.

2. Баврин И.И. Высшая математика: Учебник. – М.: Академия, Высшая школа, 2012.

3. Омельченко, В.П., Курбатова, Э.В. Математика: учебное пособие. – Ростов н/Д.: Феникс, 2013.

Дополнительная:

1. Виноградова, И.А. Задачи и упражнения по математическому анализу: В 2 кн. – М.: Высшая школа, 2012.

2. Воробьева, Г.Н., Данилова, А.Н. Практикум по вычислительной математике. – М.: Высшая математика, 2012.

3. Пехлецкий, И.Д. Математика - М.: Академия, 2012.

Сайты в сети Интернет:

  1. Онлайн библиотека [Электронный ресурс] – Режим доступа: http://www.vbbooks.ru.

  2. Интернет университет информационных технологий [Электронный ресурс] – Режим доступа: http: //www.intuit.ru.

  3. Компьютерные электронные книги [Электронный ресурс] – Режим доступа: http://www.compebook.ru.


Критерии оценивания работы обучающихся на практическом занятии

Оценка «отлично» ставится, если обучающийся:

1) выполнил работу в полном объеме, с соблюдением необходимых требований оформления;

2) ответил на предложенные вопросы, допустив при этом не более двух неправильных ответов;

3) задачи решены полностью, решение оформлено аккуратно;

4) практическая работа выполнена в срок.

Оценка «хорошо» ставится в том случае, если обучающийся:

1) выполнил работу в полном объеме, с соблюдением необходимых требований оформления;

2) ответил не на все предложенные вопросы. Не смог объяснить некоторые моменты решения задачи. Возможно, не полностью выполнил некоторые задачи;

3) практическая работа выполнена в срок.

Оценка «удовлетворительно» ставится, если обучающийся:

1) выполнил работу в полном объеме, но допущено несколько (2-3) количество ошибок;

2) ответил только на некоторые предложенные вопросы, не смог объяснить этапы и принципы решения задачи;

3) практическая работа выполнена не в срок;

4) практическая работа имеет помарки и исправления.

Оценка «неудовлетворительно» ставится, если обучающийся:

1) не выполнил практическую работу, или выполнил работу, допустив большое количество ошибок;

2) не смог ответить на предложенные вопросы.




Практическое занятие № 2

Тема: Вычисление процентов через составление пропорции. Решение задач профессиональной направленности.

Цель: освоить вычисление процентов через составление пропорции, решение задач профессиональной направленности.

Средства обучения: тетради для выполнения практических занятий, презентации по теме, Интернет-ресурсы.

Содержание и порядок выполнения работы:

1.Повторение теоретического материала, в виде ответов на вопросы.

2. Рассмотрите теоретический материал по теме «Проценты. Пропорции».

3. Выполните тестовые задания.

4. Выполните задание № 1.

5. Выполните задание №2


Контрольные вопросы

1. Что называется процентом?

2. Как найти процент от числа?

3. Как найти число по проценту?

4. Какой процент называется «сложным»?

5. Что называется пропорцией?

Проценты. Пропорции

Проценты.

Процентом называют сотую часть какого-либо числа и обозначают знаком % . Например, 1% от числа составляет 0,01 часть числа, а 25 % - 0,25 часть числа (или 1/4 часть числа).

Чтобы найти p% от числа а, надо а умножить на р/100, т.е. х = а · р / 100.

Например, 60% от числа 90 составляют 90·60/100=54.

Найти число а , р% которого равно х, можно по формуле а = х · 100 / р.

Например, если 24 % числа равно 72, то само число равно 72·100/24=300.

Расчёт банковских процентов.

На вклад а за n лет про годовой ставке р% к вложенной сумме начисляется простой процент, величина которого равна а · n · р / 100. Т. е. сумма вклада через n лет вклада составляет а·(1+n·р/100).

Если на вклад а за n лет про годовой ставке р% к вложенной сумме начисляется сложный процент (процент на вклад с процентом), то сумма вклада через n лет составит hello_html_7278f011.gif .

Пример. Первоначальный вклад в сбербанк равен 3000 рублей, за год начисляется 8%. Через 1 год и пять лет суммы вклада составят:

Если простой процент, то 3000(1+8/100)=3240 руб., и 3000(1+5·8/100)= 4200 руб.

Если сложный процент, то 3000(1+8/100)1 =3240 руб., и 3000(1+8/100)5 ≈ 4408 руб.

Пример. Зарплату работнику увеличили на 10 %, а затем убавили на 10%. Как изменилась зарплата?

Как изменилась зарплата, если её уменьшили на 10%, а затем увеличили на 10%?


Пропорции

Отношением числа а к числу в называется частное этих чисел, т. е. а / в (или а : в).

Пропорцией называют равенство двух отношений, т.е. hello_html_m46a1fc9c.gifа и n – называют крайними членами пропорции, b и m – средними членами пропорции.

Произведение крайних членов пропорции, равно произведению средних членов, т.е. если

hello_html_292e82ef.gif

В пропорции можно менять местами крайние и средние члены, т.е.

hello_html_5ca1aa8.gif

Чтобы найти неизвестный крайний (средний) член пропорции, надо произведение средних (крайних) членов разделить на известный крайний (средний) член пропорции:

hello_html_m30da7469.gif

Пример: hello_html_208639af.gif

Концентрацией раствора называется отношение количества растворённого вещества к количеству раствора (не растворителя). Нередко концентрацию выражают в процентах.




Выполните тестовые задания.


А1. Скорость автомобиля 36 м/с. Найти его скорость в километрах в час.

1) 36 км/час; 2) 129,6 км/час; 3) 72 км/час; 4) 20 км/час.

А2. Скорость улитки 1/12 метра в минуту. Найти её скорость в километрах в час.

1) 0,01 км/час; 2) 0,05 км/час; 3) 0,005 км/час; 4) 0,0072 км/час.


А3. Расстояние между городами в 420 км изображено на карте отрезком 14 см. Найти численный

масштаб карты.

1) 1:3000000; 2) 1:300000; 3) 1:30000; 4) 1:3000.

А4. Найти число, если 0,3% его равны 0,21. 1) 70; 2) 63; 3) 6,3; 4) 7.

А5. Найдите неизвестное х : 13% · х = 65. 1) 650; 2) 700; 3) 550; 4) 500.

А6. Из 20 учеников класса 3 отличника. Какой процент всех учеников класса составляют отличники?

  1. 6%; 2) 12%; 3) 15%; 4) ≈6,67%.

А7. Как изменится число, если его вначале увеличить на 30 %, а затем уменьшить на столько же процентов?

1) не измениться; 2) уменьшится на 9%; 3) увеличится на 9%; 4) ответ зависит от числа.

В1. Длина минутной стрелки часов равна 2 см, длина часовой стрелки 1,5 см. Во сколько раз скорость конца минутной стрелки больше скорости часовой стрелки?


В2. Доказать, что если hello_html_md84899c.gif

В3. Сколько сухой ромашки получится из25 кг свежей, если она при сушке теряет 84% своей массы?

В4. От куска провода сначала отрезали 55%, а затем ещё 40 % остатка. Сколько процентов куска осталось?

В5. Сколько воды следует долить до 7,5 кг 12% раствора соли, чтобы получит 10% раствор?

С1. Скорость парохода относится к скорости течения реки как 36:5. Пароход двигался по течению 5 час 10 мин. Сколько времени требуется ему, чтобы вернуться обратно?

С2. До просушки влажность зерна была равна 23%, а после просушки оказалась равной 12%. На сколько процентов убыло зерно в весе?


Задание 1

Задачи на проценты

Вариант№1.

1. На строительства загородного дома компания потратила 75 000руб., а продала этот дом за 101 250 руб. Сколько процентов составила прибыль строительной компании?

2. Цена на магнитофоны в январе увеличилась на 25% и составила 1600руб., а в феврале увеличилась еще на 15%. Сколько стоил магнитофон до подорожания и сколько он стал стоить в феврале?

3. Одну сторону прямоугольника увеличили на 40%, а другую уменьшили на 70%. Как изменилась площадь прямоугольника и на сколько процентов?

Вариант№2.

1. Автосалон приобрел машину за 45 000 руб., а продал за

58 5000 руб. Сколько процентов составила торговая наценка?

2. Цена на стиральные машины в мае упала на 15% и составила 6 630 руб., а в сентябре увеличилась на 20%. Сколько стоили стиральные машины до понижения цены и сколько они стали стоить в сентябре?

3. Одну сторону квадрата уменьшили на 30%. А другую увеличили на 80%. Уменьшила или увеличилась площадь квадрата и на сколько процентов?


Проценты

Вариант №1.

1. На сколько процентов изменилась величина, если она:

а) увеличилась в 3 раза;

б) уменьшилась в 10 раз?

2. Найди:

 а) сколько составляют 9% от 12,5 кг;

б)  от какой величины 23% составляют 3,91 см2;

в) сколько процентов составляют 4,5 от 25?

3. Сравни: 12% от 7,2 и 72% от 1,2.

4. На сколько процентов 12 меньше, чем 30?

5.На сколько процентов изменилась цена товара, если она:

а) была 45 руб., а стала 112,5 руб.;

б) была 50руб., а стала 12,5 руб.?


Вариант №2.

1. На сколько процентов изменилась величина, если она:

а) увеличилась в 8 раза;

б) уменьшилась в 4 раз?

2. Найди:

 а) сколько составляют 7% от 25,3 га;

б)  от какой величины 68% составляют 12,24 м;

в) сколько процентов составляют 3,8 от 20?

3. Сравни: 28% от 3,5 и 32% от 3,7.

4. На сколько процентов 36 меньше, чем 45?

5.На сколько процентов изменилась цена товара, если она:

а) была 118,5 руб., а стала 23,7 руб.;

Задание 2

  1. Для приготовления блюд нужно израсходовать 180 кг очищенного картофеля (масса нетто). Сколько неочищенного картофеля (масса брутто) следует взять, если отходы при холодной обработке составляют 40% от массы брутто.

  2. Определите количество отходов при механической

  3. кулинарной обработке 100кг картофеля в феврале месяце(для февраля количество отходов 35%).

  4. В семенах конопли содержится 30% масла. Сколько масла содержится в 5.4 кг семян конопли.

  5. Определите массу брутто моркови в апреле, если ее масса

  6. нетто составляет 50кг (процент отходов в апреле 25%).

  7. Определите количество пищевых обработанных субпродуктов, которое получится при обработке 80кг гусей полупотрошенных I категории(норма выхода пищевых обработанных субпродуктов у гусей полупотрошенных I категории - 23 %).


Домашнее задание:

1. Пусть вкладчик положил на счет в банке 25000р. и в течение 3-х лет не будет снимать  деньги со счета. Подсчитаем, сколько денег будет на счете вкладчика через 3 года, если банк выплачивает 30% в год, и проценты после каждого начисления присоединяются к начальной сумме 25000р., т.е. капитализируются.
2. Зарплата служащему составляла 20000р. Затем зарплату повысили на 20%, а вскоре понизили на 20%. Сколько стал получать служащий?
3. На товар снизили цену сначала на 20%, а затем еще на 15%. При этом он стал стоить 23,8 тыс.р. Какова была первоначальная цена товара?
4. Завод увеличивал объем выпускаемой продукции ежегодно на одно и то же число процентов. Найти это число, если известно, что за 2 года объем выпускаемой продукции увеличивался на 21%.
5. Цену товара первоначально понизили на 20%, затем новую цену снизили еще на 30% и, наконец, после пересчета произвели снижение на 50%. На сколько процентов всего снизили первоначальную цену товара?

6. Для приготовления блюда выделено 300 кг неочищенного картофеля (масса брутто). Определить массу отходов при его первичной обработке, если норма отходов установлена в 40% от массы брутто.

7.Определите количество отходов при механической

кулинарной обработке 100кг картофеля в марте месяце( в марте 40% отходов)


8. Некоторая масса семян конопли содержит 1,62 кг. масла. Найти массу семян, если известно , что масло составляет 30% массы семян.


9. Определите массу брутто моркови в мае, если ее масса

нетто составляет 50кг(процент отходов в мае 25%).


10. Определите массу печени при обработке 50кг индейки

полупотрошенной I категории(выход пищевых обработанных субпродуктов - 18,5 %, выход печени от общей массы субпродуктов - 10 %)


Список рекомендуемой литературы

Основная:

1. Архипов, Г.И. Лекции по математическому анализу /Под ред. В.А. Садовничего. – М.: Высшая школа, 2012.

2. Баврин И.И. Высшая математика: Учебник. – М.: Академия, Высшая школа, 2012.

3. Омельченко, В.П., Курбатова, Э.В. Математика: учебное пособие. – Ростов н/Д.: Феникс, 2013.

Дополнительная:

1. Виноградова, И.А. Задачи и упражнения по математическому анализу: В 2 кн. – М.: Высшая школа, 2012.

2. Воробьева, Г.Н., Данилова, А.Н. Практикум по вычислительной математике. – М.: Высшая математика, 2012.

3. Пехлецкий, И.Д. Математика - М.: Академия, 2012.

Сайты в сети Интернет:

  1. Онлайн библиотека [Электронный ресурс] – Режим доступа: http://www.vbbooks.ru.

  2. Интернет университет информационных технологий [Электронный ресурс] – Режим доступа: http: //www.intuit.ru.

  3. Компьютерные электронные книги [Электронный ресурс] – Режим доступа: http://www.compebook.ru.


Критерии оценивания работы обучающихся на практическом занятии

Оценка «отлично» ставится, если обучающийся:

1) владеет полным объемом теоретического материала по теме занятия;

2) знает и понимает алгоритм нахождения точек экстремума, асимптот;

3) выполняет нахождение точек перегиба;

4) самостоятельно выполняет задание по исследованию функции и построению графика функции, используя алгоритм;

5) безошибочно находит производные функции.

Оценка «хорошо» ставится в том случае, если обучающийся:

1) владеет теоретическим материалом по теме занятия;

2) знает и понимает алгоритм нахождения точек экстремума, асимптот;

3) выполняет нахождение точек перегиба;

4) выполняет задание по исследованию функции и построению графика функции, используя алгоритм;

5) находит производные.

Оценка «удовлетворительно» ставится, если обучающийся:

1) частично владеет теоретическим материалом по теме занятия;

2) понимает алгоритм нахождения точек экстремума, асимптот;

3) выполняет задание по исследованию функции и построению графика функции, с помощью преподавателя;

4) имеет затруднения при нахождении производных.

Оценка «неудовлетворительно» ставится, если:

1) частично владеет теоретическим материалом по теме занятия;

2) путается в нахождения точек экстремума, асимптот;

3) не выполняет задание по исследованию функции и построению графика функции.

Практическое занятие № 3

Тема: Решение задач по теме основные теоремы теории вероятностей

Цель: Научиться вычислять вероятности случайных событий

Средства обучения: тетради для выполнения практических занятий, Интернет-ресурсы.

Содержание и порядок выполнения работы:

1. Рассмотрите теоретический материал по теме.

2. Законспектируйте методику решения типовых задач.

3. Рассмотрите примеры решения типовых задач.

4. Решите задачи.

Контрольные вопросы:

  1. Понятие вероятности случайного события, перестановки, размещения, сочетания.

  2. Правила суммы и произведения случайных событий.

Вероятность случайных событий. Непосредственный подсчет вероятности.

Под вероятностью случайного события понимается число, характеризующее степень возможности появления события. При этом вероятность невозможного события принимается равной нулю, а вероятность достоверного события равной единице. Этим ограничивается диапазон изменения вероятности случайного события:

hello_html_mb5f5582.gif.

Классическое определение вероятности основано на представлении случайного события как результата (исхода) некоторого воображаемого или фактического опыта (испытания), повторяющегося любое число раз. Эта теоретическая модель лежит в основе непосредственного подсчета вероятности случайного события.

Вероятностью случайного события hello_html_718f0f76.gif называется отношение числа благоприятствующих этому событию исходов hello_html_17aa43f7.gif к общему числу всех равновозможных несовместных элементарных исходов hello_html_m601acf03.gif, образующих полную группу:

hello_html_7e682474.gif. (1)

Для определения количества исходов hello_html_m601acf03.gif и hello_html_17aa43f7.gif часто приходится использовать формулы комбинаторики. Комбинаторика изучает количество комбинаций из элементов определенной природы заданного конечного множества.

Перестановки - комбинации из одних и тех же элементов, которые различаются только порядком их расположения. Число перестановок определяется по формуле:

hello_html_6a9f9264.gif , (2)

где hello_html_m601acf03.gif - количество элементов в комбинации.

Например: Сколькими способами можно распределить 5 объектов работы между 5 бригадами электромонтажников?

hello_html_7bd9afa9.gif hello_html_m6e6182e1.gif .

Размещения - комбинации из hello_html_m601acf03.gif различных элементов по hello_html_17aa43f7.gif элементов, отличающихся либо составом, либо порядком. Число размещений из hello_html_m601acf03.gif по hello_html_17aa43f7.gif определяется как:

hello_html_5938dea6.gif . (3)

Например: Имеется 10 электродвигателей, из которых 3 одного типа. Сколькими способами их можно расположить в один ряд?

hello_html_m6c146159.gif hello_html_542bd5ff.gif .

Сочетания - комбинации, составленные из hello_html_m601acf03.gif различных элементов по hello_html_17aa43f7.gif элементов, которые различаются хотя бы одним элементом. Число сочетаний определяется по формуле:

hello_html_m3d7739e1.gif. (4)

Например: Сколькими способами можно составить бригаду в составе 3 человек, выбирая их из 8 электриков?

hello_html_m1df2134f.gif hello_html_4066340b.gif .

Правило суммы: Если объект hello_html_718f0f76.gif выбран hello_html_m601acf03.gif способами, а объект hello_html_m63aa4fa9.gif - hello_html_17aa43f7.gif способами, то выбор либо hello_html_718f0f76.gif, либо hello_html_m63aa4fa9.gif можетбыть осуществлен hello_html_m54d28b48.gif способами.

Правило произведения: Если объект hello_html_718f0f76.gif выбран hello_html_17aa43f7.gif способами, а после каждого такого выбора объект hello_html_m63aa4fa9.gif можно выбрать hello_html_m601acf03.gif способами, то пара hello_html_m3a76cbe3.gif может быть выбрана hello_html_6913ad66.gif способами.

Методика решения типовых задач


Классические задачи ТВ исторически связаны с теорией азартных игр. Однако, представленные математические модели могут быть использованы также при решении ряда технических задач.

Методика решения задач на непосредственный подсчет вероятности случайного события сводится к следующему:

  1. Определение общего числа возможных исходов hello_html_m601acf03.gif;

  2. Анализ и расчет количества исходов, благоприятствующих случайному событию, т.е. таких, в которых данное событие обязательно произойдет;

  3. Определение искомой вероятности события по выражению (1).

Рассмотрим решение ряда типовых задач по данному разделу:

I тип задач. Условие задачи: Пусть имеется урна, в которой hello_html_m734afb91.gif - белых шаров и hello_html_559071c1.gif - черных. Из урны наугад выбирается 1 шар. Найти вероятность того, что этот шар белый.

Решение

hello_html_287e8a52.gif hello_html_m19dc1137.gif .

В данном случае все исходы опыта, связанного со случайным выбором шара из урны, являются равновозможными и несовместными. Поэтому вероятность достать случайным образом белый шар вторым или последним из урны также равна hello_html_477b9025.gif.

II тип задач Условие задачи: В коробке 30 электроламп, причем 12 из них рассчитаны на напряжение 220 В, а остальные - на напряжение 36 В. Какова вероятность того, что из 4 наугад взятых одновременно электроламп все окажутся или с напряжением 220 В, или с напряжением 36 В?

Решение

Введем обозначения:

hello_html_718f0f76.gif- событие, состоящее в том, что из 4 электроламп все с напряжением 220 В;

hello_html_m63aa4fa9.gif- из 4 электроламп все с напряжением 36 В;

hello_html_m2baffbbe.gif- появление событий либо hello_html_718f0f76.gif либо hello_html_m63aa4fa9.gif.

а) Общее число исходов равно количеству способов, которыми можно выбрать 4 электролампы из 30.

hello_html_36303bd3.gif.

б) Число исходов, благоприятствующих событию hello_html_718f0f76.gif , hello_html_38e2063f.gif,

Число исходов, благоприятствующих событию hello_html_m63aa4fa9.gif , hello_html_m2149fe5c.gif .

с) hello_html_m77acd1a5.gif .

hello_html_68790d49.gif .

Вероятность события, состоящего в появлении либо события hello_html_718f0f76.gif, либо события hello_html_m63aa4fa9.gif, определим с использованием правила суммы

hello_html_a2820bb.gif.

Условие задачи: Студент купил карточку Спортлото и отметил в ней последова­тельно шесть первых номеров. Определить вероятность того, что при тираже 6 из 49 в числе выигравших шаров окажется шар под № 1.

Решение

а) Общее число исходов hello_html_m702ade26.gif.

б) Число исходов, благоприятствующих событию, определяется числом возможных комбинаций из 6 номеров, обязательно включавших № 1. Для определения числа комбинаций удобно использовать схематическое представление:

hello_html_m9d45eea.gif






К


ак видно, hello_html_17aa43f7.gif зависит от возможных комбинаций из 5 шаров (с другими номерами, отличными от № 1) из 48 таких шаров.

hello_html_m77aecff3.gif.

hello_html_5cd9169.gif.

с) hello_html_m66507a0d.gif.

III тип задач Условие задачи: На полке находится 10 амперметров, из которых 6 исправных. Найти вероятность того, что среди 4, наудачу отобранных амперметров, 2 исправных.

Решение

От задач II типа данный тип задач отличает неоднородность состава комбинаций, соответствующих благоприятным исходам случайного события. Для решения удобно представить условие задачи схематически:

а) Общее число исходов hello_html_m76f66071.gif .



hello_html_m727a4716.gif







б) hello_html_17aa43f7.gifопределяется на основе правила произведения, поскольку выбор 4 амперметров осуществляется одновременно:

hello_html_m42598f7c.gif

hello_html_m464ac7c.gif hello_html_7b233b50.gif .

с) hello_html_m2fd7e7b9.gif.

Решите задачи:

Задача 1. Брошена игральная кость. Найти вероятность выпадения четного числа очков.

Задача 2. Участники жеребьевки тянут из урны жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого наудачу вытащенного жетона будет содержать цифру 5.

Задача 3. В пяти мешочках находятся 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о, п, р, с, т. Найти вероятность того, что на вынутых по одному из каждого мешочка кубиках и расположенных в одну линию можно будет прочесть слово «спорт».

Задача 4. На каждой из шести одинаковых карточек написаны одна из букв: А,Т, М, Р,С,О. Найти вероятность того, что на четырех вынутых по одной и расположенных в одну линию карточек можно будет прочесть слово «трос».

Задача 5. Куб, все грани которого окрашены, распилили на тысячу кубиков, которые затем тщательно перемешали. Найти вероятность того, что наудачу вытащенный кубик будет иметь одну окрашенную грань, две и три.

Задача 6. Из полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую наудачу извлеченную кость можно приставить к первой, если первая кость оказалась: а) дублем, б) не дублем.

Задача 7. Восемь различных книг наудачу расставляются на полке. Найти вероятность того, что две определенные книги окажутся стоящими рядом.

Домашнее задание:

Решите задачи:

1. В лотерее разыгрываются 150 вещевых и 50 денежных выигрышей. Число лотерейных билетов равно 10000 штук. Чему равна вероятность выигрыша?

2. Вероятность того, что стрелок при одном выстреле выбьет 10 очков, равна 0.1; 8 очков и меньше - 0.6. Найти вероятность того, что при одном выстреле стрелок выбьет не меньше 9 очков.

3. В партии из 10 деталей – 8 штук стандартных. Найти вероятность того, что среди двух наудачу извлеченных деталей хотя бы одна будет стандартной.

4. В партии из 10 деталей оказалось 8 стандартных. Наудачу отобрали две. Найти вероятность того, что среди отобранных деталей окажется:

  1. не более одной стандартной,

б) хотя бы одна стандартная,

в) только одна стандартная.

5. Вероятность того, что стрелок попадет в мишень, равна 0,9. Произведено 3 выстрела. Найти вероятность того, что все 3 выстрела попали в цель.

6. В студии находится три телекамеры. Вероятность включения каждой камеры равна 0.6. Найти вероятность того, что в данный момент хотя бы одна камера будет включена.

Список рекомендуемой литературы:

Основная литература:

1. Горелов, Г.В., Кацко, И. А. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel: учебник для ССзуов. – Ростов н/Д: Феникс, 2012.

2. Омельченко, В.П., Курбатова, Э.В. Математика: учебное пособие. – Ростов н/Д.: Феникс, 2012.

3. Пехлецкий, И.Д. Математика - М.: Академия, 2013.

Дополнительная литература:

1. Гмурман, В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2013.

2. Калинина, В.Н., Панкин, В.Ф. Математическая статистика. – М.:  Высшая школа, 2012.

Сайты в сети Интернет:

  1. Онлайн библиотека [Электронный ресурс] – Режим доступа: http://www.vbbooks.ru.

  2. Компьютерные электронные книги [Электронный ресурс] – Режим доступа: http://www.compebook.ru.


Критерии оценивания работы обучающихся на практическом занятии

Оценка «отлично» ставится, если обучающийся:

1) выполнил работу в полном объеме, с соблюдением необходимых требований оформления;

2) ответил на предложенные вопросы, допустив при этом не более двух неправильных ответов;

3) задачи решены полностью, решение оформлено аккуратно;

4) практическая работа выполнена в срок.

Оценка «хорошо» ставится в том случае, если обучающийся:

1) выполнил работу в полном объеме, с соблюдением необходимых требований оформления;

2) ответил не на все предложенные вопросы. Не смог объяснить некоторые моменты решения задачи. Возможно, не полностью выполнил некоторые задачи;

3) практическая работа выполнена в срок.

Оценка «удовлетворительно» ставится, если обучающийся:

1)выполнил работу в полном объеме, но допущено несколько (2-3) количество ошибок;

2) ответил только на некоторые предложенные вопросы. Не смог объяснить этапы и принципы решения задачи;

3) практическая работа выполнена не в срок;

4) практическая работа имеет помарки и исправления.

Оценка «неудовлетворительно» ставится, если обучающийся:

1) не выполнил практическую работу, или выполнил работу, допустив большое количество ошибок;

2) не смог ответить на предложенные вопросы.


Практическое занятие № 4

Тема: Построение и анализ таблиц и графиков в статистике

Цель: ввести понятия задач математической статистики, научиться находить характеристики вариационного ряда.

Средства обучения: тетради для выполнения практических занятий, Интернет-ресурсы.

Содержание и порядок выполнения работы:

1. Рассмотрите теоретический материал по теме.

2. Законспектируйте решение типовых задач.

3. Рассмотрите примеры решения типовых задач.

4. Решите задачу.

Контрольные вопросы:

  1. Понятие генеральной совокупности, выборки, среднего арифметического, медианы.

  2. Раскройте понятия: корреляция случайных величин, уравнение регрессии.

Генеральной совокупностью называется совокупность всех однородных объектов, из которых производится выборка.

Выборочной совокупностью (или выборкой) называется совокупность случайно отобранных однородных объектов.

Объёмом совокупности (генеральной или выборочной) называется число объектов этой совокупности.

Статистическим распределением выборки называют перечень наблюдавшихся значений хк признака Х и соответствующих им частот nk(или относительных частот nk/n), записанных в возрастающем порядке.

Полигоном относительных частот дискретно распределённого признака Х называют ломанную, отрезки которой соединяют точки (x1 ; n1/n), (x2 ; n2/n),…(xk; nk/n).

Гистограммой относительных частот непрерывно распределённого признака Х называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы h охватывающие все наблюдаемые значения признака Х, а высоты равны отношению nk/ (nh). Площадь такой гистограммы равна единицы.

Выборочная средняя (служит оценкой математического ожидания генеральной совокупности) вычисляется по формуле

hello_html_m5fc2d6d9.gif

Выборочная дисперсия (служит оценкой генеральной дисперсии) определяется по формуле

hello_html_d0edb28.gif

Для расчётов удобнее использовать следующую формулу:

hello_html_m105cdfaf.gif

Несмещённой называют точечную оценку (число, полученное по выборке признака Х),математическое ожидание которой равно оцениваемому параметру при любом объёме выборки.

Несмещённой точечной оценкой генеральной средней (математического ожидания) служит выборочная средняя.

Смещённой точечной оценкой генеральной дисперсии служит выборочная дисперсия.

Несмещённой оценкой генеральной дисперсии служит исправленная выборочная дисперсия.

hello_html_6fb81032.gif

Интервальной называют оценку в виде интервала, покрывающего оцениваемый параметр.

Доверительным называют интервал, который с заданной надёжностью γ покрывает заданный параметр.

Интервальной оценкой (с надёжностью γ) математического ожидания а нормально распределённого признака Х по выборочной средней и исправленному выборочному среднему квадратическому отклонению служит доверительный интервал:

hello_html_204d977c.gif

где tγ – коэффициент Стьюдента, находят из таблицы по заданным n и γ (см. приложение).

Интервальной оценкой (с надёжностью γ) среднего квадратического отклонения σ нормально распределённого признака Х по исправленному выборочному среднему квадратическому отклонению служит доверительный интервал:

hello_html_63f0200a.gif

где q находится из таблицы по заданным n и γ (см. приложение).


Выборочное уравнение прямой линии регрессии Y на Х полученное по результатам выборки имеет вид линейного приближения hello_html_491ced9a.gifот х

hello_html_2d0cf14c.gif

где r B – выборочный коэффициент корреляции, равный

hello_html_m676e9a4f.gif

Если hello_html_m2deb9a86.gif, то связь между случайными величинами достаточно вероятна.

Остаточной дисперсией называют величину

hello_html_m3cbb8d97.gif

Примеры решения типовых задач

1. Изучая демографическую ситуацию в городе, группа исследователей на основе репрезентативной (представительной) выборки объёмом n = 100 составила таблицу, содержащую следующие данные: количество несовершеннолетних детей (признак Х) и доход на одного члена семьи (признак Y, тыс. руб.).



Х/ У

0 – 4

2

4 – 8

6

8 – 12

10

12 – 16

14

16 – 20

18

hello_html_m53d4ecad.gifnx

0

-

3

5

5

3

16

1

7

15

13

5

1

41

2

7

11

8

6

-

32

3

4

5

2

-

-

11

nу

18

34

28

16

4

n=100


а) По выборке дискретно распределённого признака X требуется: а) изобразить полигон выборки; б) определить выборочное среднее и выборочную дисперсию случайной величины X.

б) По выборке дискретно распределённого признака Y требуется: а) изобразить гистограмму выборки; б) определить выборочное среднее и выборочное среднее квадратическое отклонение случайной величины Y; в) определить доверительные интервалы для оценки неизвестного математического ожидания и неизвестного среднего квадратического отклонения случайной величины Y. Предполагается, что случайная величина распределена нормально. Доверительная вероятность равна 0,95.

Решение.

hello_html_m5f2b4aa4.gif

а) По оси ординат откладываем варианты выборки признака Х – количество несовершеннолетних детей – 0 ; 1 ; 2 ; 3.

По оси абсцисс откладываем соответствующие им относительные частоты– 16/100; 41/100; 32/100; 11/100.

б) Определяем выборочное среднее:

hello_html_m7d601137.gif

Определяем выборочную дисперсию:


hello_html_6d6910da.gif


hello_html_mfc6885c.gif

а) По оси ординат откладываем интервалы выборки признака Y.

По оси абсцисс откладываем соответствующие им отношения hello_html_m4cb034a2.gif, где h – величина заданных интервалов ( в задании h = 4 тыс.руб.). Для расчётов параметров выборки принимаем середины интервалов.

б) Определяем выборочное среднее:

hello_html_m1b90f0b4.gifОпределяем выборочную дисперсию:

hello_html_4142d861.gif

Определяем выборочное среднее квадратическое отклонение: hello_html_m96e902d.gif

в) Определяем несмещённую оценку hello_html_m35bf0b00.gif Из таблицы выбираем коэффициент Стьюдента hello_html_m39384f64.gif и вычисляем величину hello_html_47e6d06d.gif Тогда получим доверительный интервал для оценки математического a ожидания признака Y:


hello_html_m4d0c5627.gif

Т.е. с надёжностью 0,95 (или на 95%) можно утверждать, что в указанном интервале находится средний доход (в тыс. руб.), приходящийся на одного жителя города.

По таблице приложения определяем показатель q (0,95 ; 100) = 0,143. Тогда получим доверительный интервал неизвестного среднего квадратического отклонения признака Y: hello_html_27c61587.gif

2. Найти реализацию уравнения линейной регрессии Y на Х. Если связь признаков Y и Х достаточно вероятна, то оценить, на сколько в среднем рождение ребёнка сказывается на величине дохода в расчёте на одного члена семьи.

Вычислим среднее квадратическое отклонение выборки Х: hello_html_m1bd11bbb.gif

Вычислим коэффициент корреляции:

hello_html_18faf7af.gif

Подставляем найденные величины в уравнение линии регрессии Y на Х

hello_html_m1ee68300.gif

или окончательно: hello_html_m395977f1.gif

Т.к. hello_html_m8887ab9.gif то связь между рассматриваемыми признаками достаточно вероятна.

В среднем рождение ребёнка уменьшает доход на одного члена семьи на сумму около 1,83 тыс. руб.

Изобразим схематически в координатах ХY выборочное распределение по признакам и построим линию регрессии. Размеры маркеров на рисунке пропорциональны соответствующим вариантам выборки.


hello_html_m29b1033b.gif

Решите задачу:

Дана корреляционная таблица цен У на подержанные автомобили ВАЗ в зависимости от срока эксплуатации автомобиля Х. Найти реализацию уравнения линейной регрессии У на Х и оценить на сколько в среднем падает цена на автомобиль за один год эксплуатации. Вычислить остаточную дисперсию.

hello_html_m742d4b99.gifХ, лет


У, тыс.руб.

0 - 2

2 - 4

4 - 6

6 - 8

8 - 10

200 – 250

2





150 – 200

8

8




100 – 150

5

20+N

10+M

2


50 – 100


10-N

20-M

5


0 – 50



2

5

3


Домашнее задание: решите задачу

Дана корреляционная таблица цен У на подержанные автомобили ВАЗ в зависимости от срока эксплуатации автомобиля Х. Найти реализацию уравнения линейной регрессии У на Х и оценить на сколько в среднем падает цена на автомобиль за один год эксплуатации. Вычислить остаточную дисперсию.


hello_html_m739cce31.gifХ, лет

У, тыс.руб.

0 - 2

2 - 4

4 - 6

6 - 8

8 - 10

200 – 250

2





150 – 200

8

8




100 – 150

5

20+N

10+M

2


50 – 100


10-N

20-M

5


0 – 50



2

5

3


Список рекомендуемой литературы:

Основная литература:

1. Горелов, Г.В., Кацко, И. А. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel: учебник для ССзуов. – Ростов н/Д: Феникс, 2012.

2. Омельченко, В.П., Курбатова, Э.В. Математика: учебное пособие. – Ростов н/Д.: Феникс, 2012.

3. Пехлецкий, И.Д. Математика - М.: Академия, 2013.

Дополнительная литература:

1. Гмурман, В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2012.

2. Калинина, В.Н., Панкин, В.Ф. Математическая статистика. – М.:  Высшая школа, 2013.

Сайты в сети Интернет:

  1. Онлайн библиотека [Электронный ресурс] – Режим доступа: http://www.vbbooks.ru.

  2. Компьютерные электронные книги [Электронный ресурс] – Режим доступа: http://www.compebook.ru.

Критерии оценивания работы обучающихся на практическом занятии

Оценка «отлично» ставится, если обучающийся:

1) выполнил работу в полном объеме, с соблюдением необходимых требований оформления;

2) ответил на предложенные вопросы, допустив при этом не более двух неправильных ответов;

3) задачи решены полностью, решение оформлено аккуратно;

4) практическая работа выполнена в срок.

Оценка «хорошо» ставится в том случае, если обучающийся:

1) выполнил работу в полном объеме, с соблюдением необходимых требований оформления;

2) ответил не на все предложенные вопросы. Не смог объяснить некоторые моменты решения задачи. Возможно, не полностью выполнил некоторые задачи;

3) практическая работа выполнена в срок.

Оценка «удовлетворительно» ставится, если обучающийся:

1)выполнил работу в полном объеме, но допущено несколько (2-3) количество ошибок;

2) ответил только на некоторые предложенные вопросы. Не смог объяснить этапы и принципы решения задачи;

3) практическая работа выполнена не в срок;

4) практическая работа имеет помарки и исправления.

Оценка «неудовлетворительно» ставится, если обучающийся:

1) не выполнил практическую работу, или выполнил работу, допустив большое количество ошибок;

2) не смог ответить на предложенные вопросы.

Список литературы

Нормативная литература:

1.ФГОС среднего профессионального образования по специальности 43.02.01 Организация обслуживания в общественном питании (базовая подготовка) (Утверждён приказом Министерства образования и науки РФ 07.09.2014 г. № 465).

2. Рабочая программа учебной дисциплины ЕН.01 Математика.

Основная литература:

1. Баврин, И.И. Высшая математика: учебник. – М.: Академия, Высшая школа, 2013.

2. Горелов, Г.В., Кацко, И. А. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel: учебник для ССзуов. – Ростов н/Д: Феникс, 2012.

3. Данко, П.Е., Попов, А.Г., Кожевникова, Т.Я. Высшая математика в упражнениях и задачах: учеб. пособие для студентов втузов. – 4-е изд., - М.: Высш.шк., 2012.

4. Ильин, В.А. Основы математического анализа: В 2 т. – М.: Наука: Физматлит, 2012.

5. Омельченко, В.П., Курбатова, Э.В. Математика: учебное пособие. – Ростов н/Д.: Феникс, 2012.

6. Пехлецкий, И.Д. Математика - М.: Академия, 2012.

Сайты в сети Интернет:

  1. Онлайн библиотека [Электронный ресурс] – Режим доступа: http://www.vbbooks.ru.

  2. Интернет университет информационных технологий [Электронный ресурс] – Режим доступа: http: //www.intuit.ru.

  3. Компьютерные электронные книги [Электронный ресурс] – Режим доступа: http://www.compebook.ru.

Контроль и оценка результатов выполнения практических занятий


Результаты обучения

(освоенные умения, усвоенные знания)

Формы и методы контроля и оценки результатов выполнения практических занятий

Умения:

- применять математические знания и умения при решении задач профессиональной деятельности

Наблюдение и анализ выполнения практических работ


Анализ выполнения домашних заданий по результатам выполнения практических занятий.

Знания:



- значение математики в профессиональной деятельности и при освоении ППССЗ;


Наблюдение и анализ выполнения практических работ

Анализ выполнения домашних заданий

Анализ выполнения самостоятельной работы.


основные математические методы решения прикладных задач в области профессиональной деятельности;

- основы теории вероятностей и математической статистики.

Наблюдение и анализ выполнения практических работ

Анализ выполнения домашних заданий

Анализ выполнения самостоятельной работы








Выберите курс повышения квалификации со скидкой 50%:

Краткое описание документа:

Методические рекомендации для обучающихся по выполнению практических занятий по дисциплине составлены в соответствии с Федеральным государственным образовательным стандартом, рабочим учебным планом, рабочей программой и календарно-тематическим планом учебной дисциплины ЕН.01 Математика по специальности среднего профессионального образования 43.02.01 Организация обслуживания в общественном питании (базовая подготовка), 43.00.00 Сервис и туризм. Практические занятия относятся к основным видам учебных занятий и составляют важную часть практической подготовки будущих специалистов. Ведущей дидактической целью предлагаемых практических заня¬тий является закрепление теоретических знаний по дисциплине, формирование практических умений, способствующих формированию общих и профессиональных компетенций, необходимых в последующей профессиональной деятельности. В соответствии с ведущей дидактической целью содержанием практических занятий являются: решение математических задач, анализ полученного решения, сравнения методов решения, определение границ их применения, работа с Интернет-ресурсами, составление простейших программ с использованием ПК, проведение простейших исследовательских работ. Задачами выполнения практических занятий являются: - обобщение, систематизация, углубление, закрепление полученных теоретических знаний по конкретным темам дисциплины; - формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности; - развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др.; - совершенствование умений и навыков самостоятельной работы с научной, справочной, методической литературой, Интернет-ресурсами и другой информацией, необходимой для повышения эффективности профессиональной деятельности, профессионального самообразования и саморазвития; - формирование творческого подхода к составлению алгоритмов решения математических задач; - формирование у студентов навыков исследовательской деятельности; - выработка при решении поставленных задач таких профессионально значимых качеств, как самостоятельность, коммуникабельность, мобильность, конкурентоспособность, ответственность, точность, творческая инициатива. В методических рекомендациях представлены 7 тем практических занятий, которые включают цели, средства обучения, содержание, алгоритм выполнения, методические указания к их выполнению, контрольные вопросы, список рекомендуемой литературы, критерии оценивания работы студентов на практических занятиях, контроль и оценка результатов выполнения практических занятий по дисциплине. Предлагаемые практические занятия носят репродуктивный, частично-поисковый и поисковый характер. Формами организации студентов на практических занятиях являются: фронтальная, групповая и индивидуальная. При самостоятельной подготовке студентов к практическим занятиям предусматривается изучение рекомендуемой литературы. В ходе практических занятий студенты в тетрадях для выполнения практических работ записывают задания, решают предложенные задания и проводят анализ их решения. Отдельные задания выполняются на ПК, отчеты предоставляются в электронном виде.
Автор
Дата добавления 11.05.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров729
Номер материала 273324
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх