Инфоурок / Начальные классы / Статьи / Методика проведения математических игр на внеклассных занятиях по математике
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Методика проведения математических игр на внеклассных занятиях по математике




Московские документы для аттестации!

124 курса профессиональной переподготовки от 4 795 руб.
274 курса повышения квалификации от 1 225 руб.

Для выбора курса воспользуйтесь поиском на сайте KURSY.ORG


Вы получите официальный Диплом или Удостоверение установленного образца в соответствии с требованиями государства (образовательная Лицензия № 038767 выдана ООО "Столичный учебный центр" Департаментом образования города МОСКВА).

ДИПЛОМ от Столичного учебного центра: KURSY.ORG


библиотека
материалов


Методика проведения математических игр на внеклассных занятиях по математике


Основная цель применения математической игры на внеклассных занятиях по математике – это развитие устойчивого познавательного интереса у учащихся к предмету через разнообразие используемых математических игр.

Так же можно выделить и следующие цели применения математических игр:

  • Развитие мышления;

  • Углубление теоретических знаний;

  • Самоопределение в мире увлечений и профессий;

  • Организация свободного времени;

  • Общение со сверстниками;

  • Воспитание сотрудничества и коллективизма;

  • Приобретение новых знаний, умений и навыков;

  • Формирование адекватной самооценки;

  • Развитие волевых качеств;

  • Контроль знаний;

  • Мотивация учебной деятельности и др.

Приведем классификацию игр по схожести правил и характера проведения. Данная классификация будет включать в себя следующие виды игр:

  • Настольные игры;

  • Математические мини-игры;

  • Викторины;

  • Игры по станциям;

  • Математические конкурсы;

  • КВНы;

  • Игры-путешествия;

  • Математические лабиринты;

  • Математическая карусель;

  • Бои;

  • Разновозрастные.

Некоторые из выше перечисленных видов игр могут быть включены в другие, более большие математические игры, как один из их этапов. Теперь же рассмотрим конкретно каждый вид.

Настольные игры.

К настольным играм относят такие математические игры как математическое лото, игры на шахматной доске, игры со спичками, различные головоломки и т.п. Подготовительный этап таких игр проводится в основном перед самой игрой, на нем разъясняются в основном правила игры. Настольные математические игры не рассматриваются как отдельная форма внеклассного занятия, а используются обычно как часть занятия, могут быть включены в другие математические игры. Дети могут играть в них в любое свободное время, даже на перемене (например, разгадывать какую либо головоломку).

Рассмотрим некоторые из наиболее распространенных настольных игр.

Математическое лото. Правила у игры те же, что и при игре в обычное лото. Каждый из учеников получает карту, на которой написаны ответы. Ведущий игры берет пачку карточек, на которых написаны задания и вытаскивает одну из них. Читает задание, показывает всем участникам игры. Участники решают задания устно или письменно, получают ответ, находят его у себя на игральной карточке. Закрываю этот ответ специально заготовленными фишками. Выигрывает тот, кто первый закроет карточку. Проверка правильности закрытия карты обязательна, она является не только контролирующим моментом, но и обучающим. Можно заготовить жетоны таким образом, что после закрытия всей карты, у учащегося получился с помощью этих жетонов рисунок, тем самым можно проверить правильность закрытия карты. Перед началом игры можно провести разминку, на которой вспоминаются формулы, правила, знания, необходимые для проведения игры.

Игры со спичками. Данные игры могут проводиться в различной форме, но суть у них остается одна, учащимся даются задания, в которых нужно построить фигуру из спичек, путем перемещения одной или нескольких спичек получить другую фигуру. Вопрос игры и заключается в том, какую именно спичку нужно переложить.

Очень нравятся детям игры-головоломки. В них нужно расположить особым образом определенные фигуры или числа в таблице. Возможен и другой вариант такой игры. Например, игра, где из различной формы кусочков бумаги нужно собрать фигуру, да еще попытаться найти, как можно больше различных вариантов сбора.

Так же встречаются настольные игры-поединки между двумя участниками. Это такие игры как крестики-нолики в различных вариациях, игры на шахматной доске, игры с использованием спичек и многие другие. В таких играх необходимо выбрать нужную, выигрышную стратегию. Проблема и заключается в том, что сначала нужно догадаться какая именно стратегия является выигрышной. В математике даже существует такой тип нестандартных задач, где как раз нужно найти выигрышную стратегию игры и обосновывать ее математически (теория игр).

Примером такой игры может служить следующая игра. На стол кладутся спички в ряд. Играют двое игроков. Они по очереди берут одну, две или три спички. Выигрывает тот, кто берет последнюю спичку.

Настольные игры настолько многообразны, что описать их общую структуру очень сложно. Общее у них то, что они в основном не подвижные, индивидуальные, требуют умственного труда. Они захватывают и заинтересовывают учащихся, развивают у них настойчивость и упорство в достижении цели, способствуют возникновению интереса к математике.

Математические мини-игры.

На самом деле настольные игры тоже можно назвать мини-играми, но в них входят в основном «тихие» игры. К этому же виду относятся небольшие подвижные игры, которые могут быть включены как один из этапов в более большие математические игры, так и быть часть внеклассного занятия.

Чем же отличаются эти игры от остальных? В таких играх дети в основном решают задания и получают за это определенное количество очков. Выбор задания проходит в различных игровых формах. К таким играм можно, например, отнести «Математическую рыбалку», «Математическое казино», «Стрельба по мишеням», «Математическое (чертово) колесо» и т.п. Такие игры состоят из следующих этапов. Сначала ученик производит какое-либо игровое действие (вылавливает рыбку из пруда, кидает дротиком в мишень, бросает игральные кости и др.). В зависимости от того, какой будет результат этого действия (какую рыбку поймал, сколько очков выпало на игральных костях, в какую часть мишени попал и др.) ученику выдается определенная задача, которую он должен решить. Решив эту задачу, ученик получает свои заслуженные баллы и право получить новую задачу, совершив при этом соответствующее игровое действие.

В «Математическом казино» ученик бросает кости только после решения задачи, тем самым, определяя свои выигранные баллы. В игре «Математическое (или чертово) колесо» игроки двигаются как бы по кругу, в котором имеется начальный и конечный этап, бросая кости, они тем самым определяют, на какой этап этого колеса они попадают. Не решив задачу, они возвращаются на предыдущий этап и, чтобы вновь получить право бросить кости решают задачу этого этапа. Выигрывает игрок, сумевший выйти из этого круга или набравший большее количество баллов. Огромную роль для выигрыша здесь имеет удача участника игры. Поэтому то эту игру часто называют «Чертовым колесом».

Все эти игры ограничены по времени. В конце игры подсчитываются баллы и определяются победители.

Математические мини-игры как бы имитируют определенную (жизненную) ситуацию: ловля рыбы, игру в казино и другие, благодаря этому мини-игры завлекают детей, у школьников возникает интерес, они стремятся правильно решить как можно больше задач, прилагая к этому все свои силы и знания.

Среди мини-игр также можно выделить небольшую группу игр-соревнований. К таким играм можно отнести, например, «Математическую эстафету», различные конкурсы капитанов, входящие в более крупные математические игры. Это в основном игры на скорость выполнения заданий, но и качество их выполнения играет тоже не последнюю роль. Это могут быть как командные соревнования, так и между двумя участниками. Эти игры насыщены эмоциональными переживаниями, что свойственно обычным соревнованиям, где нужно быстрее и лучше соперника справиться с поставленной задачей. Поэтому они очень нравятся школьникам, и включение их во внеклассные занятия или другие игры по математике способствует развитию интереса учащихся.

Математические викторины.

Казалось бы, этот тип игры тоже мог бы быть включен в предыдущий тип игр, но ярко выраженной игровой ситуации в них не наблюдается. Математические викторины очень часто включаются в математические вечера, в занятии математического кружка, используются как этап другой математической игры.

Математические викторины легко организовать. В них может принять участие каждый желающий. Суть их заключается в том, что участникам задаются вопросы, на которые они должны ответить. Викторины проводятся по-разному, в зависимости от числа участников.

Если участников не очень много, то каждый вопрос или задача зачитываются человеком, проводящим викторину. На обдумывание ответа дается несколько минут. Отвечает тот, кто первым поднимет руку. Если ответ не полный, то можно предоставить возможность высказаться еще и другому участнику. За правильный ответ присуждается определенное количество очков.

Если же участников много, то текст всех вопросов и задач выписываются на доске, на отдельных плакатах или раздаются школьникам на отдельных листах, где они пишут ответы и краткое объяснение. Потом листочки сдаются жюри, где они проверяются, подсчитываются баллы.

Победителями становятся участники, набравшие наибольшее количество баллов.

Возможны случаи, когда викторины проводятся для команд. В этом случае каждой команде зачитывается определенное количество вопросов, возможны варианты ответов на них. Участники команд должны за определенное время ответить правильно на как можно большее количество вопросов. Выигрывает команда, давшая больше правильных ответов. Вопросы, задаваемые командам должны быть равноценными.

С помощью викторин можно не только заинтересовать учащихся математикой, используя необычной формы вопросы, но и проконтролировать уровень их знаний предмета (особенно в том случае, когда она проходит в письменной форме).

Рассмотренные выше игры могут включаться во внеклассные занятия по отдельности, а могут и в своей совокупности составлять большой блок игр, занятие в игровой форме, то есть большую математическую игру. Эта игра может быть проведена в различных формах. В зависимости от характера проведения таких игр различают следующие виды:

Игры по станциям.

В играх данного типа обычно перед участниками ставиться определенная игровая цель, в зависимости от общего сюжета игры, ее темы. Это может быть цель найти клад, собрать карту, дойти до конечной станции (таинственного города) и т.п.

Как видно из названия данные игры проводятся по станциям. В такой игре обычно участвуют команды, и именно они ходят по станциям, выполняют на каждой из них определенные задания и получают за это баллы, часть карты, либо подсказки, помогающие достичь участникам поставленной перед ними цели. Каждая из станций представляет собой небольшую игру. Команды ходят по станциям, пользуясь специально выданными им листами-путеводителями. Игра по станциям проходит обычно в нескольких кабинетах, в которых располагаются различные станции. В таких играх участвуют обычно несколько классов, поэтому они являются массовыми и продолжительными по времени. Для проведения такой игры требуется много людей. В школе для проведения подобной игры по станциям могут привлекаться старшие классы. Итогом игры является достигнутая командами цель игры.

Игры такого вида имеют необычный сюжет и часто являются театрализованными, то есть в ее начале разыгрывается какая-нибудь ситуация с помощью которой перед участниками ставится цель игры. Отдельные станции, по которым будут ходить участники, тоже могут быть театрализованы. Эта необычность очень привлекает и заинтересовывает не только участников игры, но и учеников принимающих участие в проведении игры. У школьников возникает интерес к математике, они по новому воспринимают этот, казалось бы, «скучный» и «сухой», неинтересный предмет.

К такому виду игр можно отнести «Математические следопыты», «Математический поезд», «Математический кросс» и другие.

Математические конкурсы.

Математические конкурсы можно рассматривать как часть большой игры или вечера (например, конкурс капитанов). Так же конкурс можно рассматривать как соревнование по выполнению какой-либо работы или проекта (конкурс на лучшую математическую сказку, конкурс на лучшую математическую газету и т.п.). Здесь же будут рассматриваться математические конкурсы как отдельные самостоятельные мероприятия, математические игры, в состав которых могут входить как их элементы другие более мелкие математические игры (например, викторины, эстафеты и др.).

Математические конкурсы – это соревнования, которые могут проводиться как между отдельными участниками игры, так и между командами. Это наиболее часто используемый тип математических игр. К нему можно отнести такие игры как «Звездный час», «Счастливый случай», «Колесо математики» и другие.

В конкурсе всегда есть победитель и он единственный, возможен случай и ничьей. При проведении математических конкурсов обычно присутствуют не только сами участники игры, но и зрители, болеющие за них. Поэтому в таких видах игр всегда предусмотрены и задания (конкурсы) для зрителей.

Особой подготовки участников к игре не требуется. В основном нужно лишь собрать команду и разобрать примерные задания. Данный тип игр настолько разнообразен и универсален, что позволяет проводить внеклассные занятия по математике как можно чаще в форме математической игре, и тем самым привлечь к ним больше учеников. Школьники заинтересовываются и даже иногда сами изъявляют желание придумать свою математическую игру и провести ее.


КВНы.

КВН – это тоже математический конкурс. Но он настолько популярен и необычен, что отнесем его в отдельную группу математических игр.

КВНы проводятся между несколькими командами. Эти команды заранее готовятся к игре, придумывают приветствие другим командам, домашнее задание, в виде представления.

Сам КВН тоже может проводиться в виде какого-нибудь представления, разыгрываются небольшие сценки между конкурсами, может быть в форме путешествия. Помещение, в котором проходит игра, ярко и красочно оформляется. На КВНах обычно присутствуют зрители, поэтому предусматривается и конкурс для зрителей. Так же эта игра предполагает наличие жюри.

Все КВНы строятся приблизительно по одному плану, в которых входят традиционные конкурсы:

  1. Приветствие. В этом конкурсе команда должна пояснить свое название, рассказать о членах команды, обратиться к соперникам и жюри.

  2. Разминка (для команд и болельщиков). Командам даются задания, на которые они должны как можно быстрее ответить. Может проходить в форме викторины.

  3. Пантомима. В этом конкурсе обыгрываются различные математические понятия.

  4. Конкурс художников. В этом конкурсе нужно изобразить, используя геометрические фигуры, графики функций и т.п., изобразить что-либо, а так же придумать рассказ по своему рисунку.

  5. Домашнее задание. Оно должно соответствовать теме КВНа и быть представлено в виде сценки, песни или стихотворения.

  6. Конкурс капитанов. Капитанам команд предлагается решить более сложные задачи, чем в разминке. Этот конкур может пройти в форме какой-нибудь небольшой игры-соревнования.

  7. Специальные конкурсы. Должны соответствовать теме КВНа, их может быть несколько. Например, исторический конкурс, расшифровка ребуса и др.

Каждый конкурс оценивается жюри определенным количеством баллов, и после его окончания жюри объявляет результаты. В КВНе выигрывает та команда, которая набрала наибольшее количество баллов по результатам всех конкурсов.

Математические КВНы имеет такую популярность из-за своей необычной формы проведения и из-за имеющейся на телевидении одноименной передачи, являющейся прообразом данного вида игр. В этой игре участники имеют возможность проявить не только свои математические, но и творческие способности. Школьники с удовольствием принимают участие в таких играх не только как участники, но и как зрители. Математические КВНы таким образом способствуют развитию интереса к одному из труднейших школьных предметов – математике, которая в этой игре совсем не кажется трудной, а наоборот становиться интересной и занимательной.

Игры-путешествия.

Такой тип игры отличается от остальных (в частности от игр по станциям) тем, что они проходят в отдельно взятом помещении, дети не ходят по станциям, а сидят на своих местах и принимают участие в предложенных им заданиях, отвечают на них. Игры-путешествия проходят обычно в театрализованной форме. Перед учащимися разыгрывается спектакль, в течение которого им необходимо выполнять некоторые задания, для того, чтобы помочь героям достичь их, узнают новые факты. Поэтому данный тип игр носит не только развлекательный характер, но и обучающий. Во время игры учащиеся могут мысленно попадать в другие страны, в различные выдуманные города, встречать необычных героев, что очень нравится им, вызывает у них положительные эмоции. Результатом игры является цель, достигнутая героями спектакля с помощью учеников, как таковых победителей в таких играх нет, а есть лишь один победитель – все участники игры.

Такие игры проводятся в основном для младших классов. Такой тип игры как нельзя лучше подходит для детей младшего возраста, для того чтобы развить у них интерес к математике.

К такому виду игр можно отнести игру «Приключения Винни Пуха и Пяточка в стране математики», «В гостях у царицы математики» и другие.

Математические лабиринты.

Данный тип игр был назван так, потому что по свой структуре напоминает лабиринт, с его запутанными ходами. В лабиринте каждый правильно сделанный поворот, поможет тебе выбраться из лабиринта. А если ты сделал хоть один неправильный поворот, то и выбраться из лабиринта не сможешь. Точно также устроены и математические лабиринты. Каждое правильно решенное задание игры приближает вас к верному конечному результату игры, а единственная ошибка может привести к неверному. Игра проходит поэтапно. Ответ на задание в каждом этапе определяет, на какой этап игры нужно идти дальше. В итоге ты приходишь к конечному результату. Именно он и проверяется. Это может быть ответ на задание последнего этапа, либо какая-нибудь картинка и т.п. Если конечный результат не верный, то надо искать на каком из этапов игры была совершена ошибка и, следовательно, проходить часть лабиринта заново. Таким образом, участники игры учатся не только правильно решать задачи, но проверять свои решения, находить ошибки.

Лабиринты могут быть как подвижными, так и тихими, командными и индивидуальными. Их можно проводить по отдельно взятой теме, тем самым, контролируя усвоение учащимися материала. Они могут включать в себя различные занимательные задачи.

Участвуя в игре, участники упорно и настойчиво пытаются достичь правильного результата игры, старательно решают задания и проверяют их, умственно трудятся. У детей воспитывается соответствующие качества личности, развивается интерес к математике.

Математическая карусель.

К этому виду игр относится одна игра, которая так и называется «Математическая карусель». Отнести ее к другим играм довольно таки сложно, так как она имеет отличительные от всех, свойственные только ей особенности. Поэтому по моему мнению ее следует отнести к отдельному виду математических игр.

Игра является командной, проводиться обычно между несколькими классами, возможно даже между школами. Игра имеет два рубежа. Изначально команда находится на исходном рубеже. Важен так же порядок, в котором сидят участники команды, все ее участники должны иметь порядковый номер. Команде выдается задача. Если команда решит задачу, то первый ее участник отправляется на зачетный этап, где ему выдается зачетная задача, за которую команде и будут начисляться баллы. В это же время оставшиеся на исходном рубеже участники команды решают следующую задачу, правильное решение которой позволит перейти на зачетный рубеж следующему члену команды. Таким образом на зачетном рубеже зачетные задачи будут решать больше учеников. И так далее. Если же на зачетном рубеже ученики не правильно решают задачу, то участник с наименьшим порядковым номером возвращается на исходный рубеж. Вот поэтому то игра и называется «Математической каруселью», так как в ней постоянно происходит круговое движение участников.

За каждой командой должен следить отдельный человек (или за двумя командами), он же проверяет правильность решения задач, и соблюдение всех правил игры.

В такой игре принимают участие обычно сильные, увлекающиеся математикой, ученики. Их привлекает к участию в ней необычность самой игры, трудность предложенных задач и сложность получения баллов. Ведь баллы засчитываются только за решение задач на зачетном рубеже, которые обычно сложнее, чем на исходном рубеже. Познавательный интерес к математике у таких детей становиться еще больше.

Математические бои.

К такому виду игр относят непосредственно сам «Математический бой», «Морской бой», различные баталии.

В таких боях обычно участвуют две команды, которые соревнуются между собой в уровне имеющихся у них математических знаниях. Участвуют в боях обычно самые сильные и способные ученики в классе, по отношению к математике.

В таких играх также важно не только хорошо уметь решать задачи, но и правильно выбрать стратегию игры.

Правила математического боя:

Игра состоит из двух частей. Сначала команды получают условия задач и определенное время на их решение. По истечении этого времени начинается собственно и сам бой. Бой состоит из нескольких раундов. В начале каждого раунда одна из команд вызывает другую на одну из задач, решения которых еще не рассказывались. После этого вызванная команда сообщает, принимает ли она вызов, то есть согласна ли рассказывать решение этой задачи. Если да, то она выставляет докладчика, который должен рассказать решение, а вызвавшая команда выставляет оппонента, обязанности которого – искать в решении ошибки. Если нет, то докладчика обязана выставить команд, которая вызвала, а отказавшаяся выставить оппонента.

Ход раунда: В начале раунда докладчик рассказывает решение. Пока доклад не окончен, оппонент может задавать вопросы только с согласия докладчика. После окончания доклада оппонент имеет право задавать вопросы докладчику. Если в течение минуты оппонент не задал ни одного вопроса, то считается, что у него нет вопросов. Если докладчик в течение минуты не начинает отвечать на вопрос, то считается, что у него нет ответа. После окончания диалога докладчика и оппонента жюри задает свои вопросы. При необходимости оно может вмешиваться и раньше.

Если по ходу дискуссии жюри установило, что оппонент доказал отсутствие у докладчика решения и ранее не произошел отказ от вызова, то возможны два варианта. Если вызов на этот раунд был принят, то оппонент получает право (но не обязан) рассказать свое решение. Если оппонент взялся рассказывать свое решение, то происходит полная перемена ролей: бывший докладчик становится оппонентом и может зарабатывать баллы за оппонирование. Если же вызов на этот раунд был принят, то говорят, что вызов был не корректным. В этом случае перемена ролей не происходит, а команда, вызывавшая некорректно, должна снова вызывать соперника в следующем раунде. Во всех остальных случаях в следующем раунде вызывает та команда, которая была вызвана в текущем раунде.

Каждая задача оценивается в 12 баллов, которые по итогам раунда распределяются между докладчиком, оппонентом и жюри.

Бой заканчивается, когда не остается не обсужденных задач либо когда одна из команд отказывается от вызова, а другая команда отказывается рассказывать решение оставшихся задач.

Если по окончании боя результаты команд отличаются не больше чем на 3 балла, то считается, что бой закончился вничью. В противном случае побеждает та команда, которая набрала больше баллов. Может в игре выиграть и жюри.

Этот вид игры являются довольно таки необычными и позволяют привлечь школьников к внеклассной работе по математике, развить их познавательный интерес к предмету.

Выше перечисленные виды игр могут переплетаться, игра может сочетать в себе элементы разных игр. В связи с этим, на практике наблюдается многообразие математических игр. Проведение внеклассных занятий в форме математических игр позволит их разнообразить, привлечь к ним разные группы учащихся: интересующихся математикой, не проявляющих явного интереса, слабых, сильных и т.п. Правильно выбранный вид математической игры с учетом возраста и типа учащихся способствует привлечению большего числа школьников к внеклассной работе по математике, возникновения у них интереса к предмету.





Библиографический список

  1. Балк, М.Б. Математика после уроков [Текст]: пособие для учителей / М.Б. Балк, Г.Д. Балк. – М: Просвещение, 1671. – 462с.

  2. Ганичев, Ю. Интеллектуальные игры: вопросы их классификации и разработки [Текст] // Воспитание школьника, 2002. - №2.

  3. Дышинский, Е.А. Игротека математического кружка [Текст] / Е.А. Дышинский. – 1972.-142с.

  4. Игра в педагогическом процессе [Текст] - Новосибирс, 1989.

  5. Игры – обучение, тренинг, досуг [Текст] / под ред. В.В. Перусинского. – М: Новая школа, 1994. - 368с.

  6. Коваленко, В.Г. Дидактические игры на уроках математики [Текст]: книга для учителя / В.Г. Коваленко. – М: Просвещение, 1990. – 96с.

  7. Кордемский, Б.А. Увлечь школьника математикой [Текст]: материал для классных и внеклассных занятий / Б.А.Кордемский. - М: Просвещение, 1981. – 112с.

  8. Самойлик, Г. Развивающие игры [Текст] // Математика. Приложение к газете «Первое сентября», 2002. - №24.



Самые низкие цены на курсы переподготовки

Специально для учителей, воспитателей и других работников системы образования действуют 50% скидки при обучении на курсах профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца с присвоением квалификации (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок", но в дипломе форма обучения не указывается.

Начало обучения ближайшей группы: 13 декабря. Оплата возможна в беспроцентную рассрочку (10% в начале обучения и 90% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru


Общая информация

Номер материала: ДВ-568998
Курсы профессиональной переподготовки
133 курса

Выдаем дипломы установленного образца

Заочное обучение - на сайте «Инфоурок»
(в дипломе форма обучения не указывается)

Начало обучения: 13 декабря
(набор групп каждую неделю)

Лицензия на образовательную деятельность
(№5201 выдана ООО «Инфоурок» 20.05.2016)


Скидка 50%

от 13 800  6 900 руб. / 300 часов

от 17 800  8 900 руб. / 600 часов

Выберите квалификацию, которая должна быть указана в Вашем дипломе:
... и ещё 87 других квалификаций, которые Вы можете получить

Похожие материалы

Получите наградные документы сразу с 38 конкурсов за один орг.взнос: Подробнее ->>