Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация" Решение задач по теореме Пифагора"

Презентация" Решение задач по теореме Пифагора"

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


СВИДЕТЕЛЬСТВО СРАЗУ ПОСЛЕ ПРОСМОТРА ВЕБИНАРА

Вебинар «Подростковая лень: причины, способы борьбы»

Просмотр и заказ свидетельств доступен только до 22 января! На свидетельстве будет указано 2 академических часа и данные о наличии образовательной лицензии у организатора, что поможет Вам качественно пополнить собственное портфолио для аттестации.

Получить свидетельство за вебинар - https://infourok.ru/webinar/65.html

  • Математика
Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает...
Цели Выяснить: Кто же такой Пифагор. В чем заключается теорема Пифагора. Дока...
Теорему называли «мостом ослов», так как слабые ученики, заучивающие теоремы...
В некоторых списках «Начал» Евклида теорема Пифагора называлась теоремой Нимф...
К теореме Пифагора его ученики составляли стишки, вроде: «Пифагоровы штаны в...
Теорема Пифагора Первоначально теорема устанавливала соотношение между площад...
Доказательства 1.Через подобные треугольники 2. Доказательства методом площад...
Через подобные треугольники                 Следующее доказательство алгебраи...
2.1.Через равнодополняемость 	1.Расположим четыре равных прямоугольных треуго...
2.2. евклида     			 	         			Идея доказательства Евклида состоит в следу...
2.3. леонардо да винчи Главные элементы доказательства — симметрия и движение...
Многие при имени Пифагор вспоминают его теорему. Но неужели мы можем встреча...
Окно: в зданиях готического и ромaнского стиля верхние части окон расчленяютс...
В настоящее время на рынке мобильной связи идет большая конкуренция среди опе...
С глубокой древности математики находят все новые и новые доказательства теор...
Источники информации: www.math.com www.yandex.ru www.coogle.ru 6) И. Глейзер....
Авторы Учитель математики МБОУ СОШ № 6 Биштова Лариса Лелевна
1 из 20

Описание презентации по отдельным слайдам:

№ слайда 1 Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает
Описание слайда:

Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4.Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея).Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод: "Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку." Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э. В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол"…… История теоремы

№ слайда 2 Цели Выяснить: Кто же такой Пифагор. В чем заключается теорема Пифагора. Дока
Описание слайда:

Цели Выяснить: Кто же такой Пифагор. В чем заключается теорема Пифагора. Доказать теорему. Найти ей практическое применение.

№ слайда 3 Теорему называли «мостом ослов», так как слабые ученики, заучивающие теоремы
Описание слайда:

Теорему называли «мостом ослов», так как слабые ученики, заучивающие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Или «бегство убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. "Dons asinorum" "elefuga"

№ слайда 4 В некоторых списках «Начал» Евклида теорема Пифагора называлась теоремой Нимф
Описание слайда:

В некоторых списках «Начал» Евклида теорема Пифагора называлась теоремой Нимфы, «теорема – бабочка», по-видимому из-за сходства чертежа с бабочкой, поскольку словом «нимфа» греки называли бабочек. Нимфами греки называли еще и невест, а также некоторых богинь. При переводе с греческого арабский переводчик, вероятно, не обратил внимания на чертеж и перевел слово «нимфа» не как «бабочка», а как «невеста». Так и появилось ласковое название знаменитой теоремы – «Теорема Невесты». «Нимфа» - бабочка, невеста

№ слайда 5 К теореме Пифагора его ученики составляли стишки, вроде: «Пифагоровы штаны в
Описание слайда:

К теореме Пифагора его ученики составляли стишки, вроде: «Пифагоровы штаны во все стороны равны», А также рисовали такие карикатуры: Шарж из учебника XVI века.

№ слайда 6 Теорема Пифагора Первоначально теорема устанавливала соотношение между площад
Описание слайда:

Теорема Пифагора Первоначально теорема устанавливала соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах». Алгебраическая формулировка: «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов». То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b: a2+b2=c2. Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника. Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что a2 + b2 = c2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.

№ слайда 7 Доказательства 1.Через подобные треугольники 2. Доказательства методом площад
Описание слайда:

Доказательства 1.Через подобные треугольники 2. Доказательства методом площадей 2.1. Доказательство через равнодополняемость 2.2. Доказательство Евклида 2.3. Доказательство Леонардо да Винчи

№ слайда 8 Через подобные треугольники                 Следующее доказательство алгебраи
Описание слайда:

Через подобные треугольники                 Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры. Пусть АВС есть прямоугольный треугольник с прямым углом С. Проведём высоту из С и обозначим её основание через Н. Треугольник АСН подобен треугольнику АВС по двум углам. Аналогично, треугольник СВН подобен АВС. Ведя обозначения Получаем Что эквивалентно или

№ слайда 9 2.1.Через равнодополняемость 	1.Расположим четыре равных прямоугольных треуго
Описание слайда:

2.1.Через равнодополняемость 1.Расположим четыре равных прямоугольных треугольника так, как показано на рисунке. 2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°. 3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата. Что и требовалось доказать.

№ слайда 10 2.2. евклида     			 	         			Идея доказательства Евклида состоит в следу
Описание слайда:

2.2. евклида               Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны. Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямоугольного угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника — BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах. Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK. Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, — это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно — AB=AK,AD=AC — равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата — 90°). Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично. Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах.

№ слайда 11 2.3. леонардо да винчи Главные элементы доказательства — симметрия и движение
Описание слайда:

2.3. леонардо да винчи Главные элементы доказательства — симметрия и движение. Рассмотрим чертёж, как видно из симметрии, отрезок CI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур CAJI и GDAB. Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

№ слайда 12 Многие при имени Пифагор вспоминают его теорему. Но неужели мы можем встреча
Описание слайда:

Многие при имени Пифагор вспоминают его теорему. Но неужели мы можем встречать эту теорему только в геометрии? Нет, конечно, нет! Теорема Пифагора встречается в разных областях наук. Например: в физике, астрономии, архитектуре и в других. Но так же Пифагор и его теорема воспеты в литературе. В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой. Рассмотрим несколько элементарных примеров таких задач, в которых при решении применяется теорема Пифагора. применение

№ слайда 13 Окно: в зданиях готического и ромaнского стиля верхние части окон расчленяютс
Описание слайда:

Окно: в зданиях готического и ромaнского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его очень прост: Из рисунка легко найти центры шести дуг окружностей, радиусы которых равны ширине окна (b) для наружных дуг и половине ширины (b/2), для внутренних дуг. Остается еще полная окружность, касающаяся четырех дуг. Так как она заключена между двумя концентрическими окружностями, то ее диаметр равен расстоянию между этими окружностями, т. е. b/2 и, следовательно, радиус равен b/4. А тогда становится ясным и положение ее центра. В рассмотренном примере радиусы находились без всяких затруднений. В других аналогичных примерах могут потребоватися вычисления; покажем, как применяется в таких задачах теорема Пифагора. В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем: (b/4+p)=( b/4)+( b/4-p) или b/16+ b*p/2+p=b/16+b/4-b*p+p, откуда b*p/2=b/4-b*p. Разделив на b и приводя подобные члены, получим: (3/2)*p=b/4, p=b/6. Крыша: в доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м, и AB=BF. Решение: Треугольник ADC - равнобедренный AB=BC=4 м, BF=4 мЕсли предположить, что FD=1,5 м, тогда: А) Из треугольника DBC: DB=2,5м Б) Из треугольника ABF: Молниеотвод: защищает от молнии все предметы, расстояние до которых от его основания не превышает его удвоенной высоты. Определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2 ≥ a2+b2, значит h ≥ (a2+b2)½. Ответ: h ≥ (a2+b2)½ строительство

№ слайда 14 В настоящее время на рынке мобильной связи идет большая конкуренция среди опе
Описание слайда:

В настоящее время на рынке мобильной связи идет большая конкуренция среди операторов. Чем надежнее связь, чем больше зона покрытия, тем больше потребителей у оператора. При строительстве вышки (антенны) часто приходится решать задачу: какую наибольшую высоту должна иметь антенна, чтобы передачу можно было принимать в определенном радиусе (например радиусе R=200 км?, если известно. что радиус Земли равен 6380 км.) Решение: Пусть AB= x, BC=R=200 км, OC= r =6380 км. OB = OA + AB OB = r + x Используя теорему Пифагора, получим ответ. Ответ: 2,3 км. Мобильная связь

№ слайда 15 С глубокой древности математики находят все новые и новые доказательства теор
Описание слайда:

С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен (по другим источникам, более пятисот), но стремление к преумножению их числа сохранилось. Поэтому теорема Пифагора занесена в «Книгу рекордов Гиннеса». Самостоятельное «открытие» доказательства теоремы Пифагора будет полезно и современным школьникам.

№ слайда 16 Источники информации: www.math.com www.yandex.ru www.coogle.ru 6) И. Глейзер.
Описание слайда:

Источники информации: www.math.com www.yandex.ru www.coogle.ru 6) И. Глейзер. История математики в школе. 4) А.Д.Александров и др. Геометрия 7-9 5) Атанасян и др. Геометрия 7-9 7) В.Н.Руденко, Г. А. Бахурин Геометрия 7-9 8) В.Д.Чистяков. Старинные задачи по элементарной математике

№ слайда 17 Авторы Учитель математики МБОУ СОШ № 6 Биштова Лариса Лелевна
Описание слайда:

Авторы Учитель математики МБОУ СОШ № 6 Биштова Лариса Лелевна

№ слайда 18
Описание слайда:

№ слайда 19
Описание слайда:

№ слайда 20
Описание слайда:

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 07.07.2016
Раздел Математика
Подраздел Презентации
Просмотров73
Номер материала ДБ-139791
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх