Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Практическая работа «Решение задач на вычисление вероятности события»

Практическая работа «Решение задач на вычисление вероятности события»

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs


Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Цели конкурса: повысить интерес учеников к математике, усилить внутреннюю мотивацию, веру в себя и свои силы. Ученики отвечают на задания прямо на сайте конкурса, учителю не нужно распечатывать задания. Для каждого ученика конкурс по математике «Поверь в себя» - это прекрасная возможность проявить себя и раскрыть свой потенциал.

Подробнее о конкурсе - https://urokimatematiki.ru/

  • Математика

Поделитесь материалом с коллегами:




Сыровая Ирина Семеновна

Иркутский авиационный

техникум


Практическая работа

«Решение задач на вычисление вероятности события»

(по учебной дисциплине ЕН.01 Математика)


Формирование компетенций: ОК 2, ОК 6


Литература


  1. Алгебра и начала анализа 10-11классы: учеб. для общеобразоват. учреждений: базовый уровень/[Ш.А. Алимов, Ю.М. Колягин, М.В. Ткачева и др.]-16-е изд., перераб.-М.: Просвещение, 2011.-464с.


  1. Лисичкин В.Т., Соловейчик И.Л. Математика в задачах с решениями: Учебное пособие. 3-е изд., стер. - СПб,: Издательство "Лань", 2011. - 464 с.

Цель работы:

Приобретение базовых знаний в области теории вероятности. Повторение и систематизация знаний по данной теме.


Ход работы:

    1. Познакомиться с теоретическим материалом.

    2. Выполнить краткий конспект в рабочих тетрадях (основные определения, формулы, примеры).

    3. В тетрадях для практических работ выполнить самостоятельную работу.

    4. Сдать преподавателю тетради для практических работ.


            1. Основные понятия

К основным понятиям теории вероятности относятся: испытание, событие, вероятность.

Испытание – реализация комплекса условий, в результате которого непременно произойдет какое-либо событие. Например, бросание монеты – испытание; появление герба или цифры – события.

Случайным событием называется событие, которое при осуществлении испытания может произойти, а может и не произойти. Например, выстрел по цели — это опыт, случайные события в этом опыте – попадание в цель или промах.

Событие называется достоверным, если в результате опыта оно непременно должно произойти, и невозможным, если оно заведомо не произойдет. События называются несовместными, если ни какие два из них не могут появиться вместе. Например, попадание и промах при одном выстреле – это несовместные события.

Каждое событие обладает какой-то степенью возможности. Числовая мера степени объективной возможности события - это вероятность события. Вероятность события А обозначается Р(А).

Пусть из системы n несовместных равновозможных исходов испытания m исходов благоприятствуют событию А. Тогда вероятностью события А называют отношение m числа исходов, благоприятствующих событию А, к числу n всех исходов данного испытания: P(A)=m/n.

Если В – достоверное событие, то Р(В)=1; если С – невозможное событие, то Р(С)=0, если А – случайное событие, то 0<Р(А)<1.


Правила суммы и произведения (комбинаторика)

Правило суммы: Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать объект либо А, либо В можно m+n способами.

Правило произведения: Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А,В) в указанном порядке может быть выбрана mn способами.

При вычислении вероятности часто приходится использовать формулы комбинаторики.

  1. Примеры

    1. Игральную кость подбрасывают один раз. Найти вероятность появления четного числа очков.

Решение. Опыт имеет шесть равновозможных независимых исходов (появление одного, двух, трех, четырех, пяти и шести очков), образующих полную систему. Событию благоприятствуют три исхода (появление двух, четырех и шести очков), поэтому n=6, m=3, Р(А)=3/6=1/2


    1. В партии из 100 деталей имеется 5 бракованных. Найти вероятность того, что взятая наугад деталь окажется бракованной.

Решение. Событие А – взятая деталь оказалась бракованной.

n=100, m=5, Р(А) =hello_html_19095a76.gif = 0,05


    1. В партии из 100 деталей имеется 6 бракованных. Найти вероятность того, что взятые наугад 2 детали окажутся бракованными.

Решение. В этой задаче нас не интересует порядок расположения выбранных деталей, поэтому воспользуемся формулой для подсчета числа сочетаний из 6 элементов по 2.

&fcy;&ocy;&rcy;&mcy;&ucy;&lcy;&acy; &scy;&ocy;&chcy;&iecy;&tcy;&acy;&ncy;&icy;&jcy; http://www.mathelp.spb.ru/book2/tv3.files/image004.gif


т.е. m = 15, n=100, тогда Р(А) =hello_html_m66c4707.gif = 0,15.


  1. Задачи для самостоятельной работы

  1. В коробке 10 конфет, из которых 2 конфеты с белой начинкой, 3 с красной начинкой и 5 с черной начинкой. Наудачу извлечены 3 конфеты. Какова вероятность того, что все 3 конфеты с разной начинкой?

  2. На 6 одинаковых карточках написаны буквы О, В, А, М, К, С. Эти карточки наудачу разложены в ряд. Какова вероятность того, что получится слово МОСКВА?

  3. В классе 17 девочек и 14 мальчиков. Определить вероятность того, что оба вызванных ученика окажутся девочками?

  4. В группе 20 студентов, среди них 14 юношей. Найти вероятность того, что среди наудачу выбранных 6-ти студентов будут 3 девушки и 3 юноши.

  5. « Вороне где-то Бог послал кусочек сыра», брынзы, колбасы, сухарика и шоколада. « На ель Ворона взгромоздясь, позавтракать совсем уж было, собралась, да призадумалась »:

а) если есть кусочки по очереди, то из скольких вариантов придется выбирать;

б) сколько получится «бутербродов» из двух кусочков;

в) если съесть сразу три кусочка, а остальные спрятать, то из скольких вариантов придется выбирать;

г) сколько получится вариантов, если какой-то кусочек все-таки бросить Лисе, а потом ответить на вопрос пункта а)?

3


Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 13.10.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров619
Номер материала ДВ-056684
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх