Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация по математике на тему "Комбинаторика. Комбинаторные конструкции" (10 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация по математике на тему "Комбинаторика. Комбинаторные конструкции" (10 класс)

библиотека
материалов
Несколько стран в качестве символа своего государства решили использовать фл...
* ** *** * ** *** ** *** ** *** * *** * *** * *** *** * *** *** * * * * * *
Тема урока: Комбинаторика. Комбинаторные конструкции Комбинаторика - это разд...
- учебные заведения (составление расписаний) сфера общественного питания (сос...
Перестановка - упорядоченный набор объектов Pn = n·(n-1)·(n-2)···(n-(n-1)) Pn...
Несколько стран в качестве символа своего государства решили использовать фла...
Устный счет Выбрать правильный ответ:
Вычислить:
Задача №2 Сколько существует анаграмм для слова КАТЕР (стр. 67)? Решение: P5...
«10 выпускников пришли в кафе отпраздновать окончание школы, но не могли реши...
Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в з...
1 3 5 7 3 5 7 1 5 7 1 3 7 1 3 5 5 7 3 7 3 5 3 5 7 3 5 3 5 3 7 5 3 5 3 5 7 5...
Решение с помощью перебора вариантов
Размещением из n элементов по k (k
Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в за...
Задача №5 Сколько имеется слов длиной 3 с неповторяющимися буквами в алфавит...
Задача №6 Студенты 1 курса изучают 10 предметов. Сколькими способами можно со...
Задача №7 Имеется 5 цветков разного цвета. Обозначим их буквами a, b, c, d, e...
Если в букет входит красный цветок «a», то можно составить такие букеты:
Если в букет не входит красный цветок «а», а входит желтый цветок «b», то мож...
Наконец, если в букет не входит ни красный цветок «а», ни желтый цветок «b»,...
Сочетанием из n элементов по k называется любое множество, составленное из k...
Имеется 5 цветков разного цвета. Обозначим их буквами a, b, c, d, e. Требуетс...
Задача №8 В магазине «Филателия» продается 8 различных наборов марок, посвяще...
Задача № 9 Из 18-ти студентов группы надо выбрать двух дежурных. Сколькими сп...
Комбинаторные конструкции Перестановки Размещения Сочетания nэлементов nклето...
1 группа Из шести врачей поликлиники двух необходимо отправить на курсы повыш...
Ответы: 1 группа 2 группа 3 группа 4 группа
Домашнее задание: Стр. 64, Занятие 1 (учебник) № 4.37 (стр. 80, задачник) № 4...
Узнали: простейшие комбинаторные конструкции, формулы для нахождения простейш...
Выберите смайлик, который соответствует Вашему настроению в конце урока Спаси...
Использованные ресурсы: Математика: учебник для студ. учреждений сред. проф....
43 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 Несколько стран в качестве символа своего государства решили использовать фл
Описание слайда:

Несколько стран в качестве символа своего государства решили использовать флаг в виде трех горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный. Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

№ слайда 2 * ** *** * ** *** ** *** ** *** * *** * *** * *** *** * *** *** * * * * * *
Описание слайда:

* ** *** * ** *** ** *** ** *** * *** * *** * *** *** * *** *** * * * * * *

№ слайда 3 Тема урока: Комбинаторика. Комбинаторные конструкции Комбинаторика - это разд
Описание слайда:

Тема урока: Комбинаторика. Комбинаторные конструкции Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов.

№ слайда 4 - учебные заведения (составление расписаний) сфера общественного питания (сос
Описание слайда:

- учебные заведения (составление расписаний) сфера общественного питания (составление меню) биология (расшифровка кода ДНК) - химия (анализ возможных связей между химическими элементами) - экономика (анализ вариантов купли-продажи акций) азартные игры (подсчёт частоты выигрышей) доставка почты (рассмотрение вариантов пересылки) - спортивные соревнования (расчёт количества игр между участниками) Области применения комбинаторики:

№ слайда 5 Перестановка - упорядоченный набор объектов Pn = n·(n-1)·(n-2)···(n-(n-1)) Pn
Описание слайда:

Перестановка - упорядоченный набор объектов Pn = n·(n-1)·(n-2)···(n-(n-1)) Pn = n! Читается: «P из n» равно «n факториал» По определению: 0! = 1 и 1! = 1 Перестановкой из n элементов называют каждое расположение этих элементов в определенном порядке

№ слайда 6 Несколько стран в качестве символа своего государства решили использовать фла
Описание слайда:

Несколько стран в качестве символа своего государства решили использовать флаг в виде трех горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный. Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг? P3 = 3! = 3∙2∙1 = 6 Решение: Ответ: 6

№ слайда 7 Устный счет Выбрать правильный ответ:
Описание слайда:

Устный счет Выбрать правильный ответ:

№ слайда 8 Вычислить:
Описание слайда:

Вычислить:

№ слайда 9 Задача №2 Сколько существует анаграмм для слова КАТЕР (стр. 67)? Решение: P5
Описание слайда:

Задача №2 Сколько существует анаграмм для слова КАТЕР (стр. 67)? Решение: P5 = 5!=5∙4∙3∙2∙1=120 Ответ: 120

№ слайда 10 «10 выпускников пришли в кафе отпраздновать окончание школы, но не могли реши
Описание слайда:

«10 выпускников пришли в кафе отпраздновать окончание школы, но не могли решить, как сесть, т.е. в каком порядке. На выручку пришёл официант, который предложил сесть сегодня, как придётся, а на другой день сесть по - другому и так до тех пор, пока не наступит такой день, когда они сядут как в первый раз. Тогда их официант обещал угостить бесплатным обедом. Как вы думаете, долго ли друзьям ждать бесплатного обеда?» Задача №3 Решение: 10! = 3 628 800 Учитывая, что в году 365 дней, то это почти 9942 года. Ответ: около 10 000 лет.

№ слайда 11 Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в з
Описание слайда:

Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в записи числа каждую из них не более одного раза? Задача №4

№ слайда 12 1 3 5 7 3 5 7 1 5 7 1 3 7 1 3 5 5 7 3 7 3 5 3 5 7 3 5 3 5 3 7 5 3 5 3 5 7 5
Описание слайда:

1 3 5 7 3 5 7 1 5 7 1 3 7 1 3 5 5 7 3 7 3 5 3 5 7 3 5 3 5 3 7 5 3 5 3 5 7 5 1 7 Решение с помощью дерева возможных вариантов.

№ слайда 13 Решение с помощью перебора вариантов
Описание слайда:

Решение с помощью перебора вариантов

№ слайда 14 Размещением из n элементов по k (k
Описание слайда:

Размещением из n элементов по k (k<n) называется любое множество, состоящее из k элементов, взятых в определенном порядке из данных n элементов. Читается: «A из n по k»

№ слайда 15 Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в за
Описание слайда:

Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в записи числа каждую из них не более одного раза? Решение: Ответ: 24

№ слайда 16 Задача №5 Сколько имеется слов длиной 3 с неповторяющимися буквами в алфавит
Описание слайда:

Задача №5 Сколько имеется слов длиной 3 с неповторяющимися буквами в алфавите из 6 букв (в.4, стр. 67)? Решение: Ответ: 120

№ слайда 17 Задача №6 Студенты 1 курса изучают 10 предметов. Сколькими способами можно со
Описание слайда:

Задача №6 Студенты 1 курса изучают 10 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета? Решение: Ответ: 5040

№ слайда 18 Задача №7 Имеется 5 цветков разного цвета. Обозначим их буквами a, b, c, d, e
Описание слайда:

Задача №7 Имеется 5 цветков разного цвета. Обозначим их буквами a, b, c, d, e. Требуется составить букет из трех цветков.

№ слайда 19 Если в букет входит красный цветок «a», то можно составить такие букеты:
Описание слайда:

Если в букет входит красный цветок «a», то можно составить такие букеты:

№ слайда 20
Описание слайда:

№ слайда 21
Описание слайда:

№ слайда 22
Описание слайда:

№ слайда 23
Описание слайда:

№ слайда 24
Описание слайда:

№ слайда 25
Описание слайда:

№ слайда 26 Если в букет не входит красный цветок «а», а входит желтый цветок «b», то мож
Описание слайда:

Если в букет не входит красный цветок «а», а входит желтый цветок «b», то можно получить такие букеты:

№ слайда 27
Описание слайда:

№ слайда 28
Описание слайда:

№ слайда 29
Описание слайда:

№ слайда 30 Наконец, если в букет не входит ни красный цветок «а», ни желтый цветок «b»,
Описание слайда:

Наконец, если в букет не входит ни красный цветок «а», ни желтый цветок «b», то можно составить букет:

№ слайда 31
Описание слайда:

№ слайда 32 Сочетанием из n элементов по k называется любое множество, составленное из k
Описание слайда:

Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов Читается: «С из n по k»

№ слайда 33 Имеется 5 цветков разного цвета. Обозначим их буквами a, b, c, d, e. Требуетс
Описание слайда:

Имеется 5 цветков разного цвета. Обозначим их буквами a, b, c, d, e. Требуется составить букет из трех цветков. Решение: Ответ: 10

№ слайда 34 Задача №8 В магазине «Филателия» продается 8 различных наборов марок, посвяще
Описание слайда:

Задача №8 В магазине «Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора? Решение: Ответ: 56

№ слайда 35 Задача № 9 Из 18-ти студентов группы надо выбрать двух дежурных. Сколькими сп
Описание слайда:

Задача № 9 Из 18-ти студентов группы надо выбрать двух дежурных. Сколькими способами можно сделать этот выбор? Решение: Ответ: 153

№ слайда 36 Комбинаторные конструкции Перестановки Размещения Сочетания nэлементов nклето
Описание слайда:

Комбинаторные конструкции Перестановки Размещения Сочетания nэлементов nклеток nэлементов kклеток nэлементов kклеток Порядок имеет значение Порядок имеет значение Порядок не имеет значения

№ слайда 37 1 группа Из шести врачей поликлиники двух необходимо отправить на курсы повыш
Описание слайда:

1 группа Из шести врачей поликлиники двух необходимо отправить на курсы повышения квалификации. Сколькими способами это можно сделать? 2 группа Сколько различных двухзначных чисел можно составить, используя цифры 1, 2, 3, 4 при условии, что ни одна цифра не повторяется? 3 группа В группе 7 студентов успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в олимпиаде по предмету? 4 группа Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется?

№ слайда 38 Ответы: 1 группа 2 группа 3 группа 4 группа
Описание слайда:

Ответы: 1 группа 2 группа 3 группа 4 группа

№ слайда 39 Домашнее задание: Стр. 64, Занятие 1 (учебник) № 4.37 (стр. 80, задачник) № 4
Описание слайда:

Домашнее задание: Стр. 64, Занятие 1 (учебник) № 4.37 (стр. 80, задачник) № 4.44 (стр. 80, задачник) Дополнительно: В группе учатся 12 мальчиков и 10 девочек. Для уборки территории нужно выделить 4 мальчиков и 3 девочек. Сколькими способами это можно сделать?

№ слайда 40 Узнали: простейшие комбинаторные конструкции, формулы для нахождения простейш
Описание слайда:

Узнали: простейшие комбинаторные конструкции, формулы для нахождения простейших комбинаций (перестановок, размещений и сочетаний). Научились: различать простейшие комбинаторные конструкции; вычислять количество перестановок, размещений и сочетаний; решать простейшие комбинаторные задачи. Подведем итоги

№ слайда 41 Выберите смайлик, который соответствует Вашему настроению в конце урока Спаси
Описание слайда:

Выберите смайлик, который соответствует Вашему настроению в конце урока Спасибо за урок! Мне было очень трудно. Я ничего не понял. Мне всё удалось! Мне не все удалось, придется дома подольше посидеть…

№ слайда 42 Использованные ресурсы: Математика: учебник для студ. учреждений сред. проф.
Описание слайда:

Использованные ресурсы: Математика: учебник для студ. учреждений сред. проф. образования / М.И. Башмаков. - М.: Издательский центр «Академия», 2014; Математика. Задачник: учебное пособие для студ. учреждений сред. проф. образования / М.И. Башмаков. - М.: Издательский центр «Академия», 2014; Презентация учителя математики МБОУ СОШ №2 г. Горячий ключ Л.Г. Миносян «Комбинаторика. Комбинаторные задачи»; Алгебра: элементы статистики и теории вероятностей: учеб. пособие для учащихся 7—9 кл. общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк; под ред. С. А. Теляковского.— М.: Просвещение, 2005.

№ слайда 43
Описание слайда:


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 11.03.2016
Раздел Математика
Подраздел Презентации
Просмотров499
Номер материала ДВ-518138
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх