341559
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаДругие методич. материалыОлимпиадные задания по математике ( 7 класс)

Олимпиадные задания по математике ( 7 класс)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Открытая устная региональная олимпиада по математике.
18 декабря 2011г.

7 класс-РЕШЕНИЯ

  1. Из спичек выложено неверное равенство:

hello_html_37bfd396.jpg

Переложите одну спичку так, чтобы равенство стало верным.

Решение. hello_html_m7c3db066.gif.

  1. Анастасия Васильевна купила задачник, в котором собраны 200 задач заключительного этапа Всероссийской Олимпиады, и решила прорешать эти задачи за три дня. В первый день она решила половину всех задач, которые смогла решить за все три дня. Во второй день она решила на 60 задач меньше, чем в первый, а в третий вполовину меньше, чем в первый и во второй вместе. Сколько задач не смогла решить Анастасия Васильевна?

Ответ: 20. Решение. Пусть всего было решено n задач. Тогда по условию hello_html_422495c1.gif. Решив уравнение, получаем hello_html_m4df2ae2d.gif. Тогда Анастасия Васильевна не решила 200 - 180 = 20 задач.

  1. Стороны квадрата ABCD равны 6 см. На сторонах BC и CD отметили точки P и Q такие, что отрезки AP и AQ делят квадрат на три части равной площади. Найдите площадь треугольника APQ.

Ответ: 10 см2. Решение. из условия ясно, что hello_html_m2bef50a9.gif. С другой стороны, площадь прямоугольного треугольника равна половине произведения катетов, поэтому hello_html_m61e023f2.gif, откуда hello_html_m13f660b0.gif. Аналогично hello_html_m5223e573.gif, значит hello_html_299d6b61.gif и hello_html_1dcc8041.gif. Отсюда hello_html_d723a7e.gif см.

  1. Найдите наименьшее пятизначное число, делящееся на 9, в записи которого все цифры различны.

Ответ: 10269. Решение 1. Рассмотрим наименьшее такое число. На первом его месте стоит цифра 1 (иначе наше число меньше). Аналогично, на вторых и третьих местах стоят цифры 0 и 2. Кроме того, сумма цифра цифр должна делится на 9. На предпоследнем месте должно стоять одно из чисел 3, 4, 5, 6 (большие противоречат минимальности). Несложным перебором убеждаемся, что случаи 3, 4, 5 невозможны, а для 6 на последнем месте может стоять только 9.

Решение 2. Минимальное пятизначное число со всеми различными цифрами — это 10234. Минимальное число, не меньшее данного и делящееся на 9, есть 10242. Если к этому числу мы трижды прибавим по 9, мы получим числа 10251, 10260, 10269. Из них только последнее удовлетворяет условию задачи, т.к. все его цифры различны, и, по построению, оно делится на 9.

  1. Сколько всего имеется шестизначных чисел abcdef со всеми различными цифрами 1, 2, 3, 4, 5, 6 таких, что двузначное число ab делится на 2, трёхзначное число abc делится на 3, четырёхзначное число abcd делится на 4, пятизначное число abcde делится на 5, шестизначное число abcdef делится на 6?

Ответ: 2. Решение. Чётные цифры стоят на чётных местах, поэтому нечётные — на нечётных. На пятом месте стоит цифра 5. Значит, сумма a + c всегда 1 + 3 = 4. Сумма первых трех цифр делится на 3, значит вторая цифра – это только 2. Т.к abcd делится на 4, то cd делится на 4, и d может быть только 6. Получаем 2 варианта: 123654 и 321654, каждый из которых подходит под условие задачи.

  1. На плоскости отмечена точка A. Андрей и Борис играют в следующую игру. Они ходят по очереди (первым начинает Андрей); за один ход разрешается провести на этой плоскости через точку A прямую. Проводимая прямая не должна совпадать ни с одной из прямых, проведённых игроками на предыдущих ходах. Проигрывает тот, после хода которого угол между какими-то из проведённых прямых окажется меньше 1o. Может ли кто-либо из игроков гарантировать себе победу вне зависимости от игры соперника?

Ответ: да, победит Борис. Решение. каждым своим ходом Борис проводит прямую, перпендикулярную к проведённой последним ходом Андрея прямой. Тем самым он гарантирует себе возможность хода. Если от противного, после хода Бориса новая прямая l образует угол, меньший 1o с одной из ранее проведённых прямых s, тогда ранее уже образовывался угол, меньший 1 o между прямыми, перпендикулярными к l и s, что противоречит тому, что до Бориса дошла очередь хода. Следовательно, Андрей проиграет, так как всего можно провести не более 180 прямых.

  1. На острове Кокос проживает 2011 аборигенов, каждый из которых либо всегда говорит правду (рыцарь), либо всегда обманывает (лжец), причём они не все лжецы. Путешественник хочет узнать количество рыцарей на этом острове. Ему разрешено один раз в день собирать на берегу любую группу островитян, каждый из которых напишет количество рыцарей среди собравшихся. За какое наименьшее число дней путешественник сможет выяснить точное число рыцарей?

Ответ: 2 дня. Решение. В первый день путешественник собирает всех жителей острова, после чего они разбиваются на группы (может быть некоторые будут пусты): первая – написавшие 0 рыцарей, вторая – написавшие 1 рыцаря, третья – написавшие 2 рыцаря и т.д. С одной стороны все рыцари на собрании в первый день напишут одно и то же число, а лжецы напишут любое другое число. Во второй день из всех групп приглашаем по одному человеку, этим мы гарантируем присутствие ровно одного рыцаря на собрании. Та группа людей, представитель которой во второй день напишет единицу, и будет рыцарской, и количество человек в этой группе и есть точное число рыцарей на острове.

Ясно, что путешественник не сможет узнать количество рыцарей на острове в первый день, не позвав на собрание всех островитян. Но при этом будет невозможно отличить группу из рыцарей от группы лжецов, написавших ровно такое же число, что и их количество в группе.

  1. Таблицу  5 заполнили натуральными числами 1, 2, ..., 25 таким образом, что каждое число встречается в таблице ровно один раз и каждые два последовательных числа находятся в соседних (таких, что имеют общую сторону) клетках. Какое максимальное количество простых чисел могло оказаться в одном столбце или строке? Приведите пример заполнения таблицы, для которого такое наибольшее значение достигается.

Ответ: 4. Решение. оценка делается так: раскрасим клетки доски в шахматном порядке, чтобы всего было 13 черных и 12 белых клеток. Тогда из условия ясно, что в любом заполнении нечетные числа должны стоять в черных клетках, а четные – в белых. В любой строке и столбце есть как минимум две белые клетки, на которых стоят четные числа. Простым среди двух четных чисел может быть только одно (двойка), поэтому в любой строке или столбце не более 4-х простых. Пример расстановки чисел с 4 простыми в среднем столбце:

21

22

23

24

25

20

19

4

5

6

17

18

3

8

7

16

1

2

9

10

15

14

13

12

11



Общая информация

Номер материала: ДБ-124917

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.