1014984
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5 480 руб.;
- курсы повышения квалификации от 1 400 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до 28 февраля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

Инфоурок / Математика / Презентации / Презентация по математике на тему "Вариационное исчисление"

Презентация по математике на тему "Вариационное исчисление"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Вариационное исчисление
Общие сведения Вариационное исчисление — раздел анализа, в котором изучаются...
Термины и определения Важнейшими понятиями вариационного исчисления являются...
История Ещё в античные времена появились первые вариационные проблемы, относя...
Неформальное обсуждение
Неформальное обсуждение (продолжение)
Неформальное обсуждение (продолжение)
Неформальное обсуждение (продолжение)
Неформальное обсуждение (продолжение)
Неформальное обсуждение (продолжение)
Неформальное обсуждение (продолжение)
Неформальное обсуждение (продолжение)
Уравнение Эйлера — Лагранжа
Уравнение Эйлера — Лагранжа (продолжение)
Литература Алексеев В. М., Тихомиров В. М., Фомин С. В. Оптимальное управлени...
Спасибо за внимание

Описание презентации по отдельным слайдам:

1 слайд Вариационное исчисление
Описание слайда:

Вариационное исчисление

2 слайд Общие сведения Вариационное исчисление — раздел анализа, в котором изучаются
Описание слайда:

Общие сведения Вариационное исчисление — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения. Методы вариационного исчисления широко применяются в различных областях математики. Например, в дифференциальной геометрии с их помощью ищут геодезические линии и минимальные поверхности. В физике вариационный метод — один из мощнейших инструментов получения уравнений движения, как для дискретных, так и для распределённых систем, в том числе и для физических полей. Методы вариационного исчисления применимы и в статике.

3 слайд Термины и определения Важнейшими понятиями вариационного исчисления являются
Описание слайда:

Термины и определения Важнейшими понятиями вариационного исчисления являются следующие: вариация (первая вариация), вариационная производная (первая вариационная производная), кроме первой вариации и первой вариационной производной, рассматриваются и вариации и вариационные производные второго и высших порядков. Никак не связана с вариационным вычислением совпадающая по названию вариация функции в анализе. Термин варьирование (варьировать) — применяется в вариационном исчислении для обозначения нахождения вариации или вариационной производной (это аналог термина дифференцирование для случая бесконечномерного аргумента, являющегося предметом вариационного исчисления). Также нередко для краткости (особенно в приложениях) термин варьирование применяется для обозначения решения вариационной задачи, сводимой к нахождению вариационной производной и приравнивания её нулю. Вариационная задача означает, как правило, нахождение функции (в рамках вариационного исчисления — уравнения на функцию), удовлетворяющей условию стационарности некоторого заданного функционала, то есть такой функции, (бесконечно малые) возмущения которой не вызывают изменения функционала по крайней мере в первом порядке малости. Также вариационной задачей называют тесно связанную с этим задачу нахождения функции (уравнения на функцию), на которой данный функционал достигает локального экстремума (во многом эта задача сводится к первой, иногда практически полностью). Обычно при таком употреблении терминов подразумевается, что задача решается методами вариационного исчисления. Типичными примерами вариационной задачи являются изопериметрические задачи в геометрии и механике; в физике — задача нахождения уравнений поля из заданного вида действия для этого поля.

4 слайд История Ещё в античные времена появились первые вариационные проблемы, относя
Описание слайда:

История Ещё в античные времена появились первые вариационные проблемы, относящиеся к категории изопериметрических задач — например, задача Дидоны. Древнегреческим математикам уже было известно: 1.Из всех фигур с заданным периметром наибольшую площадь имеет круг. 2.Из всех многоугольников с заданным числом сторон и заданным периметром наибольшую площадь имеет правильный многоугольник. 3.Из всех тел с заданной площадью поверхности наибольший объём имеет шар. Аналогичную задачу для шаровых сегментов решил Архимед, а Зенодор во II веке до н. э. написал книгу «Об изопериметрических фигурах» (сохранились обширные цитаты из неё в трудах других авторов). Первый вариационный принцип сформулировал для траекторий отражённых световых лучей Герон Александрийский в работе «Катоптрика» (I век н. э.). В средневековой Европе изопериметрическими задачами занимались И. Сакробоско (XIII век) и Т. Брадвардин (XIV век). После разработки анализа появились новые типы вариационных задач, в основном механического характера. Ньютон в «Математических началах натуральной философии» (1687) решает задачу: найти форму тела вращения, обеспечивающую наименьшее сопротивление при движении в газе или жидкости (при заданных размерах). Важной исторической задачей, давшей толчок к развитию современного варианта вариационного исчисления, стала задача о брахистохроне (1696). Её быстрое решение сразу несколькими математиками показало огромные возможности новых методов. Среди других задач стоит отметить определение формы цепной линии (то есть формы равновесия тяжёлой однородной нити, 1690 год). Общих методов решения вариационных задач в этот период ещё не существовало, каждая задача решалась с помощью остроумных (и не всегда безупречных) геометрических рассуждений. Пьер Ферма сформулировал основной принцип геометрической оптики, в силу которого свет в неоднородной среде выбирает путь, занимающий наименьшее время. В 1746 году Мопертюи обобщил это правило, введя в науку первый принцип наименьшего действия. Решающий вклад в развитие вариационного исчисления внесли Леонард Эйлер и Жозеф Лагранж. Эйлеру принадлежит первое систематическое изложение вариационного исчисления и сам термин (1766 год). Лагранж независимо получил (с 1755 года) многие основополагающие результаты и ввёл понятие вариации. На этом этапе были выведены уравнения Эйлера — Лагранжа. Они представляют собой необходимое условие экстремума, ставшее аналитическим фундаментом вариационных методов. Вскоре, однако, выяснилось, что решения этих уравнений не во всех случаях дают реальный экстремум, и встала задача найти достаточные условия, гарантирующие экстремум. Первое глубокое исследование (второй вариации) предпринял Лежандр, однако Лагранж обнаружил в его работе ошибку. Результаты Лежандра уточнил и дополнил Якоби (1837), затем его ученик Гессе (1857) и позднее Вейерштрасс. Сейчас эти достаточные условия называются уравнениями Якоби.

5 слайд Неформальное обсуждение
Описание слайда:

Неформальное обсуждение

6 слайд Неформальное обсуждение (продолжение)
Описание слайда:

Неформальное обсуждение (продолжение)

7 слайд Неформальное обсуждение (продолжение)
Описание слайда:

Неформальное обсуждение (продолжение)

8 слайд Неформальное обсуждение (продолжение)
Описание слайда:

Неформальное обсуждение (продолжение)

9 слайд Неформальное обсуждение (продолжение)
Описание слайда:

Неформальное обсуждение (продолжение)

10 слайд Неформальное обсуждение (продолжение)
Описание слайда:

Неформальное обсуждение (продолжение)

11 слайд Неформальное обсуждение (продолжение)
Описание слайда:

Неформальное обсуждение (продолжение)

12 слайд Неформальное обсуждение (продолжение)
Описание слайда:

Неформальное обсуждение (продолжение)

13 слайд Уравнение Эйлера — Лагранжа
Описание слайда:

Уравнение Эйлера — Лагранжа

14 слайд Уравнение Эйлера — Лагранжа (продолжение)
Описание слайда:

Уравнение Эйлера — Лагранжа (продолжение)

15 слайд Литература Алексеев В. М., Тихомиров В. М., Фомин С. В. Оптимальное управлени
Описание слайда:

Литература Алексеев В. М., Тихомиров В. М., Фомин С. В. Оптимальное управление. — М.: Наука, 1979 Афанасьев В. Н., Колмановский В.Б., Носов В.Р. Математическая теория конструирования систем управления. — М.: Высшая школа, 2003. — 614 с. — ISBN 5-06-004162-X. Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы и приложения. — М.: Наука, 1979 Зейферт Г., Трельфалль В. Вариационное исчисление в целом 2-е изд., — М.: РХД, 2000 Краснов М. Л., Макаренко Г. И., Киселев А. И. Вариационное исчисление, задачи и упражнения. — М.: Наука, 1973 Петров Ю. П. Из истории вариационного исчисления и теории оптимальных процессов // Историко-математические исследования. — М.: Наука, 1990. — № 32/33. — С. 53-73.. Рыбников К. А. Первые этапы развития вариационного исчисления // Историко-математические исследования. — М.-Л.: ГИТТЛ, 1949. — № 2. — С. 355-498. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Том 6: Электродинамика. Перевод с английского (издание 3). — Эдиториал УРСС. — ISBN 5-354-00704-6. — глава 19: Принцип наименьшего действия. (Очень простое, неформальное и наглядное введение в технику варьирования на примере принципа наименьшего действия; рекомендуется для старших школьников и, быть может, студентов младших курсов). Фоменко А. Т. Вариационные методы в топологии. — М.: Наука, 1982 Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. — М.: Наука, 1969.

16 слайд Спасибо за внимание
Описание слайда:

Спасибо за внимание

Общая информация

Номер материала: ДБ-198400

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.