Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Усеченная Пирамида и её элементы

Усеченная Пирамида и её элементы


  • Математика

Поделитесь материалом с коллегами:

Зам.Дир по УВР_______________ Утверждаю

_____ Дата23.10.15



Предмет Геометрия

Класс 11

Тема урока: Усеченная пирамида

Цели урока:

учащиеся знакомятся с усеченной пирамидой, знакомятся с её элементами,

Тип урока: изучение нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Этап проверки домашнего задания. Устный опрос.

3. Формирование новых понятий и способов действия.

Используя свойства параллельности плоскостей, изучим свойства еще одного многогранника — усеченной пирамиды.

Определение 12. Усеченной пирамидой называется часть пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию.

На рисунке 22.1 пятиугольная пирамида PABCDE пересечена плоскостью, параллельной основанию пирамиды. В сечении получился пятиугольник A1B1C1D1E1. В результате образовался многогранник — усеченная пирамида.

На рисунке 22.2 изображена усеченная пирамида, основание пирамиды и полученное сечение называются основаниями усеченной пирамиды., они лежат на параллельных плоскостях. Основаниями усеченной пирамиды на рисунке 22.2 являются пятиугольники.C:\Users\836D~1\AppData\Local\Temp\FineReader11\media\image1.jpeg

Стороны оснований попарно параллельны, поэтому боковые грани усеченной пирамиды — трапеции.

Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-нибудь точки одного основания на плоскость другого. Так, на рисунке 22.2 О1 О — высота усеченной пирамиды, ее длину можно назвать расстоянием между основаниями.

Среди усеченных пирамид выделяют правильные усеченные пирамидьиC:\Users\836D~1\AppData\Local\Temp\FineReader11\media\image2.jpeg

Определение 13. Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию.

Например, ABCDA1BlC1D1 — правильная четырехугольная усеченная пирамида (рис. 23).

Высота боковой грани правильной усеченной пирамиды называется апофемой. Например, на рисунке 23 ММ1 — апофема правильной усеченной пирамиды.

4. Применение. Формирование умений и навыков. №11,12,13

6.Этап информации о домашнем задании.стр.18.п.3.2 №17

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

8.Этап рефлексии.


Автор
Дата добавления 20.02.2016
Раздел Математика
Подраздел Конспекты
Просмотров487
Номер материала ДВ-472828
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх