Инфоурок Математика Другие методич. материалыФормы работы на уроках математики

Формы работы на уроках математики

Скачать материал

Активные формы работы на уроках математики.

 

В общем объёме знаний, умений и навыков, получаемых учащимися в средней школе, важное место принадлежит математике, которая широко применяется при изучении других предметов и в практической деятельности будущих рабочих, в частности в овладении новой техникой, при чтении специальной литературы. Главная задача каждого преподавателя – не только дать учащимся определённую сумму знаний, но развить у них интерес к учению, научить учиться.

 

Урок – основная форма организации учебно-воспитательного процесса, и качество обучения – это прежде всего качество урока. Можно ли назвать современным урок, если он проведён без наглядных и технических средств обучения? С ними урок богаче, ярче, образнее. С их помощью на учащихся оказывается эмоциональное воздействие, они способствуют лучшему запоминанию материала, повышают их интерес к предмету, обеспечивают прочность знаний.

Без хорошо продуманных методов обучения трудно организовать усвоение программного материала. Вот почему следует совершенствовать те методы и средства обучения, которые помогают вовлечь учащихся в познавательный поиск, в труд учения: помогают научить учащихся активно, самостоятельно добывать знания, возбуждают их мысль и развивают интерес к предмету.

В курсе математики много различных формул. Чтобы учащиеся могли свободно оперировать или при решении задач и упражнений, они должны самые распространённые из них, часто встречающиеся на практике знать наизусть.

Чтобы формулы лучше запоминались, а так же для  контроля  за  усвоением их используется на уроках дидактические игры:

Математическое домино – состоит  и  12-30  карточек  каждая карточка  разделена чертой на две части – на одной записано задание, на другой – ответ к другому заданию.

Карточки обратной связи – состоят из пяти-шести планшетов из прозрачной плёнки, соединенных. вместе в «книжку», куда вставляются карточки с ответом. У каждого учащегося  имеются такие карточки. Вопросы задаются устно, учащиеся находят правильный ответ и показывают его. Таким образом, учителю сразу видно, кто как знает материал.

При учении с увлечением эффективность урока заметно возрастает.  Учащиеся  в этом случае охотно выполняют предложенные им задания, становятся помощниками преподавателя в проведении урока. Следует отойти от такого обучения, когда преподаватель объясняет, рассказывает новый материал, а многие  учащиеся  пропускают услышанное мимо ушей. Естественно, от такого традиционного урока толку мало. Лучше если урок проводится в основном методом эвристической и поисковой беседы. Это означает, что ни объяснения нового материала, ни опроса учащихся лично учителем не проводится – всё это делается вместе с учащимися . Наводящие вопросы побуждают их самих докапываться до сути, вместе устанавливается, кто из них и насколько глубоко подготовлен к новому уроку.

Заметно повышают на уроке познавательный интерес учащихся дидактические игры.

Как один из видов занимательной игры с успехом применяются учебные кроссворды. Напряжённого внимания и сообразительности требует также игра «в небылицы», которую можно проводить одновременно со всем классом.

Задача преподавателя – не приспосабливать обучение к индивидуальным способностям учащихся , а максимально способствовать умственному развитию всех.

В качестве закрепления нового материала успешно применяется игра «Да» -«Нет». Вопрос читается один раз, переспрашивать нельзя, за время чтения вопроса необходимо записать ответ «да» или «нет». Главное здесь – приобщить даже самых пассивных к учёбе.

Не надо жалеть времени на многократность повторения цифрового материала, определений, выводов, это окупится знанием учащихся.

Важно будоражить ребят заставить их думать. Учащиеся  могут высказать свою точку зрения, обосновывать выводы, но если они неверны, поправить.

В проведение уроков включаются технические диктанты. «Мозговые атаки»,

«аукционы идей» ,  бипарные  уроки, пресс - конференции, уроки – конкурсы, викторины, КВН, деловые игры, олимпиады.

Невозможно рассмотреть все формы и методы нетрадиционного обучения, поэтому рассмотрим некоторые из них.

 

 

1.Бипарный урок.

Такой урок часто называют интегрированным. Главное преимущество бипарного урока заключается в возможности создать у учащихся систему знаний, помочь представить взаимосвязь предметов. Бипарные  уроки требуют активности каждого  учащегося, поэтому класс нужно готовить к их проведению: предложить литературу по теме урока, посоветовать обобщить практический опыт, присмотреться к конкретному явлению. Бипарные уроки помогают сплотить педагогический коллектив, поставить перед ним общие задачи, выработать единые действия и требования. Удачно сочетаются с бипарном  уроке теоретическое и производственное обучение.

 

2.Бит-урок.

Урок включает три элемента: беседа, игра, творчество. Преимущество  Бит-урока в его любопытности. Учащиеся  не успевают устать, их внимание всё время поддерживается и развивается. Такой урок благодаря своему эмоциональному накалу, элементам  соревновательности  имеет   глубокий  воспитательный  эффект. Ребята на практике видят те возможности, которые представляет творческая коллективная работа.

 

3.Урок – аукцион.

До начала «аукциона» экспертами определяется «продажная стоимость» идей. Затем идеи «продаются», автор идеи, получивший большую цену, признаётся победителем. Идея переходит к разработчиком, обосновывающим свои варианты. Аукцион может быть проведён в два тура. Идеи, прошедшие на второй тур, могут быть опробованы в практических задачах.

 

4. «Мозговая атака».

Урок имеет сходство с «аукционом». Группа делится на «генераторов» и  «экспертов». Генераторам предлагается ситуация (творческого характера). За определённое время учащиеся предлагают различные варианты решения предложенной задачи, фиксируемые на доске. По окончании отведённого времени «в бой» вступают «эксперты». В ходе дискуссии принимаются лучшие предложения и команды меняются ролями. Предоставление учащимся  на уроке возможность предлагать, дискутировать, обмениваться идеями не только развивает их творческое мышление и повышает доверие к преподавателю, но и делает обучение «комфортным».

 

5. Урок типа «что? где? когда?»

Группа учащихся заранее разделена на три группы, розданы домашние задания, подготовлены номера команд, листы учёта с фамилиями игроков для капитанов. Игра состоит из шести этапов.

1. Вступительное слово учителя.

2. Разминка – повторение всех ключевых вопросов темы.

3. Устанавливается время на обдумывание вопроса и количество баллов за ответ.

Выбираются орбиты.

4. Игра «что? где? когда?».

5. Подведение итогов.

6. Заключительное слово преподавателя.

 

6. Уроки – деловые игры.

Такой урок удобнее проводить при повторении и обобщении темы. Класс разбивается на группы (2 – 3). Каждая группа получает задание и затем рассказывает их решение. Проводится обмен задачами.

 

7. Урок – экскурсия.

Или заочное путешествие (может очное).

План проведения.

1. Сообщение темы.

2. Вступительное слово ведущего.

3. Объяснение нового материала путём имитируемой экскурсии – проводит экскурсовод ученик, учитель, родитель, шеф и др.

4. Ответы на вопросы, которые возникли в ходе экскурсии.

5. Подарки и сувениры на память (готовить заранее).

 

8. Уроки типа КВН.

1. Приветствие команд (домашнее задание).

2. Разминка. Команды задают друг другу вопросы.

3. Домашнее задание (проверка на кодоплёнке).

4. Выполнение по 3 – 4 задания членами команды у доски.

5. Задания капитанам команд (по карточкам).

6. Подведение итогов.

9. Урок «за круглым столом».

Выбирается ведущий и 5 – 6 комментаторов по проблемам темы.

Вступительное слово учителя. Выбираются  основные направления  темы и преподаватель предлагает учащимся вопросы, от решения которых зависит решение всей проблемы. Ведущий продолжает урок, он даёт слово комментаторам, привлекает к обсуждению весь класс.

Коллективное обсуждение приучает к самостоятельности, активности, чувству сопричастности к событиям.

 

10. Урок семинар.

Уроки такой формы проводятся после завершения темы, разделов. Заранее даются вопросы семинарского занятия, отражающие материал данного раздела и  межпредметную связь. После заслушивания исчерпывающих ответов на поставленные вопросы семинара, учитель подводит итог урока, и нацеливает учащегося на подготовку к уроку- зачету по данной теме.

11.Урок – зачет.

Проводить его можно в разных вариантах. Первый - когда экзаменаторами свободные от уроков преподаватели. Второй – экзаменаторами выступают более эрудированные, хорошо усвоившие тему учащиеся. В конце урока подводится итог. Используется и коллективный способ обучения. Например, решение упражнений с последующей взаимопроверкой. Класс разбивается на несколько групп, назначается консультант. Каждая группа получает карточки – задания. Первый пример решает и объясняет консультант, а остальные учащиеся выполняют самостоятельно. Консультанты координируют и ведут учет. Учитель следит за работой всех.

 

12. Интегрированные уроки.

Уроки такого типа проводятся сразу 2 – 3 преподавателями.

Например: а) математики, физики и информатики б) математики, учителя черчения, производственного обучения.

Составляются алгоритмы решения задачи с использованием знаний по математике, физике и т.д.

 

13. Урок-лекция.

Практика показывает, что темп лекции должен быть посильным для учащихся, повторы лекции не желательны. Их можно избежать путём варьирования основной мысли. При демонстрации средств наглядности не должно быть  монологичного  изложения, нужно привлекать к разговору учащихся. Лекция ориентирует учащихся в сложном материале, развивает их умственную активность, учит мыслить. Лекция носит поисковый характер, вопросы привлекают учащихся. Например, лекция по теме «Декартовы координаты в пр- ве»

1. Введение декартовых координат на пл-ти.

2. Введение декартовых координат в пр-ве.

3. Жизнь и деятельность Р. Декарта .

4. Формула расстояния между двумя точками.

5. Формулы координат середины отрезка.

6. Преобразование фигур в пр-ве.

7. Использование декартовых координат в других науках.

 

14.Использование учащихся для контроля.

Эффективность этого метода давно проверена и признана. Учащиеся выбирают бригадиров из числа наиболее успевающих учащихся и сами записываются в эти бригады. Бригадиры проверяют выполнение домашнего задания, оценивают работы после Математического диктанта, самостоятельной работы, обучают тех, кто болел, занимаются с отстающими. На занятиях бригадиры имеют право помогать своим учащимся. Соревнования между бригадами повышают интерес и познавательную активность учащихся.

15.Математический бой ; уроки взаимоконтроля и т.д. и т.п.

 

Мы будем учиться, работать с охотой,

и ничего не попросим взамен.

Как хорошо , что есть на свете

Две дружных команды:

Учащихся и учителей!

 


 О воспитательном эффекте уроков математики

О воспитательном эффекте уроков математики

Математика в отличие от большинства других преподаваемых в школе дисциплин имеет предметом своего изучения не непосредственно вещи, составляющие окружающий нас внешний мир, а количественные отношения и пространственные формы, свойственные этим вещам. Этой    особенностью математической науки в первую очередь объясняются те хорошо известные методические трудности, которые неизбежно встают перед преподавателем математики и которых почти не знают преподаватели других наук: перед учителем математики стоит нелегкая задача — преодолеть в сознании учеников возникающее со стихийной неизбежностью представление о "сухости", формальном характере, оторванности этой науки от жизни и практики. Об этом написано много ценного и полезного, и мы хорошо знаем, как справляются с этой задачей лучшие мастера нашей школы.

Но этой же особенностью математической науки в значительной мере объясняется и специфика задач, встающих перед учителем математики, который хочет использовать преподавание своей науки в воспитательных целях. Ясно, что и здесь стоящая перед ним задача труднее, чем в случае большинства других наук. Ибо научная дисциплина, занятая изучением не самих вещей, а лишь отношений между ними и потому необходимо требующая поднятия на некоторую ступень абстракции, — такая дисциплина, очевидно, лишь в редких случаях способна давать учителю повод к эффективному воздействию на формирование характера и мировоззрения учащихся, на регулирование их поведения.

То немногое, что написано по этому поводу, в основном не вызывает возражений. Дело сводится  обычно к  двум рычагам воспитательного воздействия: с одной стороны, говорится, что специфическая для математики логическая строгость и стройность умозаключений призваны воспитывать в учащихся общую логическую культуру мышления; с другой — указывается, что предметно-содержательное оснащение математических задач при надлежащем его выборе дает широкий простор для сообщения цифр и данных, способных значительно расширить кругозор учащихся, поднять их общий культурный уровень.

Все это бесспорно верно. Я думаю, однако, что это далеко не все. Прежде всего, здесь совершенно не затрагиваются важнейшие задачи морального воспитания, для которых, как мне кажется, уроки математики дают весьма ощутимые возможности. Далее, важная задача воспитания логической культуры мышления, которой обычно уделяется много внимания, тем не менее трактуется в большинстве случаев трафаретно, поверхностно и недостаточно расчлененно; приводимые примеры часто не выходят за рамки вульгарного шаблона и поэтому очень мало эффективны. Наконец,  воспитывающее воздействие данных, приводимых в "текстовых" задачах, хотя и должно, конечно, всемерно быть использовано, но с математическим содержанием урока связано, очевидно, лишь весьма внешним образом; ясно, что здесь воспитывающее влияние призвана оказывать не сама математика, не ее законы и ее стиль, а те привязанные к ней чисто внешним образом данные, которые обрамляют собою "текстовые" задачи и которые без всякого изменения математического содержания задачи могли бы быть заменены любыми другими аналогичными данными. Ясно поэтому, что этот рычаг воспитывающего воздействия, будучи важным и действенным, не может считаться в прямом смысле принадлежащим самой преподаваемой в школе математической науке.

Все приведенные соображения показывают, что вопрос о воспитательном значении уроков математики у нас разработан еще далеко недостаточно. Предлагаемая статья ставит целью несколько продвинуть этот вопрос. Для этого я в дальнейшем кратко рассмотрю ряд моментов, которые, насколько я могу судить, при изыскании возможностей воспитательного влияния уроков математики до сих пор либо совсем оставлялись без внимания, либо рассматривались лишь весьма поверхностно.

I. Культура мысли

Правильность мышления. Роль и значение математики в воспитании навыков закономерного и безошибочного мышления всеми признаны в такой мере, что нередко приходится встречаться с утверждениями, будто приучение к строгому в логическом отношении ходу мыслей есть первая и основная задача учителя математики, так что в сравнении с нею даже ознакомление учащихся с самим содержанием математической науки отодвигается на второй план (что несомненно следует признать уже вредным перегибом). Однако как раз потому, что эта воспитательная функция уроков математики приобрела характер банальности, именно в этом направлении мы слышим много высказываний, приводим по готовому трафарету, без достаточного обдумывания. В результате внимание сосредотачивается на небольшом числе привычных (а подчас и набивших оскомину), хотя и важных, но по своему значению частных и узких вопросов, вроде пресловутого различения между прямыми и обратными теоремами. Между тем остаются в тени вопросы более общего принципиального значения.

Я думаю, что основным общим моментом воспитательной функции математического образования — моментом, который в значительной степени обусловливает собою все остальное, — служит приучение воспитываемых к полноценности аргументации.

В обыденной жизни, даже в "любительских" (не строго научных) принципиальных спорах, мы, защищая какое-либо утверждение, довольствуемся обычно одним-двумя аргументами, говорящими в его пользу. Противник может привести в ответ несколько аргументов, говорящих против нашего утверждения. Однако обычно ни та, ни другая аргументация не бывает исчерпывающей; противники продолжают изыскивать новые аргументы, каждый в пользу своей точки зрения, и спор продолжается.

Примерно так же протекают и научные дискуссии в тех областях знания, которые не входят в число так называемых точных наук; конечно, аргументация здесь бывает, как правило, более полной, чем в обыденных спорах; но почти никогда не удается сделать ее исчерпывающей, не допускающей никаких возражений и тем самым ликвидирующей самую дискуссию.

Иначе обстоит дело в математике. Здесь аргументация, не обладающая характером полной, абсолютной исчерпанности, оставляющая хотя бы малейшую возможность обоснованного возражения, беспощадно признается ошибочной и отбрасывается как лишенная какой бы то ни было силы. В математике нет и не может быть "наполовину доказанных" и "почти доказанных" утверждений: либо полноценность аргументации такова, что никакие споры о правильности доказываемого утверждения более невозможны, либо аргументация вообще полностью отсутствует.

Изучая математику, школьник впервые в своей жизни встречает столь высокую требовательность к полноценности аргументации. Вначале она удивляет, отталкивает, пугает его, кажется ему излишней, сверхмерной, педантичной. Но постепенно, день за днем, он к ней привыкает. Хороший учитель много может сделать для того, чтобы этот процесс протекал и быстрее, и продуктивнее. Он приучит своих учеников к взаимной критике; когда один из них что-либо доказывает или решает какую-либо задачу перед всем классом, все остальные должны напряженно искать возможных возражений и немедленно их высказывать. Ученик, который "отобьется" от таких возражений, заставит умолкнуть всех своих критиков, неизбежно испытает законную радость победы. Вместе с тем он ясно почувствует, что именно логическая полноценность аргументации была тем оружием, которое дало ему эту победу. А раз почувствовав это, он неизбежно научится уважать это оружие, постарается, чтобы оно всегда было при нем. И конечно, не только в математических, но и в любых других дискуссиях он все больше и настойчивее будет стремиться к полноценности аргументации. Каждый раз перед ним будет вставать задача — по возможности обезоружить своих противников, в полной мере используя весь запас аргументов, какие вообще возможны в данной ситуации.

Этот воспитывающий процесс имеет решающее значение для логической культуры мышления, в особенности если учесть, что учащийся привыкает быть беспощадно требовательным к полноценности аргументации не только в споре, но и в своем собственном мышлении. Процесс этот протекает повседневно на наших глазах у многих тысяч школьников. Он неизбежно возникает и идет своим путем без нашего специального вмешательства, но это не значит, что мы вправе пустить его на самотек; в нашей власти сделать его и более быстрым, и более полным по богатству и прочности достижений; а раз мы можем, то мы и должны это делать; вопрос о том, какими приемами наиболее эффективно можно добиться этих целей, есть уже методическая задача, которую мы не имеем возможности рассматривать здесь детально.

Общий принцип борьбы за полноценность аргументации получает в ходе интеллектуального развития учащегося целый ряд типичных по своей форме конкретных разновидностей, важнейшие из которых мы теперь перечислим.

1. Борьба против незаконных обобщений. Натуралист, подметив наличие какого-либо свойства (признака) у ряда особей данного вида, с чистой научной совестью объявляет этот признак общим для всего рассматриваемого вида, и никто не упрекнет его за это: такого рода индуктивные заключения представляют собою один из основных методологических стержней естественных наук. Конечно, и в этих науках координирующая и осмысливающая теоретическая мысль возможна н необходима; но как исходным пунктом, так и решающей проверкой всякого заключения здесь всегда остаются наблюдение и опыт, осуществляемые над отдельными экземплярами.

В математике дело обстоит принципиально иначе. Если мы обнаружили, что несколько десятков (или хотя бы и несколько миллионов) наудачу выбранных нами треугольников обладают каким-нибудь свойством, мы еще не вправе признать это свойство принадлежащим всем треугольникам. Такое заключение было бы не до конца обоснованным, а в математической науке все, что обосновано до конца, расценивается как абсолютно необоснованное. Только исчерпывающее общее доказательство может дать уверенность в том, что данный признак действительно является общим свойством всех треугольников.

Чему же может и должна научить школьника та суровая критика по адресу не вполне обоснованных обобщений, с какой он встречается в математике? Конечно, он не должен стараться переносить такого рода требования на выводы других наук и тем более на практические жизненные ситуации. Требование абсолютной полноты индукции специфично для математического метола и совершенно невыполнимо ни в естественных науках, ни в практической жизни. Но привычка с критической тщательностью проверять законность всякого обобщения, привычка твердо помнить, что замеченное во многих случаях еще не обязано тем самым иметь место во всех случаях и что закономерности, установленные на основе хотя бы и многих единичных наблюдений и опытов, требуют поэтому все новой и новой проверки, — все эти важнейшие методологические навыки, необходимые в любой научной и практической деятельности, в значительной степени воспитываются и укрепляются вместе с повышением математической культуры. Это процесс, который мы каждодневно видим происходящим на наших глазах.

2. Борьба против необоснованных аналогий. Заключения по аналогии служат обычным и законным приемом установления новых закономерностей как в эмпирических науках, так и в обыденной жизни. Если, допустим, естествоиспытатель помнит, что все встречавшиеся ему до сих пор виды, обладавшие признаками А и В, обладали также и признаком С, и если он нашел новый вид, у которого обнаружены признаки А и В, то он, естественно, заключит, что этот новый вид обладает также и признаком С. Такое заключение по аналогии значительно выигрывает в убедительности, если к чисто эмпирическим данным, описанным выше, присоединяются, как это часто бывает, какие-либо теоретические соображения, заставляющие предполагать, что совместное наличие признаков А, В и С является не случайным, а обосновано теми или другими общими принципиальными соображениями. Но только в математике возможно — и вместе с тем совершенно необходимо — требовать, чтобы эти принципиальные соображения были доведены до степени исчерпывающего доказательства. Либо мы со всей строгостью доказали, что из наличия признаков А и В с неизбежностью вытекает и наличие признака С, либо, если нам не удалось доказать этого с исчерпывающей полнотой, нам запрещается делать из наличия признаков А и В какие бы то ни было выводы относительно признака С. Но в первом случае (т. е. когда доказана теорема "Из А и В следует С") простое применение этой общей теоремы к конкретным частным случаям уже вряд ли может быть названо заключением по аналогии.

Будет, таким образом, правильно сказать, что в математике заключения по аналогии категорически запрещены (что не должно, конечно, умалять огромного эвристического значения заключений по аналогии), в то время как в эмпирических науках и практической деятельности заключениям по аналогии принадлежит почетная роль одного из основных приемов вывода новых закономерностей. Поэтому снова встает вопрос о том, что же в этом отношении могут дать уроки математики для воспитания общей культуры мышления. И снова приходится ответить на это то же, что и прежде: математическая вышколенность ума, привыкшего к тому, что заключение по аналогии может служить лишь эвристическим прием ом, который сам по себе еще не имеет доказательной силы, неизбежно приучает прошедшего эту школу человека и во всех других областях мышления относиться к такого рода заключениям с большом осторожностью, памятуя, что во всех таких случаях нельзя без основательной проверки считать полученное заключение твердо установленным. Каждый из нас испытал в свое время на себе воспитывающее влияние этой особенности математического мышления, и каждодневно мы наблюдаем, как влияние это содействует повышению мыслительной культуры наших воспитанников. Критическое отношение к заключениям по аналогии есть один из важнейших показателей, отличающих правильно воспитанное научное и практическое мышление от первобытного, обывательского, и занятия математикой всегда служат одним из основных средств воспитания этого важнейшего показателя.

3. Борьба за полноту дизъюнкций. Когда математик доказывает какое-либо общее свойство всех треугольников, то иногда ему приходится проводить доказательство отдельно для остроугольных, прямоугольных и тупоугольных треугольников. Известно, как часто в таких случаях начинающие делают ошибки, в особенности в тех случаях, когда рассуждение сопровождается ссылкой на чертеж; чертится, например, остроугольный треугольник, и рассуждение опирается на добавочные построения, которые либо невозможны, либо теряют доказательную силу, если выбранный треугольник имеет тупой угол. В математике такое рассуждение признается ошибочным, так как здесь нарушено основное требование полноты дизъюнкции: не предусмотрены все возможные разновидности данной ситуации, одна из них выпала из поля зрения.

В обыденных, не научных рассуждениях это требование нарушается на каждом шагу. Рассмотрев две-три наиболее часто встречающиеся или наиболее бросающиеся в глаза разновидности данной ситуации и убедившись, что в каждом из этих случаев мы неизбежно встречаемся с некоторым событием А, мы заключаем, что это событие А сопутствует данной ситуации во всех случаях, хотя на самом деле данная ситуация может иметь, кроме двух-трех изученных нами, еще десяток других разновидностей, и среди этих разновидностей, скинутых нами со счета, могут быть и такие, в которых наступление события А вовсе необязательно. Мы говорим, на пример, что ученика Иванова вообще нельзя дисциплинировать, потому что на него испытанным образом не действуют ни ласка, ни угрозы. Мы забываем при этом, что лаской и угрозами не исчерпываются еще все разновидности приемов дисциплинирующего воздействия, что существует еще, например, метод спокойного убеждения и что. стало быть, наша дизъюнкция страдает неполнотой. Мы часто наблюдаем, как начинающий, рассмотрев при исследовании какого-нибудь уравнения случай, когда некоторый данный коэффициент положителен, а затем случай, когда этот коэффициент отрицателен, тем самым считает, что он провел исследование во всех случаях, забывая, что изучаемый коэффициент может оказаться равным нулю. Здесь также мы видим неполноту дизъюнкции, которая может привести и фактически приводит к тяжелым ошибкам в выводах.

В противоположность тем двум требованиям, которые мы рассматривали выше, требование полноты дизъюнкции, учета всех возможных разновидностей изучаемой ситуации является необходимой принадлежностью не только математического, но и всякого правильного мышления. Аргументация, в которой не учтены все имеющиеся возможности, всегда оставляет место для законных возражении и потому не может быть признана полноценной. Военачальник, предпринимая какой либо маневр, при учете его последствий должен предвидеть все возможные ответы врага; просмотр хотя бы одного из них может оказаться гибельным. Юридический кодекс в каждой статье обязательно должен охватывать все мыслимые разновидности данной ситуации, иначе он ставит судью перед необходимостью решать дела по своему произволу.

Но нигде требование безукоризненной чистоты дизъюнкции не выставляется так явно и категорически, как в математике, и никто не обрушивается с такой быстротой и беспощадностью на замеченный просмотр в дизъюнкции, как вышколенный математик.

Вот почему уроки математики должны воспитывать и действительно воспитывают в мышлении учащихся этот важнейший закон правильного рассуждения в несравненно большей мере, чем занятия другими предметами.

4. Борьба за полноту и выдержанность классификации. Классифицирует не только ученый-теоретик в своем кабинете, классификацией приходится очень часто заниматься и практическому работнику, инженеру, врачу, учителю, статистику, агроному. Общеизвестно, что невышколенный ум склонен допускать, производя классификацию, ряд типических ошибок; наиболее распространенными из таких ошибок являются нарушение полноты классификации и нарушение ее выдержанности, единопринципности. Нарушение полноты классификации состоит в том, что остаются понятия, не входящие ни в один из названных классов, и что, стало быть, названы не все классы. Простые примеры: на вопрос "Какие ты знаешь растения?" школьник отвечает: "Травы и деревья", забывая о кустарниках, лишайниках и многих других типах; войсковые части делятся на сухопутные, водные и воздушные (упускаются интендантские, части связи и многие другие); натуральные числа делятся на простые и составные (упускается число 1); вещественные числа делятся на положительные и отрицательные (упускается нуль).

Требование полноты классификации формально аналогично рассмотренному нами выше требованию полноты дизъюнкции, но, конечно, отлично от него по содержанию. Там шла речь об обязательности охвата всех могущих возникнуть ситуаций, здесь же о необходимости перечисления всех разновидностей некоторого понятия. Но здесь, как и там, явно и неукоснительно требование полноты классификации провозглашается в математике преимущественно перед всеми другими науками, и потому уроки математики более всех других воспитывают в школьнике этот обязательный элемент правильного мышления.

Требование выдержанности классификации состоит в том, чтобы она проводилась по единому принципу, по единому признаку. Это требование, при строго правильном мышлении совершенно обязательное, очень часто нарушается не только в обывательских рассуждениях, но и в серьезной практике. Вот простые примеры такой невыдержанной классификации: суда делятся на весельные, парусные, моторные и военные; очевидно, классификация начата по принципу различных движущих сил, и последняя рубрика этот принцип нарушает, другой пример: обувь подразделяют на кожаную, брезентовую, резиновую и модельную — та же картина. Конечно, подобного рода перечисления не всегда претендуют на роль классификации, и в таких случаях соблюдение единого принципа необязательно (например, объявление: завод приглашает на работу плотников, штукатуров, женщин и подростков). Но во всех случаях, когда такому перечислению приписывается классифицирующая функция, невыдержанность разделяющего принципа вызывает такую неотчетливость всей схемы, которая может привести и к теоретическим смешениям, и к практической путанице. Поэтому логически вышколенный ум всегда ощущает недостаток выдержанности классификации как существенный дефект рассуждения. И снова наиболее чувствительна к этому дефекту математическая наука, и поэтому именно на уроках математики школьник преимущественно развивает в себе эту потребность видеть всякую классификацию выдержанной, построенной на едином классифицирующем принципе.

Я перечислил те моменты в борьбе за правильность мышления и полноценность аргументации, которые представляются мне наиболее важными. Как уже было сказано выше, я не могу входить в этой статье в обсуждение тех методических приемов, с помощью которых учитель математики может достигнуть наибольшего успеха в деле воспитания у своих учеников перечисленных мною моментов правильного мышления. Но я считаю необходимым сделать по этому вопросу одно методическое замечание общего характера (для опытного учителя, впрочем, совершенно очевидное) все те требования правильного мышления, о которых шла речь выше, должны воспитываться в учащихся исподволь, от случая к случаю, без излишнего педалирования; не может быть и речи о том, чтобы посвящать специальный урок, например, борьбе с незаконными аналогиями, такая постановка дела может только безнадежно погубить весь ожидаемый эффект. Надо, напротив, всемерно избегать во всем этом деле общих рассуждений и обращать внимание учащихся на тот или другой логический момент исключительно на базе ярко убедительного конкретного материала.

Потребность в логической полноценности аргументации воспитывается не постоянным надоедающим напоминанием о необходимости этой полноценности, а показом на конкретных примерах (поводы к которым дает почти каждый урок), как несоблюдение этого требования ведет к ошибкам и неувязкам. Надо не отвлеченно проповедовать полноценность аргументации, а приучить учащегося к тому, что каждый пробел в аргументации немедленно вызывает придирчивый вопрос со стороны учителя или, что много лучше, со стороны товарищей.

Я не буду говорить здесь о том, что следует использовать уроки математики для правильного понимания различия между прямым и обратным утверждениями, а также и ряда других аналогичных различий. С одной стороны, об этом так много уже писалось, что вряд ли я смог бы прибавить здесь что-нибудь новое. С другой стороны, мне представляется, что этого рода моменты, будучи, конечно, обязательными для логически правильного мышления, все же по своему частному, специальному характеру не имеют вне математики столь существенного значения, как те значительно более общие принципы, которые я перечислил выше.

Стиль мышления. Помимо специфических, особо строгих требований к логической правильности умозаключений, математика отличается от других преподаваемых в школе наук также и стилем своего мышления. Стиль этот, хотя и претерпевает на протяжении веков, и даже десятилетий, довольно значительные изменения, все же имеет некоторые общие для всех эпох непреходящие черты, заметно отличающие его от стилей, принятых в других науках.

Утвердившийся в той или другой науке стиль мышления не является, как можно было бы думать, только внешним и потому второстепенным фактором, имеющим лишь эстетическую ценность и не могущим поэтому существенно влиять на развитие данной науки. Напротив, стилем мышления в значительной степени определяется отчетливость теоретических связей, простота и ясность научных конструкций, наглядная конкретность понятий и многое другое, от чего в свою очередь зависят эффективность, плодотворность научных дискуссий и научного преподавания, а вместе с тем и темпы развития науки.

Среди тех особых черт, которые присущи стилю математического мышления, имеется ряд таких, которым свойственно весьма общее и широкое значение; такая черта, если она усваивается представителем какой-нибудь другой науки или практическим деятелем, оказывает нередко весьма существенные услуги как его собственному мышлению, так и усвоению его трудов учениками и последователями. Читая сочинения какого-либо из крупнейших классиков в другой научной области, математик подчас с некоторым удивлением восклицает: "Да ведь он мыслит совсем по-нашему!". Удивление происходит оттого, что обычно в этой научной области принят совсем иной стиль мышления, имеющий очень мало общего с математическим.

Но если усвоение некоторых черт математического мышления способно облагородить мыслительный стиль и в других областях знания и практической деятельности, сделать этот стиль более мощным и продуктивным орудием мысли, то очевидно, что не следует пренебрегать использованием уроков математики для приучения молодых умов к постепенному усвоению этих черт, к тому, чтобы эти черты стали прочными навыками их мышления — сначала в пределах математики, а потом и за ее пределами. Для того чтобы это осуществить, надо в первую очередь постараться со всей тщательностью выявить те черты стиля математической мысли, о которых здесь идет речь.

В основе каждого правильно построенного хода мыслей независимо от предметного содержания его лежит такая формально-логическая схема, которая ощущается вышколенным умом как некий логический костяк, стройный и закономерный, обросший тем или другим конкретным содержанием. Независимо от стиля мышления эта логическая схема должна быть закономерной, лишенной пробелов: без этого рассуждение становится недоброкачественным и должно быть отвергнуто.

Однако роль и положение этого логического скелета в данное ходе мыслей бывают весьма различны и существенным образом зависят именно от стиля мышления. В одних случаях логическая схема становится определяющим, руководящим моментом мышления, так что мыслящий все время имеет ее перед глазами и сообразно с нею выбирает и направляет последовательные этапы рассуждения. В других, напротив, логический костяк остается затушеванным, мысль в гораздо большей степени направляется запросами конкретного содержания, роль логики сводится к последующему контролю, да и этот контроль в письменном или устном изложении часто только подразумевается и явно не проводится; логическая схема как целое остается вне поля зрения мыслящего. Разумеется, встречаются нередко и стили мышления, промежуточные между двумя указанными.

Для математики характерно доведенное до предела доминирование логической схемы рассуждения; математик, потерявший, хотя бы временно, из виду эту схему, вообще лишается возможности научно мыслить. Эта своеобразная черта стиля математического мышления, в столь полной мере не встречающаяся ни в одной другой науке, имеет в себе много ценного. Очевидно, что она в максимальной степени позволяет следить за правильностью течения мысли и гарантирует от ошибок; с другой стороны, она заставляет мыслящего при каждой дизъюнкции иметь перед глазами всю совокупность имеющихся возможностей и обязывает его учесть каждую из них, не пропуская ни одной (такого рода пропуски вполне возможны и фактически часто наблюдаются при других стилях мышления). Поэтому приобретенные на уроках математики стилистические навыки, связанные с указанной чертой, имеют существенное значение для повышения общей культуры мышления учащихся.

Очень интересным и ярким примером мышления в далекой от математики области, и тем не менее чрезвычайно насыщенного этой чертою, могут служить произведения Маркса. Читателя, который после изучения экономических трудов других ученых раскрывает "Капитал", с первых страниц поражает железная, непреклонная логика его строк. Логическая схема с ее неумолимыми требованиями не только определяет ход мысли автора, но и настойчиво убеждает читателя, который не может уйти от ее направляющего влияния. Этот необычный для экономического сочинения стиль, почти приближающийся к математическому, неизменно вызывает в читателе ощущение прочности, надежности, предельной убедительности и в то же время много помогает ему в усвоении читаемого.

Второй характерной чертой математического стиля мышления, о которой здесь должно быть упомянуто, является его лаконизм, сознательное стремление всегда находить кратчайший, ведущий к данной цели логический путь, беспощадное отбрасывание всего, о чем нет абсолютной необходимости для безупречной полноценности аргументации. Математическое сочинение хорошего стиля не терпит никакой воды, никаких украшающих, ослабляющих логическое напряжение разглагольствований, отвлечении в сторону; предельная скупость, суровая строгость мысли и ее изложения составляют неотъемлемую черту математического мышления. Черта эта имеет большую ценность не только для математического, но и для любого другого серьезного рассуждения; лаконизм, стремление не допускать ничего излишнего, помогает и самому мыслящему, и его читателю или слушателю полностью сосредоточиться на данном ходе мыслей, не отвлекаясь побочными представлениями и не теряя непосредственного контакта с основной линией рассуждения.

Корифеи науки, как правило, мыслят и выражаются лаконично во всех областях знания, даже тогда, когда мысль их создает и излагает принципиально новые идеи. Какое величественное впечатление производит, например, благородная скупость мысли и речи величайших творцов физики: Ньютона, Эйнштейна, Нильса Бора! Может быть, трудно найти более яркий пример того, какое глубокое воздействие может иметь на развитие науки именно стиль мышления ее творцов.

В гораздо меньшей степени этот лаконизм присущ ораторским выступлениям. Здесь мы часто встречаем растянутость, излишнюю цветистость, пренебрежение прямотою логического пути в угоду украшающей образности (которой, конечно, нельзя отказать в присущей ей специфической силе воздействия). Однако и в этой области, когда встает оратор, облекающий свою мысль в сжатую, скупую форму предельно кратких и неодолимо убедительных ходов, величественно жертвующий во имя этой железной логики всеми стилистическими "красотами", всеми соблазнами красочной образности, мы видим, как внимание слушателей сразу подтягивается и напрягается, и чувствуем, что такая речь должна вызывать значительно большее доверие, а потому и оказывать большее воздействие, чем многие ярко-образные, оснащенные витиеватыми нагромождениями выступления, апеллирующие к чувству и воображению слушателей.

Для математики лаконизм мысли является непререкаемым, канонизированным веками законом. Всякая попытка обременить изложение необязательно нужными (пусть даже приятными и увлекательными для слушателей) картинами, отвлечениями, разглагольствованиями заранее ставится под законное подозрение и автоматически вызывает критическую настороженность. И поэтому именно уроки математики призваны дать учащимся, предпочтительно перед другими предметами, навыки лаконичного, прямого, не знающего отвлечении, не обремененного никакими излишними элементами мышления.

Далее, для стиля математического мышления характерна четкая расчлененность хода рассуждения. Если, например, при доказательстве какого-либо предложения мы должны рассмотреть четыре возможных случая, из которых каждый может разбиваться на то или другое число подслучаев, то в каждый момент рассуждения математик должен отчетливо помнить, в каком случае и подслучае его мысль сейчас обретается и какие случаи и подслучаи ему еще остается рассмотреть. При всякого рода разветвленных перечислениях математик должен в каждый момент отдавать себе отчет в том, для какого родового понятия он перечисляет составляющие его видовые понятия. В обыденном, не научном мышлении мы весьма часто наблюдаем в таких случаях смешение и перескоки, приводящие к путанице и ошибкам в рассуждении. Часто бывает, что человек начал перечислять виды одного какого-нибудь рода, а потом незаметно для слушателей (а часто и для самого себя), пользуясь недостаточной логической отчетливостью рассуждения, перескочил в другой род и заканчивает заявлением, что теперь оба рода расклассифицированы; а слушатели или читатели не знают, где пролегает граница между видами первого и второго рода.

Для того чтобы сделать такого рода смешения и перескоки невозможными, математики издавна широко пользуются простыми внешними приемами нумерации понятии и суждений, иногда (но гораздо реже) применяемыми и в других науках. Те возможные случаи или те родовые понятия, которые надлежит рассмотреть в данном рассуждении, заранее перенумеровываются; внутри каждого такого случая те подлежащие рассмотрению подслучаи, которые он содержит, также перенумеровываются (иногда для различения с помощью какой-либо другой системы нумерации). Перед каждым абзацем, где начинается рассмотрение нового подслучая, ставится принятое для этого подслучая обозначение (например, II 3 — это означает, что здесь начинается рассмотрение третьего подслучая второго случая или описание третьего вида второго рода, если речь идет о классификации). И читатель знает, что до тех пор, покуда он не натолкнется на новую числовую рубрику, все излагаемое относится только к этому случаю и подслучаю. Само собой разумеется, что такая нумерация служит лишь внешним приемом, очень полезным, но отнюдь не обязательным, и что суть дела не в ней, а в той отчетливой расчлененности аргументации или классификации, которую она и стимулирует, и знаменует собой.

Наконец, следует упомянуть еще об одной чисто внешней традиции математического стиля, могущей при надлежащих условиях приобрести воспитательное значение, которым нельзя пренебрегать. Я имею в виду свойственную математике скрупулезную точность символики. Каждый математический символ имеет строго определенное значение; замена его другим символом или перестановка на другое место, как правило, влечет за собою искажение, а подчас и полное уничтожение смысла данного высказывания. Учащийся, не привыкший еще относиться с достаточной требовательностью к точности устной речи и письменного изложения, вначале может с некоторым легкомыслием отнестись к неуклонным и настойчивым приглашениям учителя математики — вести математическую запись с абсолютной точностью; эти требования могут даже показаться ему педантичными и вызвать насмешку. Однако он очень быстро убедится на собственном опыте, что несоблюдение безукоризненной точности символической записи в математике влечет за собой немедленную расплату: он сам теряет возможность понять смысл записанного, вынужден гадать, угадывает неверно и либо получает неправильный ответ, либо вообще лишает себя возможности решить задачу. В лучшем случае ему ценою значительных усилий удастся восстановить правильную запись и шествовать дальше, отправляясь от нее.

Убедившись таким образом, что точность символической записи соответствует его собственным интересам, он начинает следить за собою в этом направлении, и постепенно строгая правильность математической символики становится его привычкой. Но такого рода привычка, приобретенная в какой-либо одной сфере мышления, неизбежно приводит к воспитанию и общего стиля мышления учащегося; он начинает точнее выражаться и в устной речи, и в письменном изложении; в частности, он уделяет больше внимания правописанию, орфографические ошибки переживаются им с такой же остротой и таким же беспокойством, как математические. Мы неизменно наблюдаем, что ученики, научившиеся требовательно относиться к точности математической символики, легче и быстрее перестают делать орфографические ошибки. И я не знаю, возможно ли окончить школу, обладая требуемой для аттестата зрелости математической культурой и не научившись в то же время писать совершенно безошибочно.

Заканчивая эту главу, посвященную вопросам воспитательного воздействия уроков математики на культуру мышления учащихся, я предвижу естественное и законное недоумение читателя по поводу того, что мною нигде даже не затронута проблема развития элементов диалектического мышления. Я считаю себя обязанным дать по этому вопросу краткое разъяснение.

Маркс и Энгельс с полным основанием утверждали, что математика не только дает для законов диалектического мышления богатейший иллюстративный материал, но систематически способствует развитию диалектических навыков мыслительного процесса. Однако, как это неоднократно отмечалось основоположниками марксизма, в полной мере это может быть отнесено лишь к так называемой высшей математике, т. е. к математике переменных величин. Именно здесь мы приучаемся к математическому исследованию явлении природы и процессов техники в их живой изменчивости, а не статической неподвижности. Именно здесь величины исследуются в их взаимной зависимости (понятие функции), а не в отрыве друг от друга. Нигде с такой наглядностью, как здесь, мы не видим в действии переход количества в качество, диалектический синтез первоначально антагонистических противоположностей и другие основные принципы диалектики. И это одна из важнейших причин (впрочем, далеко не единственная), заставляющих нас признать абсолютно необходимым введение элементов высшей математики в курс средней школы.

Но пока мы только боремся за это. Что же касается преподаваемой в школе элементарной математики, то и она, конечно, как всякая подлинная и живая наука, не лишена диалектических элементов. Но здесь они выступают разрозненно и с малой мощностью, и говорить о них в статье, посвященной лишь основным рычагам воспитательного воздействия уроков математики, я не решился.

II. Моральные моменты и воспитание патриотизма

О роли и значении уроков математики в воспитании правильного и дисциплинированного мышления говорилось и писалось очень много. Напротив, о влиянии математических занятий на формирование личности учащегося не сказано почти ничего. Это вполне понятно: по абстрактности своего предмета математическая наука не может давать учащемуся тех непосредственных впечатлений, этически воздействующих и формирующих характер образов, картин, эмоций, какими располагает, скажем, история или литература. Было бы, однако, весьма поверхностно делать отсюда вывод, что в деле формирования нравственной личности школьника уроки математики вообще должны быть скинуты со счетов. По моему многолетнему опыту работа над усвоением математической науки неизбежно воспитывает — исподволь и весьма постепенно — в молодом человеке целый ряд черт, имеющих яркую моральную окраску и способных в дальнейшем стать важнейшими моментами в его нравственном облике. Сделать этот процесс более активным и результаты его более прочными — достойная задача для учителя. Но прежде всего надо тщательно разобраться в том, что это за черты и какие особенности математической работы способны их воспитывать.

Честность и правдивость. В обывательских тяжбах всякого рода каждая из спорящих сторон исходит, как правило, из желательного ей, выгодного для нее решения вопроса и с большей или меньшей изобретательностью изыскивает возможно более убедительную аргументацию для решения вопроса в свою пользу. В зависимости от эпохи, среды и содержания спора стороны при этом апеллируют к тому или другому высшему авторитету — общечеловеческой морали, "естественному" праву, священному писанию, юридическому кодексу, действующим правилам внутреннего распорядка, а часто и к высказываниям отдельных авторитетных ученых или признанных политических руководителей. Все мы много раз наблюдали, с какой страстностью ведутся подобного рода споры и какой убежденностью дышит, по-видимому, аргументация каждой из сторон; можно подумать, что такой тяжущийся действительно обуреваем желанием найти и отстоять истинное, справедливое, отвечающее духу и букве признанного в качестве арбитра авторитетного источника решение.

Но хорошо известно, что эту картину мы часто наблюдаем не в одних только обывательских тяжбах. В точности те же черты являет подчас и научная дискуссия. Выводы, с полной убежденностью сделанные одним ученым, с такою же убежденностью оспариваются другими; завязывается полемика, в которой каждая из сторон находит все новые и новые аргументы в пользу своей позиции — даже вновь поставленные опыты часто говорят каждому из спорящих как раз то, что ему желательно. В ходе полемики каждая из сторон не только стремится все более и более усиливать свою собственную позицию, но и старается различными средствами дискредитировать позицию противной стороны, доходя иногда и до попыток персональной дискредитации. И лишь сравнительно редко бывает, чтобы в такой затянувшейся полемике одна из спорящих сторон нашла честность и мужество признать свою позицию ошибочной.

Субъективные основания такого рода явлений в жизни науки легко понять: они ничем, к сожалению, не отличаются по своей неприглядности от субъективных оснований самых мелочных обывательских стычек. Что касается объективных оснований возможности подобного рода научных ситуаций, то и их нетрудно найти: в эмпирических науках всякая новая, еще не окончательно установленная закономерность фигурирует, по крайней мере временно, в качестве "рабочей гипотезы"; покуда вопрос не решен окончательно, имеются обычно как соображения (опытные и теоретические), говорящие в пользу этой гипотезы, так и такие, которые говорят против нее. Из двух ученых один может поставить своей задачей собрать как можно больше аргументов, поддерживающих такую гипотезу, а другой — заняться собиранием фактов и соображений, способных вызвать к ней недоверие. Дело происходит как в уголовном процессе, где перед обвинителем и защитником ставятся задачи собрать, привести в порядок и изложить все аргументы, соответственно говорящие за и против виновности подсудимых.

Само собою разумеется, что так поставленная научная дискуссия сама по себе не содержит еще ничего морально одиозного: собрать с возможною полнотою все имеющиеся аргументы за и против данной "рабочей гипотезы" — это во всех случаях приносило пользу прогрессу науки; нет, очевидно, ничего предосудительного и в том, что сбор аргументов за и против гипотезы выполняется двумя различными учеными (или группами ученых), если только обе стороны подходят к своей задаче добросовестно, руководствуясь исключительно желанием способствовать отысканию объективной истины. Моральный одиум, этическое неблагополучие начинаются там, где в своих выводах ученый перестает руководствоваться интересами объективной истины, а стремится поставить эти выводы — сознательно, полусознательно или бессознательно — на службу своим личным интересам — своему упрямству, своему честолюбию, своему корыстолюбию, когда аргументация приводится с пристрастием, "притягивается за волосы", необъективно акцентируется, точь-в-точь как в обывательских дрязгах. Такая деградация научного спора в иных случаях ложится мрачным пятном даже на крупнейших представителей научной мысли; среди же ученых меньшего ранга она представляет собою, к сожалению, довольно распространенное явление.

Одна только математическая наука полностью от всего этого избавлена. Она не знает "рабочих гипотез" — предложений, истинность которых может подлежать дискуссии. Пока предложение не доказано, оно вообще никак не входит в сокровищницу науки, никому не придет в голову его отстаивать; если же оно доказано, то истинность его никак не может быть подвергнута сомнению: оно является абсолютно общеобязательным. Никаких промежуточных ситуации математика не знает. Полемизировать, например, в защиту неполноценного доказательства в математике может только неуч, шарлатан или душевнобольной (все три категории действительно время от времени встречаются, достаточно вспомнить так называемых ферматистов, рыцарей квадратуры круга и трисекции угла); но такой "защитник" немедленно, единогласно и беспощадно разоблачается научным миром. Никакая аргументация с пристрастием или тенденцией, никакое "притягивание за волосы" ни при каких обстоятельствах не могут в математике иметь успеха. Разумеется, это относится только к содержанию самой математической науки; в вопросах логического или философского обоснования математики дискуссии возможны и даже неизбежны; возможны (и к сожалению, нередки) и споры персонального характера, связанные с развитием математики (например, по вопросам приоритета).

Каждый математик рано привыкает к тому, что в его науке всякая попытка по тем или иным мотивам действовать тенденциозно, заранее склоняясь к тому или другому решению вопроса и прислушиваясь только к аргументам, говорящим в пользу избранного решения, — всякая такая попытка заведомо обречена на неудачу, и ничего, кроме разочарования, пытающемуся принести не может. Такое положение, при котором неправильная или не до конца правильная аргументация могла бы оказаться выгодной для аргументирующего, здесь просто принципиально невозможно. Поэтому математик быстро привыкает к тому, что в его науке выгодна только правильная, объективная, лишенная всякой тенденциозности аргументация, что успех может принести только непредубежденное, беспристрастное напряжение мысли. И независимо от своего общего морального уровня он в своей научной работе всегда руководствуется исключительно соображениями объективной истинности.

Но эту черту, естественно развивающуюся у математика-специалиста, в известной степени воспитывает в себе, занимаясь математикой, и каждый неспециалист, в частности каждый школьник. Ему хорошо известно, что втереть очки учителю математики невозможно, что никакой апломб и никакое красноречие не помогут ему выдать незнание за знание, неполноценную аргументацию за полноценную. И как бы лжив он ни был в других отношениях, в математике он остережется отстаивать неверное утверждение или неправильное доказательство.

Но и здесь, как это часто бывает, моральные навыки, приобретенные в какой-либо одной области, в известной мере переносятся и на другие сферы мышления и практической деятельности. Теоретическая честность, ставшая для математика непреложным законом его научного мышления и профессиональной (в частности, педагогической) деятельности, довлеет над ним во всех его жизненных функциях — от абстрактных рассуждений до практического поведения.

Я должен признаться, что органически не способен отстаивать какое-либо утверждение (хотя бы и обыденно-практического содержания), если я не располагаю не допускающим никакого возражения его доказательством. Профессиональная привычка к абсолютной объективности аргументации не позволяет мне, как это делают многие другие, яростно, во что бы то ни стало отстаивать выгодное мне решение. Таким образом, черта, о которой я сейчас говорю, может иногда и повредить своему носителю; тем не менее я дорожу ею и рад, что она у меня есть; радуюсь и тогда, когда вижу ее в других, потому что придаю ей высокую моральную ценность.

Я всегда интересовался этой чертою и много раз наблюдал, как она развивается в людях под влиянием серьезного научного общения, в частности под воздействием уроков математики. Это очень радостная и морально возвышающая картина, когда человек постепенно преодолевает в себе отвратительную мещанскую привычку— подчинять законы мышления своим личным, мелким, корыстным интересам, теоретически защищать все то и только то, что ему практически выгодно; когда он научается уважать объективную правильность аргументации как высшую духовную и культурную ценность и все чаще и со все более легким сердцем жертвовать ради нее своими личными интересами. Доведенная до предела, эта черта представляет собою не что иное, как честность и правдивость — одно из лучших украшений нравственной личности человека.

Настойчивость и мужество. Добросовестная и серьезная работа над приобретением и укреплением знаний в любой научной области требует систематического напряжения умственных усилий, настойчивости в преодолении трудностей, мужественной встречи неудач; поэтому такая работа при правильном руководстве неизбежно воспитывает у учащегося соответственные черты характера: трудолюбие, усидчивость, упорство в преследовании намеченной цели, умение не останавливаться перед трудностями и не впадать в уныние при неудачах. Непосредственно ясно, какое решающее значение имеют все эти черты для развития морально и общественно полноценной человеческой личности и с каким вниманием должен поэтому учитель следить за максимальным использованием своих уроков в целях воспитательного воздействия в указанном направлении. Те возможности, которыми для этого располагают предметы школьного обучения, весьма многочисленны и многообразны, и нет такого предмета, в специфических чертах которого не было бы заложено особых, именно этому предмету свойственных движущих рычагов такого воспитательного воздействия. Наша задача здесь, естественно, должна состоять в указании тех черт математики как школьного преподавания, которые, отличая ее от других предметов школьного преподавания, способствуют развитию у учащихся разумной настойчивости и сознательного мужества — этих неоценимых качеств будущего борца.

Прежде всего я хочу здесь отметить четкую определенность поставленной цели, желаемого и требуемого результата каждого математического задания. Если заданием служит сочинение исторического или литературного содержания, то нельзя указать момента, когда такое задание дефинитивно закончено выполнением — возможности дополнения и усовершенствования, систематических улучшений всякого рода здесь почти безграничны; с другой стороны, учащийся не чувствует себя здесь достаточно компетентным для авторитетной оценки своей работы: то, что ему представляется в его сочинении вполне удачным, может встретить совсем иную оценку со стороны учителя. Вся эта, по существу, для данного задания неизбежная неопределенность, расплывчатость в оценке законченности и качества проделанной работы должна, несомненно, оказывать некоторое расслабляющее влияние на волевое напряжение еще мало вышколенного молодого ума.

В математике дело обстоят иначе. Если заданием служит решение задачи или доказательство теоремы, то тем самым указывается с полной определенностью и тот момент, когда задание может считаться окончательно выполненным: когда решена задача или доказана теорема; все остальное — изложение найденного решения, правильность и аккуратность записи и т. п. — имеет и в глазах учителя, и в глазах ученика лишь второстепенное, не решающее значение. Равным образом и качество работы здесь оценивается с однозначной определенностью: задача должна быть решена верно, теорема должна быть доказана правильно. Проверить отсутствие логических ошибок в своем рассуждении ученик может и должен уметь сам; в случае задачи он знает даже определенные приемы проверки решения. Легко понять, какое стимулирующее влияние на упорство, настойчивость в достижении цели может оказать и действительно оказывает эта четкая определенность показателей результата. Победа здесь так же непосредственно ощутительна, как в шахматной партии или спортивном состязании, и сам учащийся может с такой же уверенностью зафиксировать и оценить свое достижение, как и его авторитетный учитель.

Вторая, значительно более глубокая и важная черта математических заданий, которую я хочу здесь отметить, состоит в присущем им в значительном большинстве случаев творческом характере. В то время как в большинстве других областей знания выполнение задания, за немногими исключениями, требует от учащегося лишь определенных знаний и навыков — в лучшем случае еще умения стройно и стилистически правильно излагать эти знания, — решение математической задачи, как правило, предполагает изобретение специально ведущего к поставленной цели рассуждения и тем самым становится — пусть весьма скромным — творческим актом. Именно этот творческий, исследовательский характер математических заданий более чем что-либо другое влечет к себе молодые силы растущего и крепнущего интеллекта учащегося. Тот, кто изведал благородную радость творческого достижения, никогда уже не пожалеет усилий, чтобы вновь ее испытать. Никакие трудности его не остановят, сила его порыва и устремления, его усидчивость и выдержка в преодолении препятствий будут крепнуть с каждым новым достижением, а неудачи, ошибки, временные крушения и поражения он научится встречать, как подобает истинному борцу, не опуская перед ними руки, а черпая в них источник и стимул для все новых и новых напряжений мысли и воли.

Воспитание патриотизма. Задача использования уроков математики для воспитания и укрепления в учащихся прочного чувства гордости за свою Родину и любви к ней имеет в себе специфическую трудность, очевидная причина которой заложена в абстрактном характере математической науки. Надо сказать прямо, что непосредственно, своим собственным материалом и содержанием математика в силу этой причины вообще не может служить орудием пропаганды чего-либо столь конкретного, как красота и величие родной страны. Здесь она с естественной скромностью вынуждена уступить место другим наукам.

Однако на уроках математики ученик вовсе не все время сосредоточивается на ее абстрактной сущности; абстрактные схемы математики непрестанно, почти на каждом уроке оснащаются, дополняются и иллюстрируются весьма различным конкретным содержанием, сюда входит содержательный материал "текстовых" задач, исторические сведения, различного рода приложения и т. п. При этом во многих случаях выбор конкретного оснащения в весьма широких пределах может быть варьирован, и таким образом в значительной степени ставится на усмотрение преподающего. Очевидно, такой произвол может быть широко использован учителем для фиксирования внимания учащихся на фактах и цифрах, поддерживающих и укрепляющих уважение и любовь к Отечеству. У нас неоднократно писалось уже о подборе патриотически направленного материала текстовых задач. Против этого приема ничего нельзя возразить; надо только тщательно продумать выбираемый материал, чтобы избежать опошления, вульгаризации самой патриотической идеи, как это бывает, когда конкретное содержание задачи мало естественно, "притянуто за волосы", или когда задача, сообщая достаточно интересные цифры и факты, ставит по поводу них такой вопрос, который явно не имеет ни непосредственного интереса, ни какого-либо практического значения. Вместе с тем надо, конечно, отчетливо представлять себе, что весь этот прием является чисто внешним, для развития патриотических чувств здесь используются уроки математики, но никак не самая математика.

Значительно теснее связан с самой математической наукой прием, состоящий в придании патриотической направленности целому ряду исторических сведений. Этот прием, помимо впечатляющей силы воздействия, особенно ценен еще тем, что он значительно повышает интерес учащихся к истории математической науки, а во многих случаях дает повод и возможность эффективным образом ознакомить учащихся с математическими фактами, выходящими за пределы официальной программы и счастливым образом ее дополняющими. Так как по этому вопросу у нас почти ничего не писалось, то я здесь остановлюсь на нем несколько подробнее.

История русской и советской математики богата фактами, знакомство с которыми, в особенности на фоне правильной исторической перспективы, способно возбуждать в нас законную радостную гордость. И среди этих фактов есть немало таких, понимание которых доступно учащимся средней школы в достаточной мере для того, чтобы они могли оценить их принципиальное или практическое значение. Нужно только, чтобы сам учитель был хорошо осведомлен как об этих фактах, так и об их роли и месте в науке, а также и о той научно-исторической обстановке, в которой они возникали и развивались. Нужно, кроме того, конечно, уметь рассказать учащимся об этих фактах так, чтобы возбудить их живой интерес и извлечь максимальный эффект как для их математического развития, так и для воспитания в них здорового чувства национальной гордости.

Хорошо известно, что для всего этого очень продуктивно могут быть использованы научные идеи нашего великого соотечественника Н. И. Лобачевского и научная судьба его идеи. В своей основе великий геометрический замысел Лобачевского вполне доступен школьникам старших классов, а проведенная с надлежащим тактом беседа о нем может много содействовать, с одной стороны, пониманию основной для современной математики идеи аксиоматического мышления, а с другой — глубокому уважению как к научному гению Лобачевского, так и к его замечательной теоретической стойкости — великой силе убеждения, позволившей ему творить в одиночестве, без общественного признания, в научно-враждебной атмосфере.

Значительно менее известны у нас творения другого нашего великого ученого П. Л. Чебышева. А между тем научный облик его не менее импозантен, чем фигура Лобачевского. И кое-что о нем с большой и многосторонней пользой может быть рассказано и школьникам. Чебышев принадлежал к числу тех немногих ученых самого высокого ранга, которые на протяжении своей жизни работают в довольно многих, часто весьма удаленных друг от друга областях математики, в каждой из этих областей прокладывая совершенно новые пути, по которым затем в течение многих десятилетий идут их последователи. Великий дух новаторства был присущ Чебышеву не в меньшей степени, чем Лобачевскому. В теории чисел, теории вероятностей, теория механизмов и теории аппроксимации функций он создал мощные новые методы и сделался родоначальником большого числа научных школ в России и за границей. Замечательные идеи его далеко не исчерпаны и до настоящего времени.

Для учащихся средней школы особенно доступны и поучительны достижения Чебышева в теории чисел. Теорему Евклида о существовании бесконечного множества простых чисел знают все. Очень полезно выписать с учащимися таблицу простых чисел хотя бы до 100 и обратить их внимание на видимое отсутствие закономерности в расположении этих чисел. Затем рассказать о том, как задача о закономерностях в чередовании простых чисел была и остается одной из центральных проблем арифметики. Стоит привести (без доказательства) вполне понятный школьникам и способный вызвать в них интерес результат Эйлера p(n)/n Ю 0 (1/n Ю 0). В самых общих чертах можно затем коснуться асимптотических результатов Чебышева, обязательно давая историческую картину тех значительных усилий, которые до Чебышева были посвящены этой задаче. Конкретно же очень стоит остановиться на элементарном постулате Бертрана, проверить его на ряде примеров и тем возбудить интерес к нему со стороны учащихся. Позднее можно разобрать и какое-либо из его элементарных доказательств, хотя бы в порядке кружковой работы.

Очень советую обратить внимание учащихся на следующий замечательный исторический факт. Арифметика и геометрия — два старейших и важнейших раздела математической науки, и в обоих в течение ряда столетии наука в значительной степени питалась творениями Евклида; центральные проблемы этих двух основных ветвей математики — теория параллельных в геометрии и задача о распределении простых чисел в арифметике — в течение многих веков не поддавались сколько-нибудь заметно многочисленным усилиям целых поколений ученых.

И вот, в XIX столетии, обе проблемы были сдвинуты, наконец, с мертвой точки. В геометрии это сделал русский математик Лобачевский, в арифметике — русский математик Чебышев. Оба они проложили, каждый в своей области, совершенно новые пути, по которым наука успешно развивается до настоящего времени. Нет сомнения, что эти великие исторические скачки — Евклид — Лобачевский и Евклид — Чебышев — должны импонировать молодым умам, которые в известной мере уже способны оценить их значение.

Заинтересовав учащихся вопросами распределения простых чисел, учитель имеет совершенно естественный повод рассказать им о знаменитой гипотезе Гольдбаха. Очень стоит проверить ее в классе в пределах хотя бы чисел первой сотни. Затем, конечно без всяких доказательств, сообщить о блестящих достижениях советского академика И. М. Виноградова (его основной результат в направлении проблемы Гольдбаха, разумеется, вполне доступен учащимся по своему содержанию).

Заключение

1. Я сознательно полностью оставил в стороне важнейший для темы настоящей статьи вопрос о значении уроков математики для формирования мировоззрения учащихся. Я сделал это по той же причине, по какой в свое время отказался от рассмотрения вопроса об использовании уроков математики для воспитания навыков диалектического мышления: ознакомление с идеями и методами математической науки имеет фундаментальное мировоззренческое значение, но львиная доля воспитательного эффекта в этом направлении принадлежит математике переменных величин, так называемой высшей математике, с которой, по выражению Энгельса, в математику входит диалектика и которая, к сожалению, все еще почти целиком остается за бортом наших школьных программ. Поистине не стоит при этих условиях говорить о влиянии на формирование мировоззрения той диалектически худосочной части математической науки, которая в настоящее время находит себе приют в нашем школьном преподавании. О тех же мощных сдвигах, направляющих и формирующих мировоззрение, которые может произвести и фактически часто производит изучение высшей математики, можно сказать очень много, и я собираюсь говорить о них в моей будущей статье, о которой я уже упоминал.

2. В этой статье я не касался методических вопросов. Я говорил только о том, какие особенности математической науки и для воспитания каких именно качеств интеллекта или моральной личности учащегося могут и должны быть использованы, но нигде не касался вопроса о том, как это может быть сделано. Мой опыт говорит мне, что это обстоятельство может вызвать недовольство в некоторых кругах читателей; вероятно, я не гарантирован от набивших уже оскомину упреков в том, что моя статья "ничего не дает учителю" и советов "повернуться лицом" и т. д. Поэтому я считаю необходимым сделать по этому поводу следующее краткое разъяснение.

1) Я считаю, что составление сколько-нибудь детальных методических указаний по рассматриваемым мною в настоящей статье вопросам действительно совершенно излишне. Сколько-нибудь заметный воспитательный эффект уроки математики (как и всякой другой науки) могут дать только при том условии, что учитель, во-первых, достаточно хорошо знает свою науку, ее методологию и ее историю, во-вторых, имеет достаточный педагогический такт и опыт и, наконец, в-третьих, сам обладает в достаточной мере всеми теми качествами, которые он собирается воспитывать в своих учениках. Учителю, который сам не умеет мыслить абсолютно отчетливо, никакие методические шпаргалки не помогут воспитать ясность мысли в учащихся; или еще: какая методика поможет учителю сделать своих учеников горячими патриотами, если сам он любит свою Родину вяло и с прохладцей?

И напротив, если учитель стоит на высоте своей задачи, если он в полной мере обладает всеми перечисленными выше качествами, то никакие методические разработки по воспитательным вопросам ему заведомо не нужны: в каждом отдельном случае он с легкостью и непринужденностью сам найдет наиболее эффективный путь к поставленной цели. Навязывание ему определенной конкретной методики было бы для такого учителя только помехой в работе.

2) Если, таким образом, я считаю составление детальных методических указаний по затронутым мною вопросам практически бесцельным, то может быть было бы полезно все же дать по ним ряд общих методических советов; я думаю, что было бы хорошо, если бы моя статья побудила кого-либо из наших лучших учителей-методистов высказаться по этому вопросу и сделать достоянием младших товарищей некоторые общие выводы из своего опыта. В этом они во всяком случае компетентнее меня, и здесь я со всей необходимой скромностью должен уступить им слово.

3. Наконец, я хочу попытаться заранее оградить себя еще от одного рода упреков, которые я предвижу и которые обычно бывают основаны на недоразумении. Так как я говорил о воспитательном эффекте уроков математики, то мне, естественно, пришлось перечислять одну за другой именно те черты математической науки, которые в воспитательном отношении дают ей то или другое преимущество перед другими дисциплинами. В этом ведь и состояла моя задача. Но когда поступаешь таким образом, то у недостаточно вдумчивого читателя создается впечатление, будто бы ты поставил своей целью превознесение математики над всеми другими науками и вся твоя статья сплошь утверждает, что единственно подлинная наука есть именно математика, все же другие дисциплины страдают теми или другими изъянами и науками могут быть названы лишь с известной оговоркой. Уважаемые коллеги — представители других наук — начинают чувствовать себя несправедливо обиженными и подвергают твою работу яростной критике, доказывая, что другие науки ничуть не хуже и что всеми преимуществами, которыми в моем представлении монопольно обладает математика, на самом деле в такой же мере наделены и все прочие дисциплины.

С первым пунктом этого заявления я целиком и полностью согласен: другие науки действительно ничем не хуже математики; более того, представители этих других наук обычно вызывают во мне глубочайшее уважение тем, что творят великие ценности в таких областях, в которых творчество, на мой взгляд, неимоверно трудно, гораздо труднее, чем в математике. Но ведь в моей статье я нигде ни разу не называю математику лучшей из наук! Напротив, я несколько раз со всею скромностью подчеркиваю, что как орудие воспитания математика прежде всего отмечена такой особенностью, значение которой для данной цели очевидным образом отрицательно, — она абстрактна, предметом ее служат не сами вещи и явления реального мира, а лишь абстрагированные от них количественные отношения и пространственные формы. Это обстоятельство, как я несколько раз подчеркиваю в своей статье, делает для математики воспитательную задачу значительно труднее, чем для других школьных дисциплин. Но зато математика в некоторых других отношениях отмечена такими чертами, которые создают ей воспитательные возможности более значительные, чем у этих других дисциплин. И то, что я в своей работе соответственно моей задаче сосредоточиваю внимание читателя именно на этик чертах, никак не может, конечно, означать какого-либо гипостазирования  математики, превознесения ее выше всех других наук.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.gumer.info/


Анализ работы ШМО учителей физики, математики и информатики

 

          В течении 2007 – 2008 учебного года было проведено 5 заседаний МО учителей физики, математики и информатики. Все заседания проведены по плану (план прилагается). Свою работу МО строило исходя из проблемы: «Нестандартные формы обучения учащихся на уроках физики, математики и информатики». В текущем учебном году перед МО были поставлены следующие задачи:

          1. Обеспечить выполнение «Государственных стандартов» на всех ступенях образования.

          2. Повышать качество знаний учащихся в процессе преподавания физики, математики и информатики.

          3. Совершенствовать систему повторения учебного материала с целью подготовки учащихся к сдаче ЕГЭ.

          4. Разнообразить формы и методы проведения уроков и внеклассных мероприятий, внедряя элементы компьютерных технологий, совершенствуя формы и методы преподавания.

          5. Осуществлять личностно – ориентированный подход в обучении учащихся физике, математике и информатике.

          Каждый педагог работал над поставленными задачами. Подводя итоги, можно сказать, что большая часть задач была успешно решена. Учителя физики, математики и информатики применяли в своей работе методы личностно – ориентированного обучения, внедряли элементы компьютерных технологий, разнообразили формы и методы проведения уроков и внеклассных мероприятий. Для учеников 9 – 10 классов проводились элективные курсы по математике.

          Все заседания ШМО прошли по темам, которые были запланированы в начале учебного года (тематика заседаний прилагается). Итоги работы по темам самообразования были подведены в форме индивидуального отчета каждого педагога на МО в конце учебного года, на котором были определены перспективы дальнейшей работы.

          В течении 2007 – 2008 учебного года учителя физики, математики и информатики осуществляли внутришкольный контроль: взаимопосещение уроков  и  внеклассных  мероприятий, проведение  олимпиад  по  математике

(5 – 11 классы), физике (7 – 11 классы), участие представителей МО в мониторингах, при проведении и проверке административных контрольных работ. Также в этом учебном году велась работа с одаренными детьми. Работа проводилась как на уроках, так и во внеурочное время, на групповых и факультативных занятиях. Учащиеся принимали участие в районной и республиканской олимпиаде по математике и физике. В этом году ученик 11 класса Пильщиков В. занял второе место на республиканской математической олимпиаде.

          Как и каждый учебный год учителя физики, математики и информатики проводили открытые уроки во время декадника, с целью обмена опытом. По окончании декады каждый учитель оформил отчет о проведенных мероприятиях по предмету. Весь этот материал собран в отдельную папку.

          По итогам учебного года качество знаний составило по математике 22 – 71%, по физике 32 – 76%, по информатике 50 – 100%. Самое низкое качество знаний в 7В классе по алгебре 28%, по геометрии 22%; в 9А классе по алгебре и по геометрии 30% , по физике 38%; в 8Б классе по алгебре 32%, по геометрии 36%; в 10Б классе по алгебре и геометрии 31%, по физике 32%; в 6А классе по математике 38%.    

          В следующем учебном году члены МО продолжат работу над следующими проблемами:

          1. Вельмискина Р.В. «Дифференцированный подход к учащимся при обучении математике».

          2. Грачев С.И. «Эмоционально – проблемное обучение на уроках физики и математики».

          3. Дергунова В.А. «Развитие познавательной активности учащихся на уроках математики».

          4. Климкина Л.Н. «Межпредметные связи на уроках математики».

          5. Малова С.И. «Дифференцированный подход к учащимся при обуче-нии математике».

          6. Петрова Э.В. «Развитие самостоятельности и познавательной активности в условиях дифференцированного подхода к учащимся в обучении физике».

          7. Спиридонова Н.А. «Дифференцированный подход к учащимся в обучении физике».

          8. Шебанова О.А. «Разнообразие самостоятельной работы на уроках математики».

          9. Федосеева Т.Н. «Активизация познавательной деятельности на уроках математики».

          10. Зароченцева О.С. «Развитие самостоятельности в условиях дифференцированного подхода к учащимся в обучении математике».

  


 

Технология личностно-ориентированного обучения математике в гимназии №2
Технология личностно-ориентированного обучения математике вовлекает каждого ученика в процесс само - и соуправления своим развитием.

 В основу организации образовательного процесса в гимназии положен личностно-ориентированный подход, который:

§     способствует раскрепощению в каждом гимназисте творческого потенциала и развитию его потребностей и способностей в преобразовании окружающей действительности и самого себя;

§     пробуждает деятельное начало, пронизывающее все ступени образования и все формы работы с детьми, которое позволяет строить образовательный процесс не на пассивно - содержательной ноте, а в форме диалога и творчески как для учителя, так и для ученика.

Технология личностно - ориентированного обучения математике обусловлена целями:

  1. заинтересовать каждого учащегося математикой и обеспечить его развитие в условиях атмосферы взаимопонимания и сотрудничества;
  2. развить творческий потенциал учащихся;
  3. развить индивидуальные познавательные способности каждого ребенка;
  4. помочь личности познать себя, самоопределиться и самореализоваться.

Задачи:

  1. Выявить внутренние психофизиологические ресурсы учащихся, позволяющие им реализовывать себя в познании математики.
  2. Определить индивидуальный темп учебно-познавательной деятельности учащихся.
  3. Осуществлять реализацию дифференциации и индивидуализации обучения математике на уроках, спецкурсах, индивидуальных занятиях, во внеклассных мероприятиях.
  4. Внедрять и совершенствовать новые программы, разрабатывать дидактические пособия.
  5. Развивать самостоятельность учащихся, умение организовывать и управлять своей научно - познавательной деятельностью.
  6. Развивать интеллектуальные компетенции учащихся:

§     выделять в информации существенное, главное;

§     систематизировать материал, выражать его в схеме;

§     подбирать вступление к собственному ответу; во время ответа делать сопоставления и выводы;

§     пользоваться справочной литературой;

§     изображать графически поддающийся схематизации текст;

§     строить связный рассказ, подчеркивая логические акценты и переходы;

§     раскрывать материал в сравнении;

§     понять познавательную задачу, содержащуюся в тексте;

§     высказывать собственное отношение к изучаемым фактам и событиям;

§     самостоятельно формулировать вопросы в связи с изучением нового материала или сопоставлением его с уже известными фактами и положениями;

§     проводить элементарное исследование на основании нескольких источников, документов, наблюдений, экспериментов);

§     формировать, гипотезу, намечать пути ее проверки;

§     проводить сравнения, сопоставления, делать выводы; классифицировать информацию по существенным признакам; раскрывать смысл абстрактных явлений.

Принципы, которыми мы руководствуемся в педагогической деятельности:

1.      Принцип целеполагания и мотивации.

2.       Важное значение на уроке в реализации данного принципа приобретают организация и управление деятельностью учащихся по целеполаганию, мотивации и определению темы занятия, которое реализуется на практике различными путями:

§     на одних уроках ученики совместно с учителем формулируют проблемный вопрос;

§     на других - учащиеся выходят на постановку целей, анализируя домашнее задание;

§     на третьих - учителем на доске записываются только ключевые и вопросительные слова типа: а) Что? Как? Зачем? Почему? От чего зависит? Как влияет? Что общего? б) Определить, вывести, выявить закономерность, доказать и т. д., а учащиеся на основе данного клише составляют целостную картину целей на занятие.

2. Принцип открытости, понимаемый как возможность дополнять, видоизменять информацию, формы организации учебно-познавательной деятельности, реализуется на основе обработки результатов диагностики с мониторинговым подходом.
Контрольная диагностика позволяет учителю объективно определять количество учеников, работающих на разных уровнях, корректировать педагогические воздействия.
На занятиях главный акцент делается на самостоятельную работу с индивидуальным темпом в сочетании с приемами взаимообучения и взаимопроверки.

3. Принцип вариативности реализуется путем использования на уроках нескольких альтернативных учебников, справочников, таблиц, что позволяет рассмотреть многие вопросы с различных позиций и выработать свой подход к их решению.

4. Принцип направленности обучения на развитие личности ученика осуществляется через создание условий для каждого школьника по формированию индивидуального стиля деятельности, а именно через самостоятельную и контрольную работы с разноуровневыми заданиями; выбор ролей в деятельности групп; возможность выбора уровня домашнего задания. Учебно-дидактические материалы каждой темы по математике разбиты на три уровня. Уровни определяются следующим образом:
Первый уровень является базовым. Он создает основу для дальнейшего совершенствования математических знаний, умений и навыков учащихся и основу для подготовки к поступлению в ВУЗ.
Выполнение требований второго уровня должно обеспечивать подготовку учащихся к поступлению в технические, экономические ВУЗы (НГПУ, НГАВТ, СГУПС и другие) и, вместе с тем, пробуждать интерес к математике как науке, азарт интеллектуальной соревновательности , способствовать к переходу к третьему уровню освоения стандартов.
Освоение третьего уровня должно развивать творческие способности старшеклассников, позволять им почувствовать уверенность в своих силах, пробуждать интерес к исследовательской работе. Это необходимый плацдарм для участников олимпиад всех уровней, для старшеклассников, занимающихся исследовательской работой и участников интеллектуальных игр. Выполнение требований данного уровня обеспечивает подготовку учащегося к поступлению в ведущие ВУЗы страны, готовящие математиков (НГУ, МГУ и т.д.)

5. Принцип успешности обучения означает собственный успех каждого школьника, использование стимулирующего поощрения его активной деятельности при работе оценочной системы (поощрение с помощью накопления баллов, жетонов). Это позволяет увеличить интенсивность урока за счет повышения активности учащихся и возможности оценить каждого, создает высокий эмоциональный подъем и настрой на весь урок, условие для повышения интереса к предмету, увеличения количества учеников, вовлекаемых в активную учебно-познавательную деятельность.

6. Принцип индивидуализации обучения опирается на составление индивидуальных программ по усвоению учебного материала для каждого ученика на основе результатов мониторинга по определению зоны ближайшего развития.

Система работы учителя математики состоит из следующих компонентов:

  1. Диагностика обучаемости и обученности учащихся как условие реализации технологии личностно - ориентированного обучения математике.
  2. Дифференциация обучения с постановкой разноуровневых целей к каждой учебной теме позволяет учителю использовать индивидуальный подход к детям, управлять учебно-познавательной деятельностью учащихся.
  3. Рефлексивный характер обучения; оценка учащимися своих возможностей и результатов учения; предоставление учащимся выбора содержания и форм учения; сочетание самоконтроля; взаимоконтроля учащегося и контроля со стороны учителя; система поощрительных приемов, дающая комплексный подход к получению оценки; самостоятельная формулировка реальных и перспективных целей урока.
  4. Создание условий для включения каждого ученика в деятельность, соответствующую его "ЗБР": организация системы дифференцированных заданий на протяжении всей темы, работа с алгоритмами, тестами - позволяет организовать доминирующую самостоятельную деятельность ученика по целеполаганию, самопланированию, самоорганизацию, самоконтролю, самооценке и коррекции своих знаний, умений и навыков.
  5. Уровневое домашнее задание на всю тему с различными способами коррекции на каждом занятии. Разработка учениками к каждому занятию серии репродуктивных и проблемных вопросов по изучаемой теме. Составление учащимися кроссвордов, карточек - заданий, написание ими рефератов, сказок, стихов.

Методы обучения и воспитания состоят в том, что учитель:

§     управляет познавательной деятельностью ученика, т.е. переходит с позиции носителя знаний (дающего знания) в позицию организатора собственно познавательной деятельности учащихся;

§     мотивирует познавательную деятельность ученика на уроке за счет коммуникации взаимопонимания и добивается положительного отношения к предмету;

§     организует самостоятельную работу на уроке, включая работу с различными источниками информации;

§     включает всех учащихся в коллективную творческую деятельность, организуя взаимопомощь;

§     создает ситуацию успеха, т.е. разрабатывает методику и предлагает задания, посильные каждому ученику;

§     создает положительную эмоциональную атмосферу учебного сотрудничества, которое реализуется в системе гуманных учебных взаимоотношений;

§     организует самоанализ собственной деятельности ученика и формирует его адекватную самооценку;

§     внедряет проектный метод обучения с использованием компьютерных технологий.

Таким образом, технология личностно-ориентированного обучения математике вовлекает каждого ученика в процесс само - и соуправления своим развитием.

.


 


Реферат: Господствующие стили математического мышления

Господствующие стили математического мышления

Стиль - понятие, развивавшееся тысячелетия в искусстве, литературе, языке и означавшее целостность образной системы, единство средств художественной выразительности. Например, в архитектуре известны стили - античный, готика, классический, барокко, модерн и другие. С 70-х годов XX в. в исследованиях по истории и методологии науки было введено и широко обсуждалось понятие стиля научного мышления.

Аналогично можно говорить о стиле мышления в математике: это целостное единство содержания и формы математического творчества и его результата - научного произведения; это единство идеи и ее доказательства (обоснования и изложения). Стиль является неотъемлемой характеристикой личности автора и его математического творчества (под личностью здесь понимается отдельный ученый, сообщество, научная школа).

Каждый выдающийся математик отличался собственным стилем творчества, проявлявшимся во многих произведениях. Для Пифагора и его школы характерен мистико-математический стиль, т.е. изотерическое мировоззрение, отрывки из которого выглядят для непосвящённого то как религиозное, то как философское знание. Для Демокрита - математический атомизм, ставший первым предвестником дифференциального и интегрального исчислений. Для Евклида - строго последовательный, предельно лаконичный, я бы сказал, аскетический стиль аксиоматики. Для Архимеда - гениальный своей простотой и смелостью механико-геометрический стиль доказательств (во многом схожий с корпускулярно-механическим стилем И.Ньютона, понимавшего мир как совокупность корпускул, движущихся по одним и тем же неизменным, раз навсегда установленным законам). Стиль Архимеда и Ньютона возникает при восхождении мысли от содержательного к формальному, от конкретно-физического к абстрактно-математическому уровню понятий.

Прямо противоположен по направленности стиль Г.Лейбница, шедшего от философии к математике, от философско-теологической  модели бытия (монадологии) к более конкретному уровню - анализу бесконечно малых.

Стиль голографичен, т.е. узнаваем по отдельному произведению. Прочитав кусок из древнего текста об аксиомах и постулатах, мы сразу узнаем его автора - Евклида. Несколько страниц из книги XIX века об основаниях геометрии однозначно укажут на их автора - Н.И.Лобачевского, Я.Бойаи или Б.Римана. Поэтому и в математике работает герменевтика - теория понимания, возникшая в типично гуманитарных областях - теологии, филологии, юриспруденции.

Стоит отметить известную мысль Ф.Клейна о двух типах математиков - интуитивистах и формалистах. Первые стремятся проникнуть в сущность проблемы и "увидеть" результат (путем озарения, инсайта), потом сформулировать теоремы и доказать. Но доказательство для них - дело второстепенное.

Для вторых наоборот: главное - доказать теорему - тщательно, скрупулезно, не только одним, но и вторым, и третьим способами, чтобы проверить и перепроверить доказанное, убедиться в получении "абсолютной истины".

Большинство выдающихся математиков относятся к интуитивистам (в последние века - П.Ферма, Р.Декарт, Л.Эйлер, Н.И.Лобачевский, Б.Риман, А.Пуанкаре, Л.Брауэр, Г.Вейль и другие). Но немало известных ученых гармонично сочетали в своем стиле и глубочайшую интуицию, и строгую логику - Гаусс, например.

Можно говорить также о стилях, определяемых излюбленными методами математика, либо связями с приложениями, либо истоками идей (из естествознания, управления, философии или даже политики).

Как видим, стили чрезвычайно разнообразны и определяются неповторимым сочетанием следующих трёх факторов:

Личностью учёного (его одухотворённостью, эмоциями и интеллектом, памятью, волей, системой ценностей, преобладанием дискретных или непрерывных процессов в мышлении, нацеленностью на открытие, новизну или на обоснование ранее полученного знания, на доказательство, ориентацией на красоту идеи или на пользу и т.п.). Всё это составляет гуманитарную, субъективно человеческую и наиболее богатую составляющую стиля.

Специфическими свойствами математического знания (требованием его аподиктичности - доказательности и неопровержимости, трансцендентностью, умозрительностью и формально-знаковым характером, тремя фундаментальными структурами - арифметической, алгебраической, топологической, ориентацией на истину, а не пользу, его связью с приложениями в естественных и гуманитарных науках). Это "объективная" составляющая стиля, наиболее независимая от личности учёного.

Социально-культурным контекстом данного времени, определяемым: а) спецификой культуры - восточной или западной; б) господствующим мировоззрением - мифологическим, религиозным или философским, а также ведущей ориентацией эпохи - на гармонию (как в древней Греции), или на духовное совершенствование (как в средние века), или на материально-технический прогресс (как в новое время, в последние четыре столетия), или на поиски гармонии человека и природы (с XXI века); в) нацеленностью научного сообщества в текущий период математики на эмпирические или теоретические методы обоснования теорем, на алгоритмический (генетический) или аксиоматический способы развития и изложения полученной информации, на конкретные или абстрактные задачи, на практический или теоретический способы организации математического знания и т.п.

Эти три фактора во взаимодействии и образуют необычайное богатство математических стилей как единства формального и содержательного, духовного и материального, фантастического и реального, гуманитарного и естественнонаучного и других элементов знания.

Каковы же главные стили, как их классифицировать, систематизировать - по каким основаниям?

Большинство людей мыслят в рамках двузначной логики, поэтому и стили мышления удобнее всего представить как расположенные между двумя противоположными полюсами А и -А (как аттракторами - центрами притяжения мышления самых различных ученых). Отсюда естественно ввести классификацию стилей по линии противопоставления: 1) содержательный стиль - формальный стиль (или близкое к ним деление: конкретный - абстрактный стиль, частное - общее, имея в виду стремление одного ученого к решению конкретных задач, а другого наоборот - к построению абстрактно-формальных схем и их применению к решению частных вопросов); 2) дискретный - непрерывный (в частности, алгебраический - геометрический), 3) платонистский - неплатонистский (в частности, классический, в духе теоретико-множественной математики, - интуиционистский, в духе интуиционизма Л.Э.Я.Брауэра). Кроме подобных делений с философско-методологических позиций, возможны гуманитарные классификации: 1) национальный - интернациональный, 2)индивидуальный, неповторимый - повторяющийся, 3) временный, относящийся к данной эпохе - "вечный", внеэпохальный, 4) относящийся к определенной математической школе - "внешкольный" и т.п.

Рассмотрим их подробнее на примерах сопоставления стилей отдельных ученых. Из сравнения и будет видно - чей стиль более содержателен, чей более формален, более непрерывен или более дискретен.

Сравним И.Ньютона и Г.Лейбница.

Области их интересов в математике во многом сходны - это начала дифференциального и интегрального исчислений, вариационного исчисления, аналитическая геометрия. Но постановка проблем, формулировка задач, подходы к их решению, методы решения, философия и особенности мышления - различны и нередко противоположны.

Ньютон во всем основателен, фундаментален, требователен к себе - вследствие этого медлителен. Лейбниц гораздо более разбросан и тороплив. Получив результат, спешит опубликовать. Англичанин эмпиричен, строит приборы, проводит тщательную проверку выводов, стремится избегать гипотез, не обоснованных опытом ("hypotesis non fingo"). Немец - сторонник чистого умозрения, теоретик, не слишком затрудняющий себя обоснованием многочисленных идей (догадок, обобщений, аналогий), непрерывно выдвигаемых им. Ньютон идет от конкретного к абстрактному - от фактов к законам и теории в целом, математика для него - лишь часть естествознания. Лейбниц обычно мыслит от общего к частному, от абстрактного к конкретному - от философской схемы монадологии к ее интерпретации в математике - идеям дифференциала и интеграла. Математика и логика для него - нечто вроде формального раздела философии. Создатель "Математических начал натуральной философии" мыслит целостными геометрическими образами, ему по душе правополушарное мышление, мышление непрерывным. Основоположнику математической логики ближе алгебраические формы, дискретные символы, левополушарное мышление

Таким образом, хотя стиль каждого ученого глубоко индивидуален, а выдающегося - просто неповторим, тем не менее можно сделать вывод, что стиль Ньютона в основном геометро-механический, а стиль Лейбница -алгебро-логический. Это вполне соответствует и культуре их стран. Англия, как известно, родина эмпиризма, оплот индуктивизма и индивидуализма. Германии же более присуще чисто теоретическое, формально-схематическое мышление, движение мысли от абстрактного к конкретному, а следовательно - дедуктивизм, стремление подчинить индивидуальное, частное - тоталитарному целому.

Сходным образом, можно сравнить стили мышления Д.Гильберта и Л.Э.Я.Брауэра. Они заложили 2 программы обоснования математики - формализм и интуиционизм. Сходство и различие их стилей (как специалистов по основаниям) легче всего обнаружить при сравнении позиций в дискуссии по основаниям математики, которая проходила то разгораясь, то затухая в 1910-е - 20-е годы. Обсуждалось значение теории множеств для математики, роль аксиоматического метода, формализации, абстракции актуальной бесконечности, законы логики (в особенности закон исключенного третьего), связи между математикой, языком, логикой, существование математических объектов, природа и методы математического мышления, проблема реальности.

Брауэр критикует классическую (теоретико-множественную) математику за необоснованность, неубедительность ее слишком умозрительных, "лихих" абстракций. Гильберт защищает идеалы Кантора. Брауэр опирается в качестве философского фундамента на "непосредственно данную реальность", на переживания индивида - в этом смысле ему близки буддизм, экзистенционализм, философия потока сознания. Гильберт берет за основу объективную реальность, данную в коллективном чувственном опыте. Его философия - платонизм и неокантианство.

В дискуссии обсуждались 5 главных проблем: 1) проблема непротиворечивости и полноты теории (математики), 2) обоснования теории, 3) существования математических объектов, 4) природы познания, 5) реальности и ее единства.

Проблема непрерывности и полноты.

Брауэр: классическая математика противоречива, т.к. опирается на теорию множеств, содержащую парадоксы. Новая (интуиционистская) математика рассматривает мир мысленных процессов, развертывающихся в последовательность элементарных актов (шагов). Результаты этих процессов - математические объекты и конструкции.

Гильберт: классическая математика непротиворечива, ее теории полны, т.к. а) ее конструкции продуманы и признаны математическим сообществом, б) она прекрасно работает в практике. Бессмысленна замена классической математики на интуиционистскую, т.к. последняя неполна, это обрезанная (секвестированная) математика.

Проблема обоснования.

Брауэр: только такая математика обоснована, которая соответствует критериям интуиционизма как конструктивному обобщению человеческого опыта. Аксиоматический метод и формализация не выражают сущности математического мышления, т.к. скрывают за языковой формой эту сущность. Убедительное обоснование математики дает лишь интуиция как непосредственное внутреннее безъязыковое переживание образов, идущих из глубины "я". Лишь по требованию социума ученый вынужден облекать эти образы в языковую форму и тем искажать их (в точности, как у Ф.И.Тютчева: "мысль изреченная есть ложь"). У Гильберта же математика вырождается в игру формулами.

Гильберт: классическая математика обосновывается коллективным опытом научного сообщества. Окончательное обоснование даст теория доказательств. Она является "протоколом о правилах мышления". Ее существенной частью являются формализм и аксиоматический метод. Задача науки - освобождение от субъективизма, который достиг своего наивысшего выражения в интуиционизме.

Проблема существования математического объекта.

Брауэр: математический объект существует, если он построен явно или его построение возможно с помощью алгоритма. Теоремы о существовании без построения не имеют никакого значения.

Гильберт: объект существует, если он непротиворечив. Доказательсва существования сокращают и экономят мысль. Они всегда были вехами математического прогресса.

Проблема природы мышления.

Брауэр: математическое мышление опирается на интуицию (прежде всего интуицию времени, интуицию раздвоения единого). Существуют исходные принципы мышления, но они лишь результат свободного творения математика-индивида. Изначально математическое исследование не зависит ни от языка, ни от логики. Главный метод мышления - интроспекция. Обыденное знание выше формального. Существуют неразрешимые проблемы.

Гильберт: математическое мышление основано на интеллектуальной ясности. До математики мы имеем опытные представления, конкретные объекты. Математика начинается со знаков, обозначающих эти объекты, и с логики, дающей надежные выводы. Математика интерсубъектна (является результатом коллективного творчества) и, вообще говоря, объективна (в платонистском смысле). Формальное знание выше обыденного. Мир познаваем, все математические проблемы в принципе разрешимы.

Проблема реальности и единства мира.

Брауэр: реальность - это сознание индивида, это образы, мыслеформы, восходящие от внутренней сферы к внешнему миру. Это субъективная реальность. Существует ли объективная реальность, единая для всех индивидов, - открытый вопрос.

Гильберт: существует объективная реальность, данная нам наглядно, в качестве чувственных переживаний до какого то ни было мышления. Единство мира проявляется в математике как универсальном языке, раскрывающем сущность мира.

Как мы знаем, в споре не оказалось победителя. Интуиционистская и теоретико-множественная математики дополняют друг друга.

Гильберт и Брауэр работали в различных областях. Гильберт ясен, последователен, логичен. Более склонен к формальному мышлению, что особенно видно на теории доказательств. Он платонист и кантианец. Его стиль можно назвать формально-платонистским. Это господствующий стиль, т.к. абсолютное большинство математиков - платонисты.

Брауэр же пытался оторваться от платонизма, порвать с античной традицией математиков оперировать идеальными объектами подобно материальным предметам. Отсюда впечатление противоречивости. Хотя с точки зрения классически мыслящего ученого он действительно противоречив: работал и теоретико-множественными методами (в топологии), и интуиционистскими, создавая принципиально новую неплатонистскую математику.

Определенными сдвигами в неплатонистском направлении стали также конструктивизм, теория категорий, некоторые теории в логике. Действительно, если радикализировать позицию Брауэра, высказать её ещё яснее убрать из его философско-математических высказываний натуральные числа, то останется только алгоритм. Тогда не важно ЧТО преобразуется, а важно КАК (само преобразование). По идейному подходу это близко к теории алгорифмов, -исчислению А.Черча, теории категорий. В одном из направлений конструктивизма - теории алгорифмов А.А.Маркова (мл.) главное - само преобразование, но алгорифм понимается платонистски. Однако уже -исчисление, метафорически выражаясь, логика без переменных. Теорию категорий Ю.И.Манин назвал социологическим подходом, т.е. это как бы структуры без элементов, на что первым обратил внимание Ф.У.Ловер.

В чём состоит неплатонистский стиль мышления?

в преодолении мышления целостными "недвижными" понятиями, подобными языковым формам или материальным вещам, и утверждении мышления движущимися образами, становящимися мыслеформами, следовательно, переходными, дробными объектами - фракталами; оперирование ими требует и неплатонистской логики - мышления как бы дробными понятиями, суждениями, умозаключениями;

в отказе от классической тройки: элемент, структура, система, и утверждении системы без элементов, но со структурой (законом);

в отказе от субъект-объектного расщепления бытия, признании его ограниченности и в утверждении единого бытия, в котором слиты объект и субъект.

Подобно тому, как в начале ХХ века в естествознании возникла неклассическая наука, а к концу века - постнеклассическая, также возникла неклассическая математика (интуиционизм), а позже стала развиваться постнеклассическая (например, фрактальная геометрия). Их отличие - в сдвиге к картине мира, в которой в математическое знание включён идеальный мыслящий субъект, в отказе от жёсткой структурности (как в теоретико-множественной картине). Есть классы и структура, но нет элементов. Это предполагает предельно высокий уровень абстрактности (отсюда у конкретно мыслящих математиков возникает ощущение пустоты категорных форм).

Неплатонизм предполагает мышление самоподобными объектами - фракталами. Их странность в том, что невозможно выделить части (они совпадают с целым) - у них нет структуры как связи элементов. В то же время есть закон. Например, это формула Б.Мандельброта: Zn+1 = Zn2 + C.

Таким образом, интуиционизм, метаматематика, фрактальная геометрия образуют зачатки неплатонистской математики - области свободно становящихся объектов, относительно которой возникает ощущение, что в ней НЕТ классических (теоретико-множественных) понятий, или их может не быть - они уходят на второй план. В то же время и здесь ЕСТЬ неизменные идеальные объекты, например, алгоритм, фрактал (как формула, организующая его, или соответствующая геометрическая картинка, мыслимая как завершённое целое) - но это при платонистской интерпретации, тогда исчезает специфика неплатонизма, его шарм, брауэровский привкус.

Мы получаем противоположности, отрицающие друг друга (НЕТ и ЕСТЬ) - с точки зрения двузначной логики.

Учёному же, стремящемуся к мудрости (философу), необходимо преодолеть ограниченность двузначности - подняться над противоположностями и, следовательно, искать МЕЖДУ "существует" и "не существует", то есть, в области становления - именно здесь область роста постнеклассической математики.

Эта область заполнена одними лишь монстрами - странными объектами, подобно кентавру совмещающими в себе взаимоисключающие свойства, например, наличие структуры при отсутствии элементов, неподвижность и вечное движение, живость и мертвенность - как фракталы, а также непрерывность при недифференцируемости, конечность площади при бесконечности периметра - как давно открытые некоторые функции и фигуры. Причём исторически первый монстр - это иррациональные числа (VI в. до РХ). В гармонической картине мира древних греков этих чисел как бы нет, и в то же время они налицо - как диагональ квадрата.

На единичном отрезке прямой рациональные числа (вида m/n) образуют множество меры 0 (их почти нет), а иррациональные - меры 1 (это почти все числа). Подобным же образом почти всё, что есть во всей математике как мире всех возможных миров - это монстры, а прекрасные гармоничные непротиворечивые понятия образуют множество меры 0. Это наилучший из всех возможных миров. Это наш мир, поскольку человеческий род в принципе прекрасен и может устойчиво существовать (жить) лишь в окружении прекрасного. Так монадология Лейбница и антропный принцип сходятся в хаосе - промежуточной области вечного становления, между "да" и "нет". Хаос здесь уступает своей творящей стороной.

Таким образом, сравнивая Гильберта и Брауэра, мы видим, что неплатонистский стиль последнего отрицает оперирование "ставшими", неподвижными формами и ведет к математике "абсолютно текучего", в котором нет целых понятий, но (гипотетически) возможны фрактальные - дробные понятия, суждения, умозаключения. Философией, наиболее близкой к такой - синергетической трактовке Брауэра, является даосизм как учение о становящемся, но никогда не ставшем бытии.

Стиль Брауэра (как основателя интуиционизма) можно назвать интуиционистско-неплатонистским, (предшествующим синергетическому стилю мышления). Жизнь=математика=музыка=искусство - все слилось в его противоречивой, мятущейся и мятежной душе отрицателя основ, стремящегося к Единому, понимаемому в духе восточной философии. Известные слова Бюффона "Человек - это стиль" (как в быту, так и в науке) относятся ко всем описанным ученым. В частности, манера поведения, особенности личной жизни Брауэра коррелируют с его поисками неплатонизма в математике.

Подобные пары математиков, дискутировавших или параллельно совершавших одни и те же открытия и отличавшиеся стилями, неоднократно встречаются в истории науки, на что обращает внимание И.М.Яглом 8 . Он обращает внимание на универсальность двух типов мышления: левополушарного и правополушарного, арифметико-алгебраического и геометрического. Именно этим отличаются Пифагор и Фалес (как создатели теоретической математики), Аристотель и Платон (разработчики философии математики, один - создатель логики, второй - его учитель, мысливший яркими картинками), Я.Бойаи и Н.И.Лобачевский (создатели неевклидовых геометрий), Г.Грасман и У.Р.Гамильтон (внешняя алгебра и кватернионы), К.Вейерштрасс и Б.Риман (алгебраическая теория функций и геометрическое направление теории аналитических функций), С.Ли и Ф.Клейн (теория групп) и другие.

Лево- и правополушарный типы мышления обусловлены спецификой физиологии человеческого мозга, лежат в основе и соответствующих стилей. Если согласиться с Бюффоном, что стиль несёт в себе индивидуально-личностный привкус, то:

стиль = тип + индивидуальность.

Таким образом, среди гигантского количества стилей можно выделить главные и классифицировать их по парам противоположностей:

содержательный - формальный (близкое деление: конкретный - абстрактный);

дискретный - непрерывный (близкое деление: арифметико-алгебраический - геометрический);

платонистский - неплатонистский (исторически-преходящее деление: теоретико-множественный - интуиционистский), как мышление дискретными целостными понятиями и мышление переходными, дробными, фрактальными мыслеобразами.

XX век впервые после великих греков через интуиционизм, конструктивизм, метаматематику, теорию категорий, фрактальную геометрию обозначил отход от господствовавшего тысячелетия платонистского стиля.

Список литературы

1.Клейн Ф. Лекции о развитии математики в XX столетии. М.-Л., 1937. ч. 1. -432 с.

2.Вейль Г. Математическое мышление. -М., 1989. -400 с.

3.Гильберт Д. Основания геометрии. -М.-Л., 1948. -491 с.

4.Рид К. Гильберт. -М., 1977. -307 с.

5.Гейтинг А. Интуиционизм. -М., 1965. -200 с.

6.Панов М.И. Методологические проблемы интуиционистской математики. -М., 1984. -224 с.

7.Манин Ю.Н. Лекции по алгебраической геометрии. -М., 1970. -ч.1. Аффинные схемы. -133 с.

8.Яглом И.М. Почему высшую математику открыли одновременно Ньютон и Лейбниц? Число и мысль. Вып. 6. М; 1983. С. 99-125.

9.Войцехомич В. Э. Господствующие стили математического мышления


Реферат: Личностно-ориентированный подход на уроках математики

Личностно-ориентированный подход на уроках математики.

" Всё, что находится в природе, математически точно и определённо" - утверждал М.В.Ломоносов.

 Математика - это универсальный язык для ёмкого и лаконичного описания основополагающих принципов, на которых зиждется мироздание, язык для выражения строгой мировой гармонии. "Красота науки, как и красота искусства, определяются ощущением соразмерности и взаимосвязанности частей, образующих целое, и отражают гармонию окружающего мира" - эти слова, принадлежащие российскому академику, физику-теоретику А.Б.Мигдалу, перекликаются с высказыванием французского физика и философа Анри Пуанкаре: "Если бы природа не была прекрасна, она не стоила бы того труда, который тратится на её познание, и жизнь не стоила бы того труда, который нужен, чтобы её прожить... Я говорю о той красоте, которая сквозит в гармоничном порядке частей и которую воспринимает только чистый интеллект...". Лауреат Нобелевской премии, известный немецкий физик Вернер Гейзенберг именно математику назвал "прообразом красоты".

Математика является носителем важнейших философских обобщений, и вся диалектика познания, весь интеллектуальный опыт человечества с неукоснительной последовательностью отражены в истории математических открытий. Бернард Шоу (не "технарь", а драматург и публицист!) так оценил этот опыт: "За всю известную нам историю человечества лишь восемь человек ( Пифагор, Аристотель, Птоломей, Коперник, Галилей, Кеплер, Ньютон и Эйнштейн ( смогли синтезировать всю совокупность знаний своего века в новое представление о Вселенной, более грандиозное, чем представления их предшественников". А английский философ, математик Бертран Рассел, добавил:?"Теория относительности Эйнштейна является, вероятно, величайшим синтетическим достижением человеческого интеллекта до наших дней. Она суммирует математические и физические знания, накопленные более чем за 2000 лет. Чистая Геометрия от Пифагора до Римана, динамика и астрономия Галилея и Ньютона, теория электромагнетизма, созданная на основе исследований Фарадея, Максвелла и их последователей, ( все они вылились в теорию Эйнштейна".

Именно этот системный подход, думается, и должен быть положен в основу преподавания дисциплин, объединяемых в естественно-технический и математический цикл, именно эти представления о единстве принципов мироустройства, при всём фантастическом разнообразии их проявлений, должны методично внедряться в сердца и умы наших учеников.

Мы всегда обращаем внимание школьников на то, что каждый шаг по пути поиска истины был прорывом от незнания к знанию, и то, что нам сейчас кажется простым и привычным, когда-то не было известно вовсе, существовало в виде догадок, рождалось в муках, зачастую воспринималось современниками как ересь. ("Настанет время, когда потомки наши будут удивляться, что мы не знали таких очевидных вещей". Луций Сенека, 1 век н.э.).

В обучении математике ясно вычерчиваются два аспекта, одинаково значимых для формирования личности с профессионально и социально востребуемым интеллектом: -математика как неотъемлемая часть культуры; -математика как организующий, внутренне воспитывающий, разивающий фактор.

Общекультурный потенциал школьной математики позволяет нам взглянуть на неё не как на сугубо техническую дисциплину, а на дисциплину гуманитарную, и именно такой взгляд становится сегодня преобладающим.

Все новые концепции преподавания математики в  средней школе строятся на понятии математической модели, и если, например, в серии учебников под редакцией академика А.Н.Тихонова термин "Математическая модель" обсуждается лишь в кратком послесловии к курсу 9-го класса, то такие авторы, как Л.И.Петерсон, Г.В.Дорофеев, И.Ф.Шарыгин, А.Г.Мордкович обращаются к нему как к ключевому понятию.

Итак, математика изучает математические модели явлений, процессов и взаимозависимостей в мире. Модели описываются математическим языком, языком функций, а наука, занимающаяся языком, считается гуманитарной.

Коснувшись проблемы языка, нельзя не упомянуть роль слова в формировании целостной картины мира и путей познания его законов. Работа со словом является для нас важнейшим компонентом обучения. Наша задача - не только расшифровать вводимый термин, но и проследить, как он отражает движение человечества по пути познания. Возможность для этого предоставляется на каждом уроке - от названий числительных в 5 классе до синусов, тангенсов, модулей и логарифмов в старшей школе. Интересна и полезна работа над составлением школьного этимологического словаря математических терминов, в которую могут быть вовлечены дети всех параллелей.

Вдохновение в математике не менее важно, чем в искусстве, и в его присутствии результаты усвоения учебного материала заметно выше. В качестве примера небольшого лирического вкрапления можно привести фрагмент урока алгебры в 10 классе по теме "Применение показательной функции":

Число не является основанием особо важной и наиболее часто встечающейся показательной функции, которая называется экспонентой: f(x)= ехр(х). (Exponent в переводе с немецкого означает показатель. Сам термин exponenten возник при не совсем точном переводе с греческого слова, которым Диофант обозначал квадрат неизвестной величины.) Экспоненциальному закону подчинены многие зависимости в живой и неживой природе. Гибкая цепь провисает по кривой, которая так и называется - цепная линия. Так же выгибается парус, надутый ветром. Сечение вулканов вертикальной плоскостью имеет форму цепной линии. Вездесущее число е начертано даже на паутине. Французский энтомолог Жан Анри Фарб в книге "Жизнь паука" писал: "Рассмотрим внимательно сплетённую за ночь паутину. Усеянные крохотными капельками, её липкие нити провисают под тяжестью груза, образуя цепные линии, и вся сеть становится похожей на множество ожерелий, как бы повторяющих очертания невидимого колокола. Стоит лишь лучу солнца проникнуть сквозь туман, как паутина начинает переливаться всеми цветами радуги, и число е предстаёт перед нами во всём своём великолепии".

Другой пример, иллюстрирующий возможность сделать учебный материал ярким и запоминающимся, - из курса стереометрии. При изучении темы "Пирамиды" не обойтись без обращения к одному из "чудес света" - египетским пирамидам. Оказывается, их геометрические параметры подчинены удивительным закономерностям, которые можно использовать для составления интересных и полезных задач. Площадь каждой боковой грани пирамиды Хеопса равна квадрату её высоты; удвоенная высота, помноженная на (, равна периметру основания, а удвоенный периметр основания, в свою очередь, с большой точностью равен длине дуги экватора, соответствующей одной минуте. Школьники гораздо более увлечённо вычисляют углы наклона боковых ребер и боковых граней к плоскости основания грандиозного сооружения, построенного в третьем тысячелетии до нашей эры, чем абстрактной пирамиды из типовой задачки.

Второй аспект преподавания математики предполагает формирование умения свободно и осознанно манипулировать полученными знаниями. Сейчас сам по себе запас каких бы то ни было знаний бесполезен, если не научить человека самостоятельно думать и самостоятельно добывать и обрабатывать информацию. "Преобразование информации ( это и есть содержание того, что мы называем умственным трудом человека" (В.М.Глушков, советский математик). Цель обучения ребёнка состоит в том, чтобы сделать его способным развиваться дальше без помощи учителя. Преобладание развивающей функции уроков математики обеспечивается уникальной особенностью самого математического курса. Только математике присуще такое соотношение между алгоритмическим и эвристическим путями поиска решения, которое заставляет сбалансированно работать оба полушария головного мозга ("искусство доказывать и искусство догадываться"). Даже неизбежное совершение ошибок при овладении теми или иными математическими навыками (при их своевременном обнаружении) имеет положительный развивающий эффект: "Ошибки - это, по сути, прямой путь к успеху, поскольку любое понимание ошибки заставляет нас усерднее стремиться к истине, и каждый новый опыт указывает нам на ту или иную разновидность ошибок, которые мы будем тщательно избегать в будущем" (Джон Китс, английский поэт).

Вооружая школьника таким инструментом, как математическая модель мира, и научив им пользоваться, мы открываем перед ним панораму универсальных взаимозависимостей, которые приводят мир в состояние гармонии. "Из чего это следует?", "что из этого следует?", "от чего это зависит?" - ответы на такие вопросы формируют определённый стиль мышления, необходимый и будущему юристу, и будущему врачу. Прослеживать причинно-следственные связи мы учим детей на каждом уроке. Особенно благодатна для этого геометрия, которую наши учащиеся начинают изучать с 5 класса. Богатейшим материалом для логических умозаключений располагают темы "Геометрическая интерпретация решения систем уравнений", "Иррациональные уравнения", "Применение производной для исследования функций", и многие другие. Учащиеся 11 класса работают над проектом "Влияние коэффициентов рациональных функций на вид их графиков", и сквозь конкретный, сугубо специальный материал перед ними чётко проявляются общие закономерности и принципы, применимые в других областях. Нами разработан практикум по стереометрии "Тренировка пространственного мышления в системе формирования целостного мировосприятия школьника", который также помогает решать задачи развивающего обучения.

Систематические занятия математикой формируют такие качества мышления, которые не могут быть получены в результате каких-либо других упражнений. Например, действия на упрощение алгебраических выражений вынуждают работать мозг ребёнка в режиме оптимизации, и этот навык окажется в будущей деятельности бесценным. Необходимость удерживать в памяти большие массивы данных и нужную последовательность их обработки тренирует гибкость мышления, устойчивость внимания, умение его концентрировать. "Если поручить двум людям, один из которых - математик, выполнение любой незнакомой работы, то результат будет следующим: математик сделает её лучше" - можно не согласиться с этими словами Г. Штейнгауза, но, бесспорно, тот потенциал, который даёт ученику полноценная математическая подготовка, будет иметь прямое влияние на успех его профессиональной деятельности.

Генрих Гейне сказал: "В жизни, кроме здоровья и добродетели, нет ничего ценнее знания; а его и легче всего достигнуть, и дешевле всего добыть: ведь вся работа - это покой, а весь расход - время, которое нам не удержать, даже если мы его не потратим". Познание делает человеческую жизнь осмысленной, насыщенной и интересной. Для тех, в ком сформирована потребность умственного труда, поиск истины важнее, чем обладание истиной. И поэтому очень точно выражают смысл учения слова русского историка В.О.Ключевского: "Преподаватель обращается не к изучаемому предмету с целью познать его, а к воспринимающему мышлению с целью передать ему готовое познание, и передать не механически, как перекладываются вещи с места на место, а как свеча зажигается от другой, со всеми последствиями горения - светом и теплом". Это в полной мере относится и к обучению математике.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://pedagogika.by.ru/


 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Формы работы на уроках математики"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Специалист по корпоративной культуре

Получите профессию

Экскурсовод (гид)

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 664 075 материалов в базе

Скачать материал

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 23.05.2016 7660
    • DOCX 313.5 кбайт
    • 22 скачивания
    • Оцените материал:
  • Настоящий материал опубликован пользователем Шамакина Татьяна Константиновна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 7 лет и 11 месяцев
    • Подписчики: 0
    • Всего просмотров: 25278
    • Всего материалов: 7

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Экскурсовод

Экскурсовод (гид)

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Развивающие математические задания для детей и взрослых

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 66 человек из 26 регионов
  • Этот курс уже прошли 81 человек

Курс повышения квалификации

Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 325 человек из 66 регионов
  • Этот курс уже прошли 3 546 человек

Курс профессиональной переподготовки

Математика и информатика: теория и методика преподавания в профессиональном образовании

Преподаватель математики и информатики

500/1000 ч.

от 8900 руб. от 4150 руб.
Подать заявку О курсе
  • Сейчас обучается 41 человек из 23 регионов
  • Этот курс уже прошли 53 человека

Мини-курс

Современные методики базальной стимуляции и развивающего ухода для детей с тяжелыми множественными нарушениями развития

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

От романтизма к современности: шедевры и новаторство

5 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

ЕГЭ по биологии

4 ч.

780 руб. 390 руб.
Подать заявку О курсе