Инфоурок Геометрия КонспектыМетодические рекомендации к уроку по теме: "Симметрия в пространстве" (10 класс)

Методические рекомендации к уроку по теме: "Симметрия в пространстве" (10 класс)

Скачать материал

Симметрия в пространстве (10 класс)

 

Цели урока:

Учебные:

1.     Познакомить учащихся с понятием симметрия в пространстве.

2.     Рассмотреть понятие симметрия, используя содержательные связи математики, физики, химии и биологии.

3.     Рассмотреть следующие виды симметрии: центральная, осевая, зеркальная, поворотная, винтовая.

4.     Повышать у учащихся мотивацию изучения математики.

Развивающие:

1. Содействовать развитию познавательной активности.

     2. Содействовать развитию воображения.

  3. Содействовать развитию коммуникативных умений, умения работать в команде.

Воспитательные:

1.     Содействовать развитию эстетического восприятия учащихся.

2.     Содействовать расширению кругозора у учащихся.

Вид урока: изучение нового материала.

Методические рекомендации по подготовке и проведению урока:

За 2 недели до проведения этого урока учитель должен разделить класс на команды. Каждая команда готовит сообщение по одной из следующих тем: «Симметрия», «Симметрия у растений», «Симметрия у животных», «Симметрия у человека», «Симметрия в химии». Разделение на команды происходит с учетом наличия интереса учащихся к тем или иным предметам. Интерес определяется учителем на основе личных наблюдений и бесед с учащимися.

Каждая команда получает ориентировочный план, в соответствии с которым необходимо подготовить сообщение по предложенной теме. Те пункты, которые указаны в плане, обязательно должны быть освещены.

Например, команда, которая готовит рассказ о симметрии у растений, получает следующий план:

1) вертикальная симметрия;

2)    поворотная симметрия;

3)    винтовая симметрия.

На первой неделе подготовки учащиеся сами ищут необходимую литературу и отбирают материал. В результате у каждого участника команды должен появиться конспект. Если у команды возникают затруднения с поиском материала, то учитель предлагает учащимся  список литературы. Кроме того, учитель проводит консультации для тех команд, которые самостоятельно не справляются с подготовкой к уроку.

Можно предложить учащимся разделить обязанности внутри команды. Тогда кто-то из учащихся будет отвечать за поиск и подбор материала, кто-то - за изготовление (поиск) наглядных пособий, кто-то – за изложение материала на уроке, кто-то – за разработку и создание презентации. Однако все учащиеся должны знать материал, с которым работает их команда, и иметь конспект. После выступления каждой команды учитель может задать каждому ее участнику небольшой вопрос по изложенному материалу.

Команды выступают по очереди. Во время выступления команды все остальные учащиеся слушают и заполняют следующую таблицу:

Область знаний

Виды симметрий

Примеры

Математика

Центральная

Осевая

Зеркальная

Окружность

Прямоугольник

Прямоугольный параллелепипед

Ботаника

 

Вертикальная

Поворотная

Деревья

Цветы: ирис (120º), нарцисс (60º)

 

Ход урока:

1. Создание учебной доминанты:

Учащимся предлагается следующее задание: заполните свободные части рисунков числами и фигурами, учитывая вид симметрии.

          

2. Вводное слово учителя:

Среди бесконечного многообразия форм живой и неживой природы в изобилии встречаются такие совершенные образцы, чей вид неизменно привлекает наше внимание. К числу таких образцов относятся некоторые кристаллы и микробы, многие животные и растения. Мы постоянно любуемся прелестью каждого отдельного цветка, мотылька или раковины и всегда пытаемся проникнуть в тайну красоты. Нас удивляет и архитектура пчелиных сот, и расположение семян на шляпке подсолнечника, и винтообразное расположение листьев на стебле растения.

Внимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все ее виды – от простейших до самых сложных.

Симметрия (от греческого symmetria - "соразмерность") -  соразмерность, полное соответствие в расположении частей целого относительно средней линии, центра; строгая правильность в расположении, размещении чего-либо.

3.     Каждая команда выступает со своим докладом. Возможные варианты докладов учащихся приведем в приложении.  

4. Заключительное слово учителя:

По справедливому замечанию Г. Вейля, у истоков симметрии лежит математика. Вместе с тем симметрия воспринимается нами как элемент красоты вообще и красоты природы в частности. Сегодня мы рассмотрели симметрию с точки зрения математики, биологии, физики и химии. Кроме этого, симметрия широко используется в искусстве, в частности, в архитектуре.

         5. Домашнее задание: найти и сделать копии (ксерокопии, фотографии и др.) изображений, раскрывающих тему «Симметрия в архитектуре нашего города». (Можно будет устроить выставку, используя полученные работы). Некоторые из выполненных снимков помещены в приложение 4.

6. Теперь каждый из вас напишет небольшой синквейн (белый стих), посвященный теме нашего урока. Правила написания синквейна: в первой строке пишется тема (существительное), во второй строке: описание темы двумя прилагательными, в третьей строке: описание действий (три глагола), в четвертой строке: фраза из 4 слов, выражающих отношение к теме, пятая строка: слово, которое раскрывает суть темы, отмеченной в первой строке.

         Пособия: таблицы и наглядные пособия по биологии, химии, физике; презентации в Power Point.

            Приложение

Доклады по теме «Симметрия в пространстве»

 

Команда №1 (рассказывают и делают чертежи на доске):

Точки А и А1 называются симметричными относительно точки О, если О – середина отрезка АА1. Точка О считается симметричной самой себе, она называется центром симметрии. Такая симметрия называется центральной.

Точки А и А1 называются симметричными относительно прямой а, если прямая а проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка прямой а считается симметричной самой себе. Прямая а называется осью симметрии. Такая симметрия называется осевой.

Точки А и А1 называются симметричными относительно плоскости α, если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Плоскость α называется плоскостью симметрии. Такая симметрия называется зеркальной.

Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Симметрии в биологии.

Команда №2:

На явления симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы в связи с развитием учения о гармонии (V век до н.э.). В XIX веке появились единичные работы, посвящённые симметрии в растительном и животном мире. В XX веке усилиями российских учёных – В.Беклемишева, В.Вернадского, В.Алпатова, Г.Гаузе - было создано новое направление в учении о симметрии - биосимметрика, которое, исследуя симметрии биоструктур на молекулярном и надмолекулярном уровнях, позволяет заранее определить возможные варианты симметрии в биообъектах, строго описывать внешнюю форму и внутреннее строение любых организмов.

Симметрия у растений.

Многие деревья обладают симметрией. Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

Среди цветов наблюдается поворотная симметрия. Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займет положение соседнего, цветок совместиться с самим собой. Такой цветок обладает поворотной осью симметрии.

Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называют элементарным углом поворота оси. Этот угол для различных цветов неодинаков. Для ириса он равен 120º, для колокольчика - 72º, для нарцисса - 60º.

Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдет совмещение при повороте на 360º. Те же цветы ириса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно. Особенно часто среди цветов встречается симметрия пятого порядка.

В пространстве существуют тела, обладающие винтовой симметрией, т. е. совмещающиеся со своим первоначальным положением после поворота на угол φ вокруг оси, дополненного сдвигом вдоль той же оси. Если  - рациональное число, то поворотная ось оказывается также осью переноса.

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса (буквально «устроение листа»).

Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Команда № 3:              Симметрия у животных.

У большинства животных, например, у майского жука, речного рака, лягушки, волка имеются одинаковые парные органы на левой и правой сторонах тела. Так, у майского жука пара глаз, пара усиков, две пары крыльев, три пары ног. Через тело таких животных можно мысленно провести только одну плоскость, делящую животное на две зеркально одинаковые половины. Животные с симметрично расположенными парными органами называются двусторонне-симметричными, а симметрия их тела – двусторонней.

                                     

Двустороннюю симметрию тела имеют все активно передвигающиеся животные. Она позволяет им двигаться прямолинейно, сохраняя равновесие, с одинаковой легкостью поворачиваться вправо и влево. На переднем (поступательном) конце тела двусторонне-симметричных животных расположены рот, органы чувств, органы защиты и нападения. Обособление переднего конца тела связано с тем, что у активно передвигающихся животных именно передняя часть тела вступает прежде всего в контакт с добычей или хищником. Из поколения в поколение в природе лучше сохранялись те животные, у которых передняя часть тела была более чувствительной и имела более развитые органы защиты и нападения.

Животные, ведущие малоподвижный образ жизни, имеют иную симметрию тела и внешне похожи на цветки растений, шары, зонтики. Через их тело можно провести несколько воображаемых плоскостей, каждая из которых делит животное на две зеркально подобные друг другу половины. Линии пересечения этих плоскостей расходятся от центра пересечения лучами (пример: морская звезда).

Такую симметрию называют лучевой. Лучевая симметрия тела позволяет малоподвижным или прикрепленным животным ловить добычу и чувствовать приближение опасности с любой стороны их появления.

Команда №4:              Симметрия у человека.

Тело человека построено по принципу двусторонней симметрии.

Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого.

Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.

Физическая симметрия тела и мозга не означает, что правая сторона и левая равноценны во всех отношениях. Достаточно обратить внимание на действия наших рук, чтобы увидеть начальные признаки функциональной симметрии. Лишь немногие люди одинаково владеют обеими руками; большинство же имеет ведущую руку.

Женщины более склонны к леворукости, чем мужчины. У них потрясающая интуиция, которая живёт в правом полушарии, но слабее пространственная функция, логика, воля, самоконтроль.

Среди мужчин много композиторов, художников, что говорит о развитии левого полушария.

Учитель:                      Симметрия в физике.

Принципы симметрии являются в физике инструментом для отыскания новых законов природы. К числу симметрийных принципов относится принцип относительности Галилея и Эйнштейна.

В 1894 г. на свет появилась последняя работа Пьера Кюри, посвящённая симметрии физических явлений. Статья называлась "О симметрии физических явлений: симметрия электрического и магнитного поля". Именно в этой работе и были сформулированы наиболее глубокие идеи учёного, касающиеся универсальной роли симметрии в природе.

 

Более подробно симметрию физических законов мы рассмотрим в 11 классе, изучая тему «Движения».

Команда № 5:              Симметрия в химии.

«Кристаллы блещут симметрией», - писал Е.С.Федоров в своем «Курсе кристаллографии».

При слове «кристалл» в воображении рисуется первый среди драгоценных камней – алмаз: «кристальная» чистота и прозрачность, чудесная, непередаваемая игра света, идеальная, правильная форма. Но теперь алмазы уже не только красивый предмет роскоши. Сегодня они служат для обработки наиболее твердых металлов и сплавов. Без них не мыслится современная металлообрабатывающая промышленность.

Оказывается, кристаллами являются не только алмазы. Обычный сахар и поваренная соль, лед и песок состоят из множества кристалликов. Больше того, основная масса горных пород, образующих земную кору, состоит из кристаллов. Даже обыкновенная глина представляет собой нагромождение мельчайших кристалликов.

Словом, большинство строительных материалов – металлы, камень, песок, глина – кристаллические вещества. Можно сказать, что мы живем в домах, построенных из кристаллов. Не удивительно, что кристаллы являются предметом тщательного изучения.

Кристаллы – это твердые тела, имеющие естественную форму многогранника.

Характерная особенность того или иного вещества состоит в постоянстве углов между соответственными гранями и ребрами для всех образцов кристаллов одного и того же вещества. Что же касается формы граней, числа граней и ребер и величины кристалла, то для одного и того же вещества они могут значительно отличаться друг от друга.

Для каждого данного вещества существует своя, присущая только ему одному, идеальная форма его кристалла. Эта форма обладает свойством симметрии, то есть свойством кристаллов совмещаться с собой в различных положениях путем поворотов, отражений, параллельных переносов. Среди элементов симметрии различаются: оси симметрии, плоскости симметрии, центр симметрии.

Кристалл каждого вещества характеризуется определенным комплексом элементов симметрии – видом (классом) симметрии.

Внутреннее устройство кристалла представляется в виде так называемой пространственной решетки, в одинаковых ячейках которой, имеющих форму параллелепипедов, размещены по законам симметрии одинаковые мельчайшие материальные частицы – молекулы, атомы, ионы или их группы. Опираясь на эти представления, А.В.Гадолин в 1867 г. доказал, что всего существует 32 вида симметрии идеальных форм кристалла. Любое кристаллическое вещество, каждый кристалл должны принадлежать к одному из этих видов симметрии. Это утверждение представляет собой закон симметрии, один из основных законов кристаллографии. Следующий фундаментальный результат был получен в 1890 г. русским кристаллографом Е.С. Федоровым и одновременно немецким математиком А.Шенфлисом, доказавшими чисто геометрически, что существует 230 типов пространственных решеток. В 1912 году исследованиями кристаллов при помощи рентгеновских лучей была установлена реальность кристаллической решетки. Многие, если не все кристаллы более или менее легко раскалываются по некоторым строго определенным плоскостям. Это явление, называемое спайностью, свидетельствует о том, что механические свойства кристаллов анизотропны, т. е. не одинаковы по разным направлениям. Но кристаллы анизотропны и в отношении многих других физических свойств. Свет, например, в определенных кристаллах распространяется по различным направлениям с различной скоростью. При нагревании кристалл расширяется по различным направлениям различно. Это же можно сказать о теплопроводности, электропроводности и т. д.

Анизотропность физических свойств так же, как и сама правильность формы кристаллов, тесно связана с их решетчатым строением, т. е., в конечном счете, определяется симметрией их структуры.

 

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Методические рекомендации к уроку по теме: "Симметрия в пространстве" (10 класс)"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Бизнер-тренер

Получите профессию

Интернет-маркетолог

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 665 188 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 28.05.2017 802
    • DOCX 277.5 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Николаева Валентина Андреевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Николаева Валентина Андреевна
    Николаева Валентина Андреевна
    • На сайте: 7 лет и 9 месяцев
    • Подписчики: 2
    • Всего просмотров: 13668
    • Всего материалов: 8

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Фитнес-тренер

Фитнес-тренер

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 324 человека из 66 регионов
  • Этот курс уже прошли 3 547 человек

Курс повышения квалификации

Психолого-педагогические аспекты развития мотивации учебной деятельности на уроках математики у младших школьников в рамках реализации ФГОС НОО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Этот курс уже прошли 75 человек

Курс повышения квалификации

Применение математических знаний в повседневной жизни

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 27 человек из 17 регионов
  • Этот курс уже прошли 16 человек

Мини-курс

Фокусировка и лидерство: достижение успеха в условиях стресса и перемен

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 23 человека из 13 регионов

Мини-курс

Психология и профессиональное развитие

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 22 человека из 16 регионов

Мини-курс

Уникальный образ как педагога: основные принципы позиционирования

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Этот курс уже прошли 21 человек