350171
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыУрок математики на тему "Бесконечные периодические дроби" (6 класс)

Урок математики на тему "Бесконечные периодические дроби" (6 класс)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Бесконечные периодические дроби

(урок 1)

Цели урока:

образовательные: знакомство с бесконечными периодическими дробями, введение понятия периода, запись обыкновенной дроби в виде периодической и наоборот;

развивающие: развитие грамотной математической речи, логического мышления, умения анализировать и делать выводы;

воспитательные: воспитание информационной культуры, поддержание интереса к математике.

Оборудование:

мел, доска, мультимедийная доска, раздаточные материалы, компьютер, проектор.

Тип урока: урок изучения нового материала.

План урока:

  1. Организационный момент.

  2. Актуализация опорных знаний и умений.

  3. Устная работа.

  4. Проверка домашнего задания.

  5. Изучение нового материала.

  6. Физкультминутка.

  7. Первичное закрепление знаний, формирование умений.

  8. Домашнее задание.

  9. Самостоятельная работа с взаимопроверкой.

  10. Задачи повышенной трудности.

  11. Рефлексия.

Ход урока:

  1. Организационный момент

Здравствуйте, ребята. Садитесь, пожалуйста. Начнем урок словами выдающегося математика, основоположника кибернетики, Норберта Винера: «Математика – наука молодых. Иначе и быть не может. Занятия математикой – это такая гимнастика ума, для которой нужны вся гибкость и вся выносливость молодости». За вами будущее, и сегодня мы вместе сделаем еще один шаг ему навстречу.

  1. Актуализация опорных знаний и умений

Но будущего не бывает без прошлого. Вспомним, какую тему мы начали изучать на предыдущих уроках? (разложение положительной обыкновенной дроби в конечную десятичную дробь). Действительно. А любую ли обыкновенную дробь можно превратить в десятичную? (нет). Какие условия должны быть выполнены для того, чтобы это стало возможным? (знаменатель несократимой дроби не должен иметь других простых делителей, кроме 2 и 5). Верно. Какие два способа разложения вам известны? (домножить знаменатель до степени 10 и разделить уголком). Какой способ кажется вам более удобным?

  1. Устная работа

Проверим на практике, насколько вы ориентируетесь в этом материале. На слайдах изображены обыкновенные дроби. Ваша задача определить, какие из них можно разложить в конечную десятичную дробь, а какие – нет, и обосновать свой ответ.

Дроби: .

  1. Проверка домашнего задания

Откройте тетради, проверим, как вы выполнили домашнее задание.

Возьмите простые карандаши и приготовьтесь сверять ответы. Не забывайте ставить себе плюсик за каждый верно выполненный пункт задания. На слайдах - правильные ответы, вам остается только сверить их с полученными дома.

Давайте подсчитаем, что у вас получилось.

Кто выполнил домашнее задание на 4 и 5?

На этом с прошлым покончено, и мы начинаем двигаться навстречу будущему. Запишем в тетрадях сегодняшнее число (сегодня тринадцатое апреля), классная работа.

  1. Изучение нового материала

Мы уже выяснили, что прошлые уроки были посвящены конечным десятичным дробям. Как вы считаете, зачем было постоянно упоминать слово «конечные»? Может быть, достаточно было бы сказать просто «десятичные дроби»? (логично услышать ответ о том, что бывают дроби еще и бесконечные). Абсолютно правильно. Именно о таких дробях мы сегодня и поговорим. Оказывается, что бесконечные дроби бывают разные. Давайте сравним 2, 1456738… и 1, 23232323… Чем эти дроби отличаются? Какие закономерности можно увидеть? (во второй дроби цифры дробной части повторяются). Именно. Такое повторение называют периодом, а дроби, в которых можно его заметить, соответственно, периодическими. Именно с такими числами мы сегодня и будем работать. Итак, может кто-нибудь сформулировать тему урока? (бесконечные периодические десятичные дроби). Запишем тему урока в тетради.

Сегодня мы с вами узнаем, как кратко записать период, как правильно прочесть периодическую дробь, как преобразовать периодическую дробь в обыкновенную.

Давайте внимательно рассмотрим следующую схему. Как уже сказано выше, бесконечные дроби делятся на периодические и непериодические.

Как вы считаете, удобна ли такая форма записи: 1, 23232323… ? (нет) Поэтому придумали сокращение. Если одни и те же цифры повторяются бесконечное количество раз, то почему бы не записать этот набор цифр с каким-то маркером, который бы показывал, что дробь периодическая? Таким маркером стали обычные скобки. Давайте посмотрим: 1, 23232323… = 1, (23). Читается это как 1 целая и 23 в периоде. Период может быть выражен одной цифрой, двумя, тремя и т.д. Запишите, пожалуйста, эту схему в тетради.

Откуда вообще берутся такие дроби? Как их получить? Очень легко. Из обыкновенных дробей, в знаменателе которых имеются простые делители, отличные от 2 и 5.

Рассмотрим такие дроби: . Запишите примеры к себе в тетрадь.

Когда мы начинали изучать десятичные дроби, мы говорили, что любое целое число можно представить в виде десятичной дроби. Как это сделать? (приписать 0 после запятой). А сколько нулей можно приписать? (сколько угодно). Тогда следующий вопрос: можно ли представить целое число в виде периодической дроби? (да) С каким периодом? (0). Распространяется ли это на конечные десятичные дроби? (да). Еще раз убедимся в этом, взглянув на следующий слайд. Запишите это в тетради.

На этом с теорией временно покончим. Предлагаю немного отдохнуть.

  1. Физкультминутка

  2. Первичное закрепление знаний, формирование умений

Перейдем к работе с вашими учебниками. Откройте их на ст.193 и обратите внимание на следующие номера: № 968-970 (устно). Ваша задача: прочесть задание и найти ответ прямо в тексте этого либо предыдущего пункта.

968

В каком случае несократимая обыкновенная дробь не разлагается в конечную десятичную дробь? (если знаменатель обыкновенной дроби имеет другие простые делители, кроме 2 и 5).

969

Каким способом любую обыкновенную дробь можно разложить в десятичную? (делением столбиком).

970

Какие десятичные дроби можно получить при делении уголком числителя обыкновенной дроби на её знаменатель? (конечные, бесконечные, бесконечные периодические).

Теперь посмотрите на слайд и прочтите дроби: 0,(2); 78, (972); 1,(03); 3,6(23); 61, (32).

Отлично! Переходим к письменной работе. Обратимся опять к учебнику. Начнем с №973.

Письменно на доске и в тетрадях №973 (в-д), 974 (а, г) , 976 (а).

973(в-д)

Запишите число в виде периодической дроби, назовите её период

в) г) 12 = 12, (0) д) .

974(а, г)

Разложите обыкновенную дробь в периодическую делением числителя на знаменатель уголком

а) г)

976 (а)

Разложите обыкновенную дробь в десятичную и назовите её период.

а) =0,(12)

  1. Домашнее задание

Вашим домашним заданием будет доделать номера, которые мы начали в классе. Итак, записываем: п. 5.2, №974(б, в), 976 (в, г).

  1. Самостоятельная работа с взаимопроверкой (тестирование)

Закрываем тетради и учебники, берем лист, который всё это время лежал на ваших столах, подписываем сверху – фамилия, имя, класс. Приступаем к работе.

  1. Несократимая обыкновенная дробь не разлагается в конечную десятичную дробь, если

а) знаменатель обыкновенной дроби является степенью числа 2

б) знаменатель обыкновенной дроби является степенью числа 5

в) знаменатель обыкновенной дроби имеет простые делители, отличные от 2 и 5.

  1. Обыкновенную дробь можно представить в виде десятичной следующим способом:

а) разделить уголком числитель обыкновенной дроби на знаменатель

б) представить знаменатель обыкновенной дроби в виде степени числа 10

в) оба способа

  1. Выберите дроби, которые невозможно разложить в конечную десятичную дробь

а)

б)

в) верны оба варианта

  1. При разложении в десятичную дробь результат будет следующим:

а) 0,6

б) 0,(2)

в) 0,(3)

  1. При разложении в десятичную дробь результат будет

а) конечной десятичной дробью

б) периодической дробью

в) свой вариант

Теперь поменяйтесь тетрадями с соседом по парте, возьмите в руки простые карандаши и проверьте друг друга. 1 правильный ответ равен 1 баллу, правильные ответы можете видеть на слайде.

Поднимите руки, у кого 5? 4? Молодцы! В конце урока не забудьте подать дневники на оценку.

  1. Задачи повышенной трудности

Обратите внимание на примеры, изображенные на доске. Узнаете их? Это те дроби, с которыми сегодня мы уже сталкивались. Посмотрите на них внимательно. Видите какую-то закономерность?

Но как понять, почему получается именно так? Откуда берутся знаменатели 9 и 99? Сейчас вы увидите, как превратить периодическую дробь в обыкновенную, и получите ответ на вопрос.

Давайте рассмотрим дробь 0,(1). Примем её за х.

(1)

(2)

Вычтем из (2) (1) и получим:





.

Значит,

Рассмотрим еще одну дробь: 0, (41).

(1)

(2)

Вычтем из (2) (1) и получим:







Значит, 0, (41) =

Почему в первом случае достаточно умножить на 10, а во втором пришлось умножать на 100? От чего это зависит?

Теперь попробуйте сами. Х=0,(7).





Вычтем из (2) (1) и получим







Значит, 0,(7) =

  1. Рефлексия

Наш урок подходит к концу. Давайте вспомним, с какими понятиями вы познакомились сегодня на уроке? Что показалось самым сложным?

Проанализируйте свои ощущения и, если урок оставил у вас хорошее впечатление, все было доступно и интересно, выходя из аудитории, оставьте у меня на столе зеленый смайлик. Если было интересно, но понятно не все, есть еще над чем поработать, оставьте желтый. Если совсем все непонятно, тогда красный.

И не забывайте подавать дневники на оценку!

Спасибо за урок. До свидания.

Общая информация

Номер материала: ДБ-081796

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.