1205410
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаРабочие программыРабочая программа по геометрии - 8 класс

Рабочая программа по геометрии - 8 класс

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Муниципальное казенное общеобразовательное учреждение «Кшенская основная общеобразовательная школа»

Советского района Курской области






Рассмотрено Принято Утверждена

на заседании МС на педсовете приказом №____

протокол №____ протокол №___ от«____»________ 2014г.

от «____»________ 2014г. от«____»________ 2014г.












Рабочая программа

по учебному предмету

геометрия 8 класс








Составила учитель математики

МКОУ «Кшенская основная общеобразовательная школа»

Кирсанова Ольга Александровна







2014-2015 учебный год


Пояснительная записка


Рабочая программа по геометрии 8 класс  составлена на основании федерального компонента государственного стандарта основного общего образования, а также программы по геометрии к учебнику для 7-9 классов общеобразовательных школ авторов Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцева, Э.Г. Позднякова и И.И. Юдиной.

Рабочая программа составлена с учетом принципа преемственности изучения геометрии в более ранних классах, в том числе: 7 класс – 68 часов.

Учитывая, что с основными геометрическими понятиями обучающиеся уже познакомились в предыдущих классах, то большую часть времени в рамках изучения каждой темы предполагается использовать на увеличение числа решаемых практических задач, проведению исследовательского практикума.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Программа направлена на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

Программой отводится на изучение геометрии по 2 часа в1 полугодие и 3 часа во 2 полугодии, что составляет 85 часов в учебный год. Из них контрольных работ 6 часов, которые распределены по разделам следующим образом: «Четырехугольники» 1 час, «Площадь» 1 час, «Подобие треугольников» 2 часа, «Окружность» 1 час и 1 час отведен на итоговую контрольную работу.

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.


Содержание обучения

  1. Четырехугольники

Основная цель – изучить наиболее важные виды четырехугольников – параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Знать/понимать:

- Определения: многоугольника, параллелограмма, трапеции, прямоугольника, ромба, квадрата;

- формулу суммы углов выпуклого многоугольника;

- свойства этих четырехугольников;

- признаки параллелограмма;

- виды симметрии.

Уметь:

- распознавать на чертеже многоугольники и выпуклые многоугольники; параллелограммы и трапеции;

- применять формулу суммы углов выпуклого многоугольника;

- применять свойства и признаки параллелограммов при решении задач;

- делить отрезок на n равных частей;

- строить симметричные точки и распознавать фигуры, обладающие осевой и центральной симметрией;

- выполнять чертеж по условию задачи.

  1. Площадь

Основная цель – расширить и углубить полученные в 5-6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии – теорему Пифагора.

Знать/понимать:

- представление о способе измерения площади, свойства площадей;

- формулы площадей: прямоугольника, параллелограмма, треугольника, трапеции;

- формулировку теоремы Пифагора и обратной ей.

Уметь:

- находить площади прямоугольника, параллелограмма, треугольника, трапеции;

- применять формулы при решении задач;

- находить стороны треугольника, используя теорему Пифагора;

- определять вид треугольника, используя теорему, обратную теореме Пифагора.

- выполнять чертеж по условию задачи.

  1. Подобные треугольники

Основная цель – ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Знать/понимать:

- определение подобных треугольников;

- формулировки признаков подобия треугольников;

- формулировку теоремы об отношении площадей подобных треугольников;

- формулировку теоремы о средней линии треугольника;

- свойство медиан треугольника;

-понятие среднего пропорционального,

- свойство высоты прямоугольного треугольника, проведенной из вершины прямого угла;

- определение синуса, косинуса, тангенса острого угла прямоугольного треугольника

- значения синуса, косинуса, тангенса углов 30º, 45º, 60º, 90º.

Уметь:

- находить элементы треугольников, используя определение подобных треугольников;

- находить отношение площадей подобных треугольников;

- применять признаки подобия при решении задач;

- применять метод подобия при решении задач на построение;

- находить значение одной из тригонометрических функций по значению другой;

- решать прямоугольные треугольники.

  1. Окружность

Основная цель – расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

Знать/понимать:

- случаи взаимного расположения прямой и окружности;

- понятие касательной, точек касания, свойство касательной;

- определение вписанного и центрального углов;

- определение серединного перпендикуляра;

- формулировку теоремы об отрезках пересекающихся хорд;

- четыре замечательные точки треугольника;

- определение вписанной и описанной окружностей.

Уметь:

- определять и изображать взаимное расположение прямой и окружности;

- окружности, вписанные в многоугольник и описанные около него;

- распознавать и изображать центральные и вписанные углы;

- находить величину центрального и вписанного углов;

- применять свойства вписанного и описанного четырехугольника при решении задач;

- выполнять чертеж по условию задачи;

- решать простейшие задачи, опираясь на изученные свойства.

  1. Повторение. Решение задач.


Учебный план


Название темы

Кол-во часов по рабочей программе

Кол-во контрольных работ

1

Четырехугольники

20

1

2

Площадь

15

1

3

Подобные треугольники

21

2

4

Окружность

21

1

5

Повторение. Решение задач

8

1

ИТОГО

85

6


Требования к уровню подготовки учащихся.


В результате изучения курса геометрии 8-го класса учащиеся должны уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве.








Литература:


  1. Геометрия 7-9 класс / Л. С. Атанасян. М: Просвещение, 2010 год

  2. Программа общеобразовательных учреждений. Геометрия 7-9 классы: М: : Просвещение, 2009 год

  3. Н. Ф. Гаврилова Поурочные разработки по геометрии 8 класс, Москва, «ВАКО», 2007 год

  4. А. П. Ершова, В. В. Голобородько, А. С. Ершова «Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса». Разноуровневые дидактические материалы. М: Илекса, 2002 год.

  5. Б. Г. Зив, В. М. Мейлер «Дидактические материалы по геометрии», Москва, «Просвещение», 1998 год

  6. Контрольно-измерительные материалы. Геометрия. 8 класс / Сост. Н.Ф. Гаврилова. – 2-е изд., перераб. – М.: ВАКО, 2013. – 96 с.

  7. Поурочные разработки по геометрии: 8 класс, - 2-е изд., перераб. и доп. – М.: ВАКО, 2006. – 368 с.


Календарно-тематическое планирование


урока

Тема урока

Кол-во

часов

Элементы содержания образования

Требования к уровню содержания образования

Дата


план

факт

Глава 5. Четырехугольники – 20 часов

§1. Многоугольники – 2 ч.


2








Многоугольник, периметр многоугольника, выпуклый многоугольник, четырёхугольник Сумма углов выпуклого многоугольника

Знать понятия: многоугольник, периметр многоугольника, выпуклый многоугольник, четырёхугольник

Уметь назвать элементы многоугольника, вывести формулу суммы углов выпуклого многоугольника, находить углы многоугольников, их периметры.









1

Многоугольник. Выпуклый многоугольник Четырехугольник. П.39-41

2

Многоугольник. Выпуклый многоугольник Четырехугольник.п.39-41



§2. Параллелограмм и трапеция – 9 ч.



3

Параллелограмм

Знать определение параллелограмма



3

Параллелограмм.п.42

4

Параллелограмм.п.42



5

Параллелограмм.п.42



6

Признаки параллелограмма.п.43

4

Свойства и признаки параллелограмма

Знать формулировки свойств и признаков параллелограмма

уметь их

доказывать и применять при решении

задач



7

Признаки параллелограмма.п.43



8

Признаки параллелограмма.п.43



9

Решение задач



10

Трапеция.п.44

2

Трапеция, равнобедренная трапеция, свойства равнобедренной трапеции, теорема Фалеса

Знать определение трапеции, виды трапеций, формулировки свойств равнобедренной трапеции, теорему Фалеса

уметь их

доказывать и применять при решении

задач



11

Трапеция.п.44



§3. Прямоугольник, ромб,

квадрат -9 ч.




2

Прямоугольник, свойства и признаки прямоугольника

Знать определение прямоугольника, формулировки его свойств и признаков.

Уметь доказывать изученные теоремы и применять их при решении задач



12

Прямоугольник.п.45

13

Прямоугольник.п.45



14

Ромб и квадрат.п.46

3

Ромб, квадрат, свойства и признаки ромба и квадрата

Знать определение ромба и квадрата, формулировки их свойств и признаков

Уметь доказывать изученные теоремы и применять их при решении задач



15

Ромб и квадрат.п.46



16

Ромб и квадрат.п.46



17

Осевая и центральная симметрия.

1

Осевая симметрия,

центральная симметрия

Знать определения симметричных точек и фигур относительно прямой и точки.

Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.



18

Решение задач

2

параллелограмм, трапеция, прямоугольник, ромб, квадрат, осевая и центральная симметрии

-уметь решать задачи, опираясь на изученные свойства



2 четверть


19

Решение задач

20

Контрольная работа № 1 по теме «Четырехугольники»

1


Уметь применять все изученные формулы и теоремы при решении задач



Глава 6. Площадь – 15 часов

§1. Площадь многоугольника – 2 ч.


1

Площадь многоугольника


Знать основные свойства площадей



21

Понятие площади многоугольника. Площадь квадрата.п.48-49

22

Площадь прямоугольника.п.50

1

Площадь прямоугольника

Знать формулу для вычисления площади прямоугольника

Уметь вывести формулу для вычисления площади прямоугольника и использовать ее при решении задач



§2. Площади параллелограмма, треугольника и трапеции – 7 ч.




2

Площадь параллелограмма

Знать формулы для вычисления площади параллелограмма Уметь их доказывать и применять все изученные формулы при решении задач



23

Площадь параллелограмма.п.51

24

Площадь параллелограмма.п.51



25

Площадь треугольника.п.52

3

Площадь треугольника. Теорема об отношении площадей треугольников, имеющих по равному углу

Знать формулы для вычисления площади треугольника, теорему об отношении площадей треугольников, имеющих по равному углу

Уметь их доказывать и применять все изученные формулы при решении задач



26

Площадь треугольника.п.52



27

Площадь треугольника.п.52



28

Площадь трапеции.п.53

2

Площадь трапеции

Знать формулу для вычисления площади трапеции

Уметь её доказывать и применять при решении задач





29

Площадь трапеции.п.53



§3. Теорема Пифагора – 6 ч.



3

Теорема Пифагора. Пифагоровы тройки

Знать теорему Пифагора, область применения, пифагоровой тройки.

Уметь доказывать теоремы и применять их при решении задач (находить неизвестную величину в прямоугольном треугольнике)



30

Теорема Пифагора.п.54

31

Теорема Пифагора.п.54



32

Теорема Пифагора.п.54



33

Теорема, обратная теореме Пифагора.п.55

1


Знать теорему. обратную теореме Пифагора.

Уметь доказывать теоремы и применять их при решении задач (находить неизвестную величину в прямоугольном треугольнике)

3 четверть


34

Решение задач

1


уметь решать задачи, опираясь на изученные свойства



35

Контрольная работа № 2 по теме «Площадь»

1


Уметь применять все изученные формулы и теоремы при решении задач







Глава 7. Подобные треугольники – 21 час

§1. Определение подобных треугольников – 2 ч.




1

Пропорциональные отрезки

Подобные треугольники

Знать определения пропорциональных отрезков и подобных треугольников

Уметь определять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач



36

Пропорциональные отрезки. Определение подобных треугольников.п.56-57

37

Отношение площадей подобных треугольников.п.58

1

Теорема об отношении площадей подобных треугольников Свойство биссектрисы треугольника

Знать теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника

Уметь находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач



§2. Признаки подобия треугольников- 7 ч.




2

Признаки подобия треугольников

Знать признаки подобия треугольников

Уметь доказывать признаки подобия и применять их при решении задач



38

Первый признак подобия треугольников.п.59

39

Первый признак подобия треугольников.п.59



40

Второй признак подобия треугольников.п.60

2

Признаки подобия треугольников

Знать второй и третий признаки подобия треугольников

Уметь доказывать признаки подобия и применять их при решении задач



41

Второй признак подобия треугольников.п.60



42

Третий признак подобия треугольников.п.61

2




43

Третий признак подобия треугольников.п.61

44

Контрольная работа № 3 по теме «Признаки подобия треугольников»

1


Уметь применять все изученные формулы и теоремы при решении задач



§3. Применение подобия к доказательству теорем и решению задач – 6 ч.




2

Средняя линия треугольника Теорема о средней линии треугольника

Знать теорему о средней линии треугольника

Уметь доказывать теорему и применять при решении задач



45

Средняя линия треугольника.п.62

46

Средняя линия треугольника.п.62



47

Пропорциональные отрезки в прямоугольном треугольнике.п.63

2

Пропорциональные отрезки в прямоугольном треугольнике Теоремы о точке пересечения медиан треугольника

Знать теоремы о точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике

Уметь доказывать эти теоремы и применять при решении задач



48

Пропорциональные отрезки в прямоугольном треугольнике.п.63



49

Практические приложения подобия треугольников.п.64

1

Практические приложения подобия треугольников Подобие

произвольных фигур

Уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение





50

О подобии произвольных фигур.п.65

1

§4. Соотношения между сторонами и углами прямоугольного треугольника – 6 ч.





2

Синус, косинус и тангенс острого угла прямоугольного треугольника

Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника

Уметь решать задачи на нахождение синуса, косинуса и тангенса острого угла прямоугольного треугольника



51

Синус, косинус и тангенс острого угла прямоугольного треугольника.п.66

52

Синус, косинус и тангенс острого угла прямоугольного треугольника.п.66



53

Значения синуса, косинуса и тангенса для углов 300, 450 и 600.п.67

2

Значения синуса, косинуса, тангенса углов 30°, 45° и 60, метрические соотношения

Знать значения синуса, косинуса и тангенса для углов 30, 45 и 60, метрические соотношения

Уметь доказывать основное тригонометрическое тождество, решать задачи









54

Значения синуса, косинуса и тангенса для углов 300, 450 и 600.п.67



55

Решение задач

1



56

Контрольная работа № 4 по теме «Подобные треугольники»

1


Уметь применять все изученные формулы и теоремы при решении задач



Глава 8. Окружность – 21 час.

§1. Касательная к окружности – 4 ч.



1

Взаимное расположение прямой и окружности

Знать возможные случаи взаимного расположения прямой и окружности

Уметь их применять при решении задач



57

Взаимное расположение прямой и окружности.п.68

58

Касательная к окружности.п.69

3

Касательная, свойство и признак касательной

Знать определение касательной, свойство и признак касательной

Уметь их доказывать и применять при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.



59

Касательная к окружности.п.69



60

Касательная к окружности.п.69



§2. Центральные и вписанные углы – 5 ч.




2

дуга, полуокружность, градусная мера дуги окружности, центральный угол

Знать , какой угол называется центральным и какой вписанным, как определяется градусная мера дуги

окружности

Уметь применять при решении задач



61

Градусная мера дуги окружности.п.70

62

Градусная мера дуги окружности.п.70



63

Теорема о вписанном угле.п.71

3

вписанный угол, теорема о вписанном угле

Знать теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.

Уметь доказывать эти теоремы и применять при решении задач

4 четверть



64

Теорема о вписанном угле.п.71



65

Теорема о вписанном угле.п.71



§3. Четыре замечательные точки треугольника – 3 ч.




2

свойства биссектрисы угла и серединного перпендикуляра,

Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия

Уметь доказывать эти теоремы и применять их при решении задач, выполнять построение замечательных точек треугольника.



66

Свойство биссектрисы угла и серединного перпендикуляра к отрезку.п.72 

67

Свойство биссектрисы угла и серединного перпендикуляра к отрезку.п.72 

68

Теорема о пересечении высот треугольника.п.73

1

теорема о пересечении высот треугольника, замечательные точки треугольника

Знать теорему о пересечении высот треугольника

Уметь доказывать теорему и применять при решении задач, выполнять построение замечательных точек треугольника.



§4. Вписанная и описанная окружности – 9 ч.




3

вписанная окружность, описанный многоугольник, теорема о вписанной окружности

Знать, какая окружность называется вписанной в многоугольник, теорему об окружности, вписанной в треугольник, свойства описанного четырехугольника

Уметь доказывать теорему и применять при решении задач



69

Вписанная окружность.п.74

70

Вписанная окружность.п.74



71

Вписанная окружность.п.74



72

Описанная окружность.п.75

3

описанная окружность, вписанный многоугольник, теорема об описанной окружности, теорема о сумме противоположных углов вписанного многоугольника

Знать, какая окружность называется описанной около многоугольника, теорему об окружности, описанной около треугольника, свойства вписанного четырехугольника.

Уметь доказывать теорему и применять при решении задач



73

Описанная окружность.п.75



74

Описанная окружность.п.75



75

Решение задач

2

касательная к окружности, центральный угол, вписанный угол, замечательные точки треугольника, вписанная и описанная окружность

-уметь определять градусную меру центрального и вписанного угла;

-уметь решать задачи с использованием замечательных точек треугольника;

-знать, чему равна сумма противоположных углов вписанного многоугольника



76

Решение задач



77

Контрольная работа № 5 по теме «Окружность»

1


Уметь применять все изученные формулы и теоремы при решении задач



Повторение. Решение задач -8 часов

78

Решение задач

6

четырехугольники, площадь многоугольника, подобные треугольники, окружность

-уметь находить площадь многоугольника по формулам;

-знать свойства вписанной и описанной окружности



79

Решение задач



80

Решение задач



81

Решение задач



82

Решение задач



83

Решение задач



84

Итоговая контрольная работа №6.

1



85

Итоговое занятие

1





Краткое описание документа:

Рабочая программа по геометрии - 8 класс, автор учебника Атанасян. 2 часа в неделю - 1 полугодие, 3 часа в неделю - 2 полугодие.

Общая информация

Номер материала: 247933

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.