Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Конспект урока по геометрии для 10 класса на тему Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Конспект урока по геометрии для 10 класса на тему Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости

библиотека
материалов

Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости

Класс: 10


Цель урока:

образовательная: формировать понятие перпендикулярных прямых в пространстве, доказать лемму о перпендикулярности двух параллельных прямых к третьей прямой, дать определение перпендикулярности прямой и плоскости, доказать теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости;


развивающая: развивать вычислительные навыки, логическое и пространственное мышление, речь учащихся;


воспитательная: воспитывать интерес к предмету, аккуратность при выполнении чертежей.


Тип урока: урок усвоения новых знаний


Методы обучения: индуктивно-эвристический, дедуктивно-репродуктивный.


Требования к ЗУН: учащиеся должны знать понятие перпендикулярных прямых в пространстве, доказательство леммы о перпендикулярности двух параллельных прямых к третьей прямой, определение перпендикулярности прямой и плоскости, формулировки теорем, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости; уметь применять изученные понятия и утверждения при решении задач по данной теме.


Оборудование: ПК, экран, проектор, мультимедиа презентация.


Литература:

  1. Геометрия, 10–11: Учеб. для общеобразоват. учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 11-е изд. – М.: Просвещение, 2002 г.

  2. Изучение геометрии в 10-11 классах: Метод. рекомендации к учеб.: Кн. для учителя /С. М. Саакян, В.Ф. Бутузов. – 2-е изд. – М. Просвещение, 2003. – 222 с.: ил. – ISBN 5-09-011836-1.

  3. Методика и технология обучения математике. М.: Дрофа, 2005. – 416 с.


План урока:

I. Орг. момент (2 мин)

II. Изучение нового материала (20 мин)

  1. Актуализация знаний.

  2. Формирование понятия перпендикулярности двух прямых в пространстве.

  3. Доказательство леммы о перпендикулярности двух параллельных прямых к третьей прямой.

  4. Формирование понятия перпендикулярности прямой и плоскости.

  5. Доказательство теорем, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости.

III. Первичное закрепление материала. №№ 117, 120 (17 мин)

IV. Подведение итогов (5 мин)

V. Домашнее задание. п.15 – 16, вопросы 1, 2 стр.54, №№ 116, 118 (1 мин)


ХОД УРОКА:


  1. Орг. момент


Приветствие учеников, проверка готовности учащихся к уроку, проверка отсутствующих.

Учитель: (слайд 1) Мы приступаем к изучению новой большой главы: «Перпендикулярность прямых и плоскостей». Тема нашего сегодняшнего урока: «Перпендикулярность прямой и плоскости». Мы познакомимся с понятием перпендикулярных прямых в пространстве, с теоремами, касающимися перпендикулярности прямых и затем рассмотрим задачи.


hello_html_m4674412c.png

Запись на доске и в тетрадях:


Число.

Классная работа.

«Перпендикулярность прямой и плоскости».

II. Изучение нового материала


1. Актуализация знаний.

Учитель: Какое взаимное расположение прямых на плоскости?

Ученик: Прямые могут не иметь общих точек – быть параллельными, иметь одну общую точку – пересекаться, либо быть перпендикулярными, иметь множество общих точек – совпадать.

Учитель: Какие прямые называются перпендикулярными на плоскости?

Ученик: Две прямые называются перпендикулярными, если при пересечении они образуют четыре прямых угла.

Учитель: Какое взаимное расположение прямых в пространстве?

Ученик: Две прямые могут пересекаться, быть параллельными, либо скрещивающимися.


2. Формирование понятия перпендикулярности двух прямых в пространстве.

Учитель: (слайд 2) Перед вами куб ABCDA1B1C1D1.


hello_html_m57a7504d.png

Учитель: Какое взаимное расположение прямых АВ и ВС?

Ученик: Прямые перпендикулярны.

Учитель: (слайд 2) Найдите угол между прямыми АА1 и DC.

hello_html_6c1dff7b.png

Ученик: Прямые АА1 и DC тоже перпендикулярны, угол между ними равен 90 градусов.

Учитель: (слайд 2) Запишем определение перпендикулярности двух прямых в пространстве

hello_html_m71c96f98.png

Запись в тетрадях:


Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 градусов.


Учитель: (слайд 3) В пространстве перпендикулярные прямые могут пересекаться и могут быть скрещивающимися. Обратите также внимание на рисунок 43 на стр.34 ваших учебников. Перпендикулярные a и b пересекаются, а прямые a и c скрещиваются.


hello_html_57c0b99b.png


3. Доказательство леммы о перпендикулярности двух параллельных прямых к третьей прямой.

Учитель: (слайд 4) Рассмотрим прямые АА1 , СС1 и DC.


hello_html_3eea9760.png

Учитель: Прямая АА1 параллельна прямой СС1, а прямая СС1 перпендикулярна прямой CD. Нами установлено, что АА1 перпендикулярна CD. Какой мы можем сделать из этого вывод? Сформулируйте это утверждение.

Ученик: Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Учитель: (слайд 5) Это утверждение носит название Леммы о перпендикулярности двух параллельных прямых к третьей прямой.


hello_html_1f845198.png


Запись в тетрадях:


Лемма. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.


Учитель: (слайд 6) Докажем лемму.


hello_html_m6d018107.png


Запись на доске и в тетрадях:


hello_html_m5c234ba5.png

Дано: а || b, a ^. с

Доказать: b^с.



Учитель: Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым а и с. Так как прямая a перпендикулярна c, то угол AMC равен 90 градусов.


Запись на доске и в тетрадях:

МА||а и МС||с. Т.к. a ^ c, то угол AMC = 90°


Учитель: По условию b||а, а по построению а || МА, поэтому b||МА. Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между которыми равен 90°. Это означает, что угол между прямыми b и с также равен 90°, т. е. b ^ c.


Запись на доске и в тетрадях:

b||а (по условию), а || МА (по построению), => b||МА.

b|| МА и с|| МС, угол AMC = 90° => (b,^c) = 90°, т. е. b ^ c


4. Формирование понятия перпендикулярности прямой и плоскости.

Учитель: (слайд 7) Рассмотрим куб ABCDA1B1C1D1. Найдем углы между прямой АА1 и прямыми плоскости АBCD.

hello_html_756e5de7.png

Ученик: Между прямой АА1 и прямыми плоскости АBCD углы равны 90°, т.е прямая АА1 перпендикулярна прямым плоскости АBCD.

Учитель: Отсюда мы можем сделать вывод: прямая АА1 перпендикулярна любой прямой, лежащей в плоскости АBCD. Такие прямые называются перпендикулярными. Перпендикулярность прямой α и плоскости α обозначается так: α ^ α,

Учитель: (слайд 7) Запишем определение прямой, перпендикулярной к плоскости:

hello_html_m7d7f33c8.png

Запись в тетрадях:

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Обозначение: α ^ α


Учитель: Говорят также, что плоскость α перпендикулярна к прямой α.

Учитель: (слайд 8) Если прямая α перпендикулярна к плоскости α, то она пересекает эту плоскость. Действительно, если бы прямая α не пересекала плоскость α, то она или лежала бы в этой плоскости, или была бы параллельна ей, а это противоречит определению перпендикулярности прямой и плоскости, значит прямая α пересекает плоскость α.

hello_html_ac37ed0.png

Учитель: (слайд 9) На рисунке 45 стр.35 ваших учебников изображена прямая α перпендикулярная к плоскости α. Скажите, прямая будет перпендикулярна любой прямой, лежащей в плоскости α?

hello_html_4cd6d932.png

Ученик: Да, будет. Это следует из определения прямой, перпендикулярной к плоскости.

Учитель: (слайд 10) Окружающая нас обстановка дает много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Прокомментируйте их.

hello_html_m44bed64a.png

Ученик: Телеграфный столб перпендикулярен к плоскости земли.. Так же расположены колонны здания по отношению к плоскости фундамента, линии пересечения стен по отношению к плоскости пола.

Учитель: А чему будет перпендикулярна открытая половинка окна?

Ученик: Плоскости подоконника, плоскости пола, плоскости потолка.

Учитель: Какие ещё примеры вы можете привезти из жизни?

Ученик: Люстра висит перпендикулярно к плоскости пола и плоскости потолка, горизонтальная линия доски перпендикулярна плоскости стены и т.д.


5. Доказательство теорем, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости.

Учитель: (слайд 11) Рассмотрим ещё две теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости.

hello_html_m5955db53.png

Запись в тетрадях:

Теорема: Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.


Учитель: (слайд 12) Докажем её.


hello_html_54e09cb8.png

Запись на доске и в тетрадях:

hello_html_m1b5fa19d.png

Дано: а || b, a ^α

Доказать: b^α.


Учитель: Проведем какую-нибудь прямую х в плоскости α. Так как а^α, то а^х. По лемме о перпендикулярности двух параллельных прямых к третьей b^х.

Таким образом, прямая b перпендикулярна к любой прямой, лежащей в плоскости α, т.е. b^α.


Запись на доске и в тетрадях:

Т.к а^α, то а^х => b^х (по лемме о перпендикулярности двух параллельных прямых к третьей), а значит b^α (по определению).


Учитель: (слайд 13) Докажем обратную теорему.

hello_html_m5bc3642.png

Запись в тетрадях:

Теорема: Если две прямые перпендикулярны к плоскости, то они параллельны.


Учитель: (слайд 14) Доказательство:

hello_html_5a691d8e.png


Учащиеся самостоятельно записывают доказательство в тетрадь.


III. Закрепление изученного материала

Учитель: Переходим к решению задач. №№ 117, 120

Один ученик работает у доски, остальные на местах в тетрадях.

Учитель: Что дано в задаче?

Учитель: Что нужно доказать?

Учитель: Как мы это докажем?

Учитель: Какие теоремы можно применить?


hello_html_5b645ad5.png

hello_html_m46098cf0.png


hello_html_16305f93.png

hello_html_3180e54f.png

hello_html_64d70c39.png



  1. Подведение итогов

Обобщение материала, изученного на уроке, повторение основных понятий и формулировок (фронтальный опрос). Выделение положительных и отрицательных моментов урока, оценка работы ребят, выставление отметок.


  1. Домашнее задание


Запись в дневниках

п.15 – 16, вопросы 1, 2 стр.54, №№ 116, 118



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

  Цель урока: образовательная:      формировать понятие перпендикулярных прямых в пространстве, доказать лемму о перпендикулярности двух параллельных прямых к третьей прямой, дать определение перпендикулярности прямой и плоскости, доказать теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости;   развивающая:             развивать вычислительные навыки, логическое и пространственное мышление, речь учащихся;   воспитательная:       воспитывать интерес к предмету, аккуратность при выполнении чертежей.   Тип урока:                урок усвоения новых знаний   Методы обучения:    индуктивно-эвристический, дедуктивно-репродуктивный.
Автор
Дата добавления 19.05.2014
Раздел Математика
Подраздел Конспекты
Просмотров5605
Номер материала 108637051925
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх